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S.; Paunović, M. Topologies of

Bihyperbolic Numbers. Mathematics

2022, 10, 4224. https://doi.org/

10.3390/math10224224

Academic Editors: Salvador

Romaguera, Dimitrios Georgiou,

Manuel Sanchis and Marian Ioan

Munteanu

Received: 26 September 2022

Accepted: 26 October 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Topologies of Bihyperbolic Numbers
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Abstract: In this paper, we establish a correlation between the bihyperbolic numbers set and the
semi-Euclidean space. There are three different norms on the semi-Euclidean space that allow us to
define three different hypersurfaces on semi-Euclidean space. Hence, we construct some topological
structures on these hypersurfaces called norm e, s, and t topologies. On the other hand, we introduce
hyperbolic e, s, and t topologies on the bihyperbolic numbers set. Moreover, by using the idempotent
and spectral representations of the bihyperbolic numbers, we introduce new topologies on the
bihyperbolic numbers set.
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1. Introduction

J. Cockle introduced Tessarine numbers as a + bi + cj + dk, such that a, b, c, d ∈ R,
ij = ji = k, i2 = −1, j2 = 1, in 1848 [1–3]. Correspondingly, the discovery of the Tessarine
numbers brought out the appearance of new numbers in the form of a + cj, a, c ∈ R,
j2 = 1, j /∈ R. The system of such numbers is a subalgebra of Tessarine numbers. For
this reason, formerly, these numbers were called “real Tessarine” numbers. Real Tessarine
numbers are also known as hyperbolic numbers because a hyperbolic number moves
along a hyperbolic trajectory if this number is multiplied by an imaginary component of
hyperbolic numbers, just as a complex number rotates along a circular trajectory if it is
multiplied by an imaginary component. Besides, P. Fjelstad called hyperbolic numbers
perplex numbers and introduced their algebraic properties and hyperbolic trigonometric
functions in 1986 [4]. In addition, B. Rosenfeld named hyperbolic numbers as split-complex
numbers in 1997 [5] since the algebra of these numbers includes non-real roots of 1 and
also contains idempotents and zero divisors.

G. Sobczyk presented the basic properties of hyperbolic numbers and their relationship
with special relativity and space–time geometry in [6]. For a long while, the hyperbolic
numbers and their strict relation to the space–time geometry of two-dimensional special
relativity have been an actual subject area of research [6–10]. This relation has been extended
to multiple dimensions as well. For instance, the space–time or spherical hyperbolic
complex numbers in dimensions three and four have been studied in a recent paper on
the hyperbolic numbers together with their multidimensional generalizations [10]. W. D.
Richter also introduced the hyperbolic vector product, hyperbolic vector powers, and
hyperbolic vector exponential function in this paper.

In fact, the idea of working in higher dimensions dates back to old times. In 1892,
Segre modified the quaternions by virtue of the commutative property in multiplication
and introduced “bicomplex numbers” based on the works of Hamilton and Clifford on
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quaternions [11]. G. B. Price published a comprehensive book on bicomplex and multicom-
plex numbers in 1991 [12]. Furthermore, D. Rochon and M. Shapiro studied the algebraic
properties of bicomplex and hyperbolic numbers in 2004 [13]. In this study, the importance
of hyperbolic numbers and bicomplex numbers in Clifford’s algebra was explained. The
algebra, geometry, and analysis of bicomplex numbers were explained in detail by [14].
With the progress of time, Segre’s commutative quaternions have been generalized and
three types of four-dimensional commutative hypercomplex numbers q = t + ix + jy + kz,
where t, x, y, z ∈ R, i, j, k /∈ R, i2 = k2 = α, j2 = 1, ij = ji = k such as elliptic (α < 0),
parabolic (α = 0), and hyperbolic (α > 0) [15,16]. The well-known bicomplex numbers
correspond to the special case α = −1. In the case of α = 1, these numbers are called
hyperbolic four complex numbers [16] or bihyperbolic numbers [17]. These numbers can
be represented by a pair of hyperbolic numbers. Furthermore, the spectral representation of
the bihyperbolic numbers was given in [18], and this representation allowed the definition
of a partial order of bihyperbolic numbers. Furthermore, the combinatorial properties of
bihyperbolic numbers of the Fibonacci and Pell types are given in the recent papers [19–21].

On the other hand, the idea of constructing topologies on bicomplex numbers was
first presented by R. K. Srivastava. The norm topology, complex topology, and idempotent
topology were defined on bicomplex space in 2008 [22]. R. K. Srivastava and S. Singh
established the dictionary order topology in the set of bicomplex numbers in 2010 [23].
Bicomplex nets were studied by R. K. Srivastava and S. Singh in 2011 [24]. R. K. Srivastava
and S. Singh studied the compactness of some sub-spaces of bicomplex spaces in 2013 [25].
A. Prakash and P. Kumar briefly introduced the topologies of bicomplex numbers and
compared these topologies in 2016 [26]. S. Singh and S. Kumar studied the dictionary order
topology of bicomplex numbers in 2017 [27].

Even though there are some studies constructing topological structures on bicomplex
numbers sets, there is no study about topological structures on bihyperbolic numbers set.
The bihyperbolic numbers are related to four-dimensional semi-Euclidean space, and defin-
ing topologies for non-Euclidean spaces is quite difficult. There have been some remarkable
attempts to introduce topologies on Minkowski–Lorentz space, including [28–40]. In 1964,
E. C. Zeeman stated that it is wrong to consider the usual local homogeneous Euclidean
topology on Minkowski space [28,29], because the group of homeomorphisms of Euclidean
space contains elements that transform space-like and time-like directions into each other.
However, this is not physically possible. S. Nanda introduced t-topology and s-topology
in Minkowski space [30,31]. G. Agrawal and S. Shirivastava investigated the topological
properties of Minkowski space given by the t-topology and s-topology [33,34].

In light of recent research related to topologies on non-Euclidean spaces and detailed
information on the bihyperbolic numbers set, the present paper aims to fill the gap in
defining topologies on the bihyperbolic numbers set.

2. Preliminaries

The set of the hyperbolic numbers is

H =
{

z : z = x + jy, j2 = 1, x, y ∈ R, j /∈ R
}

and the hyperbolic conjugate of a z ∈ H is z = x − jy [7]. The modulus of a hyperbolic
number z ∈ H is |z|H =

√
|zz̄| =

√
|x2 − y2| [7]. The hyperbolic numbers can be also

defined as ordered pairs of reals where

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and
(x1, y1)(x2, y2) = (x1x2 + y1y2, x1y2 + y1x2)
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that any pair (x, y) corresponds to x + jy. Note that such numbers do not form a field, but
an irregular commutative ring. Furthermore, the hyperbolic numbers form is an algebra
over the field of the real numbers. For every real x, it holds

(x + jx)(x− jx) = 0,

which means that numbers of this form are irregular. The number x + jy is regular iff it is
invertible iff |x| 6= |y|. Furthermore, if we define 〈x1 + jy1, x2 + jy2〉 as x1x2 − y1y2, then
for any numbers z1, z2, it holds

〈z1z2, z1z2〉 = 〈z1, z1〉〈z2, z2〉.

A hyperbolic number can be also considered as a point in two-dimensional Minkowski
space R2

1. Thus, if we choose a number z ∈ H corresponding to a point in R2
1, then

for the position vector z = (x, y) of this point, the Lorentzian inner product is given by
〈z, z〉|R2

1
= x2 − y2. Furthermore, z = (x, y) is a space-like, lightlike (null), or time-like

vector if 〈z, z〉|R2
1
> 0, 〈z, z〉|R2

1
= 0, or 〈z, z〉|R2

1
< 0, respectively. Therefore, the geometric

structure of Minkowski space can be associated with the hyperbolic numbers.
We define the space cone, null cone, and time cone of z0 ∈ H as follows:

SH(z0) =
{

z ∈ H
∣∣∣ (z− z0)(z− z0) > 0 or z = z0

}
,

NH(z0) =
{

z ∈ H
∣∣∣ (z− z0)(z− z0) = 0

}
,

and
TH(z0) =

{
z ∈ H

∣∣∣ (z− z0)(z− z0) < 0 or z = z0

}
,

respectively.
Therefore, the well-known hyperbolic numbers e1 =

1+j
2 and e2 =

1−j
2 stay in the null

cone of the origin NH(O) since e1e1 = 0 and e2e2 = 0.
Furthermore, e1 and e2 are called the idempotent elements based on (e1)

2 = e1,
(e2)

2 = e2 [14]. Any hyperbolic number z ∈ H can be written as the linear combination:

z = x + jy = α1e1 + α2e2 (1)

where α1 = x + y, α2 = x− y are real numbers. This representation is called the idempotent
representation of a hyperbolic number [14].

Relatively new numbers can be obtained by changing the real coefficients of a hy-
perbolic number by hyperbolic numbers. In this way, these numbers have the form
ζ = z1 + j2z2, where z1 = x0 + j1x1, z2 = x2 + j1x3 (x0, x1, x2, x3 ∈ R) are hyperbolic
numbers and j1, j2, j3 are hyperbolic units such that j21 = j22 = j23 = 1, j1j2 = j2j1 = j3. These
numbers are called bihyperbolic numbers [17]. Moreover, the term hyperbolic four complex
is used for bihyperbolic numbers [16]. Especially, the algebraic properties of bihyperbolic
numbers were studied in detail by [18]. The set of bihyperbolic numbers is denoted by

H2 = { ζ| ζ = z1 + j2z2, z1, z2 ∈ H(j1)}

where H(j1) is the set of hyperbolic numbers denoted by j1. The symbol H will be used for
the set H(j1) in the rest of the article. There are three pairs of idempotent elements relative
to the hyperbolic unit for the bihyperbolic number. These are

e1,js =
1 + js

2
, e2,js =

1− js
2

, (s = 1, 2, 3) (2)

and the properties e1,js + e2,js = 1, e1,js e2,js = 0,
(
e1,js
)2

= e1,js , and
(
e2,js
)2

= e2,js are
satisfied. Thus, a bihyperbolic number ζ can be written in three different forms as ζ =
ζ1,j1 e1,j1 + ζ2,j1 e2,j1 , ζ = ζ1,j2 e1,j2 + ζ2,j2 e2,j2 , or ζ = ζ1,j3 e1,j3 + ζ2,j3 e2,j3 [18]. The coefficients of
the idempotent representations are
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z1 + j3z2 = ζ1,j1 , z1 − j3z2 = ζ2,j1 ,

z1 + z2 = ζ1,j2 , z1 − z2 = ζ2,j2 ,

z1 + j1z2 = ζ1,j3 , z1 − j1z2 = ζ2,j3 .

(3)

It is seen that ζ1,j1 , ζ2,j1 ∈ H2 and ζ1,j2 , ζ2,j2 , ζ1,j3 , ζ2,j3 ∈ H(j1). The first and second
forms of these idempotent representations were presented by [18], and the third one was
given by [9].

Furthermore, the spectral representation of a bihyperbolic number ζ = z1 + j2z2 =
x0 + j1x1 + j2x2 + j3x3 ∈ H2 is

ζ = w1i1 + w2i2 + w3i3 + w4i4 (4)

where i1, i2, i3, i4 are the idempotent elements such as

i1 =
1 + j1 + j2 + j3

4
, i2 =

1− j1 + j2 − j3
4

,

i3 =
1 + j1 − j2 − j3

4
, i4 =

1− j1 − j2 + j3
4

.
(5)

These elements satisfy is
2 = is for s = 1, 2, 3, 4. Furthermore, isik = 0 for s, k = 1, 2, 3, 4

and s 6= k [16]. The coefficients in the spectral representation of ζ are as follows:

w1 = x0 + x1 + x2 + x3, w2 = x0 − x1 + x2 − x3,

w3 = x0 + x1 − x2 − x3, w4 = x0 − x1 − x2 + x3.
(6)

wk and ik (k = 1, 2, 3, 4) are, respectively, the eigenvalues and orthonormal eigen-
vectors of the associated matrix of ζ [9]. For every k = 1, 2, 3, 4, the eigenvalue function
λk defined by λk(ζ) = wk is a surjective algebra homomorphism from H2 to R with
ker(λk) = Vect{is : s = 1, 2, 3, 4 and s 6= k} [18].

Lastly, ζ
j1 = z1 − j2z2, ζ

j2 = z̄1 + j2z̄2 and ζ
j3 = z̄1 − j2z̄2 are called the principal

conjugates of a bihyperbolic number ζ [9,18].

Example 1. Let us consider the bihyperbolic number ζ = z1 + j2z2 formed by two hyperbolic
numbers z1 = 1− 2j1 and z2 = 2 + 3j1. Then, it can be represented as

ζ = 1− 2j1 + 2j2 + 3j3.

Furthermore, three different idempotent representations of this number are

ζ = (1− 2j1 + 3j2 + 2j3)e1,j1 + (1− 2j1 − 3j2 − 2j3)e2,j1 ,

ζ = (3 + j1)e1,j2 − (1 + 5j1)e2,j2 ,

ζ = 4e1,j3 − (2 + 4j1)e2,j3 .

In addition to these, the spectral representation of this number is

ζ = 4i1 + 2i2 − 4i3 + 4i4.

The principal conjugates of ζ are determined as

ζ
j1 = z1 − j2z2 = 1− 2j1 − 2j2 − 3j3,

ζ
j2 = z̄1 + j2z̄2 = 1 + 2j1 + 2j2 − 3j3,

ζ
j3 = z̄1 − j2z̄2 = 1 + 2j1 − 2j2 + 3j3.
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3. Bihyperbolic Numbers and Semi-Euclidean Space

Let us consider four-dimensional real affine space R4 and x, y ∈ R4 such that x =
(x0, x1, x2, x3) and y = (y0, y1, y2, y3). If the scalar product of x and y is given by

〈x, y〉|R4
2
= ε0x0y0 + ε1x1y1 + ε2x2y2 + ε3x3y3

where arbitrary two elements of { εi | i = 0, 1, 2, 3} are −1 and the others are +1, then the
real affine four-space equipped with this scalar product is called the semi-Euclidean space
with index 2 and represented by R4

2 [41].
Just as the geometry of the Minkowski plane can be described with hyperbolic num-

bers, the geometry of four-dimensional semi-Euclidean space can be described with bi-
hyperbolic numbers. This interrelation between the points (x0, x1, x2, x3) in R4

2 and the
bihyperbolic numbers ζ = z1 + j2z2 = x0 + j1x1 + j2x2 + j3x3 in H2 can be constructed by
associating the semi-Euclidean norm on four-dimensional semi-Euclidean space and the
real-valued norm on the bihyperbolic numbers set.

In this regard, let us explain how and where the semi-Euclidean norm with the metric
signature determined relative to a suitably chosen basis such as (+,+,−,−), (+,−,+,−)
or (+,−,−,+) corresponds to the real-valued norm of bihyperbolic numbers.

First, recall the real-valued norm of a bihyperbolic number ζ given by [15,18]

|ζ|H2
= 4

√∣∣∣ζζ
j1 ζ

j2 ζ
j3
∣∣∣

= 4

√∣∣∣∣ 3
∑

i=0
x4

i + 8
3

∏
i=0

xi − 2
(
x2

0x2
2 + x2

1x2
3 + x2

1x2
2 + x2

0x2
1 + x2

2x2
3 + x2

0x2
3
)∣∣∣∣.

This can be expressed in three different ways:

|ζ|H2
= 4

√∣∣∣(x2
0 + x2

1 − x2
2 − x2

3
)2 − 4(x0x1 − x2x3)

2
∣∣∣,

|ζ|H2
= 4

√∣∣∣(x2
0 − x2

1 + x2
2 − x2

3
)2 − 4(x0x2 − x1x3)

2
∣∣∣,

or

|ζ|H2
= 4

√∣∣∣(x2
0 − x2

1 − x2
2 + x2

3
)2 − 4(x0x3 − x1x2)

2
∣∣∣.

Furthermore, it is known that the products of a bihyperbolic number and its conju-
gates are

ζζ
j1 = x2

0 + x2
1 − x2

2 − x2
3 + 2j1(x0x1 − x2x3), (7)

ζζ
j2 = x2

0 − x2
1 + x2

2 − x2
3 + 2j2(x0x2 − x1x3), (8)

ζζ
j3 = x2

0 − x2
1 − x2

2 + x2
3 + 2j3(x0x3 − x1x2). (9)

Example 2. If we consider the bihyperbolic number ζ = 1− 2j1 + 2j2 + 3j3 given in Example 1,
then we find the product of ζ with each of its conjugates as

ζζ
j1 = −8− 16j1, ζζ

j2 = −8 + 16j2, ζζ
j3 = 2 + 14j3,

respectively. It is a fact that there are three ways of computing the norms
√∣∣∣ζζ

jk
∣∣∣

H
= 4
√
|u2 − v2|,

where ζζ
jk = u + vjk for k = 1, 2, 3 gives the same real-valued norm of ζ; this also can be seen from√∣∣∣ζζ

j1
∣∣∣

H
=

√∣∣∣ζζ
j2
∣∣∣

H
=

√∣∣∣ζζ
j3
∣∣∣

H
= |ζ|H2

=
4
√

192 = 2 4√12.
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The relations (7)–(9) give rise to thought about the cases x0x1− x2x3 = 0, x0x2− x1x3 =
0 or x0x3 − x1x2 = 0. In these cases, three hypersurfaces occur in H2 such that

M1 = { x0 + j1x1 + j2x2 + j3x3|x0x1 − x2x3 = 0},

M2 = { x0 + j1x1 + j2x2 + j3x3|x0x2 − x1x3 = 0},

and
M3 = { x0 + j1x1 + j2x2 + j3x3|x0x3 − x1x2 = 0}.

It was indicated by [18] that the real-valued norm of ζ on the hypersurfaces Mk for

k = 1, 2, 3 coincides with |ζ|jk =
√∣∣∣ζζ

jk
∣∣∣

H
for k = 1, 2, 3 as

|ζ|H2
= |ζ|j1 =

√∣∣x2
0 + x2

1 − x2
2 − x2

3

∣∣ on M1,

|ζ|H2
= |ζ|j2 =

√∣∣x2
0 − x2

1 + x2
2 − x2

3

∣∣ on M2,

|ζ|H2
= |ζ|j3 =

√∣∣x2
0 − x2

1 − x2
2 + x2

3

∣∣ on M3.

Finally, we associate the set of bihyperbolic numbers with semi-Euclidean space R4
2

by the fact that the norms |ζ|jk defined on the hypersurfaces Mk correspond to the semi-
Euclidean norms:

‖ ζ ‖R4
2
=

√∣∣∣ 〈ζ, ζ〉|R4
2

∣∣∣
with metric signatures (+,+,−,−), (+,−,+,−), and (+,−,−,+), respectively.

In this regard, we can introduce the cones of a bihyperbolic number ζ0 ∈ Mk ⊂ H2
as follows:

SMk(ζ0) =
{

ζ ∈ Mk

∣∣∣ (ζ − ζ0)(ζ − ζ0)
jk > 0 or ζ = ζ0

}
,

NMk(ζ0) =
{

ζ ∈ Mk

∣∣∣ (ζ − ζ0)(ζ − ζ0)
jk = 0

}
,

and
TMk(ζ0) =

{
ζ ∈ Mk

∣∣∣ (ζ − ζ0)(ζ − ζ0)
jk < 0 or ζ = ζ0

}
respectively, being the space cone, null cone, and time cone of ζ0 in hypersurfaces Mk ⊂ H2
for k = 1, 2, 3.

In addition, let us consider the bihyperbolic numbers ζ = ζ1,js e1,js + ζ2,js e2,js for s =
1, 2, 3, then the products of e1,js and e2,js with ζ in H2 are

e1,j1 H2 =
{

e1,j1 ζ = ζ1,j1 e1,j1 : ζ1,j1 ∈ H2
}

, e2,j1 H2 =
{

e2,j1 ζ = ζ2,j1 e2,j1 : ζ2,j1 ∈ H2
}

e1,j2 H2 =
{

e1,j2 ζ = ζ1,j2 e1,j2 : ζ1,j2 ∈ H
}

, e2,j2 H2 =
{

e2,j2 ζ = ζ2,j2 e2,j2 : ζ2,j2 ∈ H
}

,

e1,j3 H2 =
{

e1,j3 ζ = ζ1,j3 e1,j3 : ζ1,j3 ∈ H
}

, e2,j3 H2 =
{

e2,j3 ζ = ζ2,j3 e2,j3 : ζ2,j3 ∈ H
}

.

Therefore, the elements of the sets e1,js H2 and e2,js H2 that are obtained with the idem-
potent representations of bihyperbolic numbers are bihyperbolic numbers for s = 1, 2, 3,
and the following propositions can be given.

Theorem 1. Let ζ ∈ SMk(ζ0) such that ζ = ζ1,js e1,js + ζ2,js e2,js and ζ0 = ζ1
0,js e1,js + ζ2

0,js e2,js are
idempotent representations for s = 1, 2, 3:

i. If s = k for s, k = 1, 2, 3, then ζ1,js e1,js ∈ SMk

(
ζ1

0,js e1,js

)
and ζ2,js e2,js ∈ SMk

(
ζ2

0,js e2,js

)
.

ii. If s 6= k for s, k = 1, 2, 3, then ζ1,js e1,js ∈ NMk

(
ζ1

0,js e1,js

)
and ζ2,js e2,js ∈ NMk

(
ζ2

0,js e2,js

)
.



Mathematics 2022, 10, 4224 7 of 15

Proof. Let ζ, ζ0 ∈ Mk and ζ ∈ SMk(ζ0). ζ = z1 + j2z2 = (x0 + j1x1) + j2(x2 + j1x3) and
ζ0 = ω1 + j2ω2 = (y0 + j1y1) + j2(y2 + j1y3), then the products of ζ − ζ0 with their jk-
conjugates are

(ζ − ζ0)(ζ − ζ0)
j1 = (x0 − y0)

2 + (x1 − y1)
2 − (x2 − y2)

2 − (x3 − y3)
2 > 0,

(ζ − ζ0)(ζ − ζ0)
j2
= (x0 − y0)

2 − (x1 − y1)
2 + (x2 − y2)

2 − (x3 − y3)
2 > 0,

(ζ − ζ0)(ζ − ζ0)
j3
= (x0 − y0)

2 − (x1 − y1)
2 − (x2 − y2)

2 + (x3 − y3)
2 > 0

for k = 1, 2, 3, respectively. On the other hand, if we consider the multiplications of(
ζ1,js e1,js − ζ1

0,js e1,js

)
and also

(
ζ2,js e2,js − ζ2

0,js e2,js

)
with their jk-conjugates, then:

i. ζ1,js e1,js ∈ SMk

(
ζ1

0,js e1,js

)
, ζ2,js e2,js ∈ SMk

(
ζ2

0,js e2,js

)
if s = k.

ii. ζ1,js e1,js ∈ NMk

(
ζ1

0,js e1,js

)
, ζ2,js e2,js ∈ NMk

(
ζ2

0,js e2,js

)
if s 6= k.

These are obtained for s, k = 1, 2, 3 since ζ, ζ0 ∈ Mk and ζ − ζ0 ∈ Mk.

The following two theorems can be proven by using a similar method.

Theorem 2. Let ζ ∈ NMk(ζ0). If s = k or s 6= k for s, k = 1, 2, 3, then ζ1,js e1,js ∈ NMk

(
ζ1

0,js e1,js

)
and ζ2,js e2,js ∈ NMk

(
ζ2

0,js e2,js

)
.

Theorem 3. Let ζ ∈ TMk(ζ0).

i. If s = k for s, k = 1, 2, 3, then ζ1,js e1,js ∈ TMk

(
ζ1

0,js e1,js

)
and ζ2,js e2,js ∈ TMk

(
ζ2

0,js e2,js

)
.

ii. If s 6= k for s, k = 1, 2, 3, then ζ1,js e1,js ∈ NMk

(
ζ1

0,js e1,js

)
and ζ2,js e2,js ∈ NMk

(
ζ2

0,js e2,js

)
.

Theorem 4. Let ζ ∈ H2 and the idempotent representation of ζ be ζ = ζ1,js e1,js + ζ2,js e2,js for
s = 1, 2, 3. SMk(O), NMk(O), and TMk(O) are the space, null, and time cone of the origin for
k = 1, 2, 3, respectively.

i. If ζ ∈ SM1(O), ζ ∈ NM1(O) or ζ ∈ TM1(O), then ζ1,j1 , ζ2,j1 ∈ SM1(O) ζ1,j1 , ζ2,j1 ∈
NM1(O) or ζ1,j1 , ζ2,j1 ∈ TM1(O), respectively, for s = k = 1.

ii. If ζ ∈ SMk(O), ζ ∈ NMk(O) or ζ ∈ TMk(O), then ζ1,js , ζ2,js ∈ SH(O), ζ1,js , ζ2,js ∈
NH(O) or ζ1,js , ζ2,js ∈ TH(O), respectively, for s, k = 2, 3 where s = k:

Proof.

i. Let ζ = x0 + j1x1 + j2x2 + j3x3 ∈ SM1(O) for k = 1. If ζ = 0, the proof is obvious.

Let ζ 6= 0. Then, the product of ζ and its j1-conjugate is ζζ
j1 = x2

0 + x2
1 − x2

2 − x2
3 > 0.

On the other hand, the coefficients of the idempotent representation of ζ are ζ1,j1 =

x0 + j1x1 + j2x3 + j3x2 and ζ2,j1 = x0 + j1x1 − j2x3 − j3x2 for s = 1. Hence, ζ1,j1 ζ1,j1
j1 =

x2
0 + x2

1 − x2
2 − x2

3 > 0 and ζ2,j1 ζ2,j1
j1 = x2

0 + x2
1 − x2

2 − x2
3 > 0 are found. Therefore,

ζ1,j1 , ζ2,j1 ∈ SM1(O). Similarly, if we choose ζ ∈ NM1(O), then ζ1,j1 , ζ2,j1 ∈ NM1(O),
or if we choose ζ ∈ TM1(O), then ζ1,j1 , ζ2,j1 ∈ TM1(O) is obtained.

ii. Let ζ ∈ SM2(O) for s = k = 2. If ζ = 0, the proof is obvious. Let ζ 6= 0. Then, the

product of ζ and its j2-conjugate is ζζ
j2 = x2

0 − x2
1 + x2

2 − x2
3 > 0, and the coefficients

of the idempotent representation of ζ are

ζ1,j2 = (x0 + x2) + j1(x1 + x3), ζ2,j2 = (x0 − x2) + j1(x1 − x3)

for s = 2. Moreover,

ζ1,j2 ζ1,j2 = (x0 + x2)
2 − (x1 + x3)

2 = x2
0 − x2

1 + x2
2 − x2

3 > 0
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and
ζ2,j2 ζ2,j2 = (x0 − x2)

2 − (x1 − x3)
2 = x2

0 − x2
1 + x2

2 − x2
3 > 0

are obtained considering that x0x2 − x1x3 = 0 on the hypersurface M2 for k = 2.
Hence, ζ1,j2 , ζ2,j2 ∈ SH(O). Similarly, when ζ ∈ NM2(O), it is easily seen that
ζ1,j2 , ζ2,j2 ∈ NH(O) and also when ζ ∈ TM2(O), ζ1,j2 , ζ2,j2 ∈ TH(O). Furthermore, let
s = k = 3. If we choose ζ ∈ SM3(O), then ζ1,j3 , ζ2,j3 ∈ SH(O). If ζ ∈ NM3(O), then
ζ1,j3 , ζ2,j3 ∈ NH(O), and if ζ ∈ TM3(O), then ζ1,j3 , ζ2,j3 ∈ TH(O).

Remark 1. Theorem 4 is not valid in the case of s 6= k, as can be seen by the following example.

Example 3. If we consider the bihyperbolic number ζ = z1 + j2z2, where z1 = 2 + 3j1 and
z2 = 1 + 6j1, then we see that ζ = 2 + 3j1 + j2 + 6j3 is an element of M1 since 2.3− 1.6 = 0.
Furthermore, ζ = z1 + j2z2 belongs to TM1(O) by the fact that 42 + 32 − 12 − 62 < 0. However,
for s = 2, the coefficients ζ1,j2 , ζ2,j2 of its idempotent representation belong to SM1(O), since this
representation is given in the form ζ = ζ1,j2 e1,j2 + ζ2,j2 e2,j2 = (z1 + z2)e1,j2 + (z1 − z2)e2,j2 =
(3 + 9j1)e1,j2 + (1− 3j1)e2,j2 .

It is understood from the last four theorems that the relationship between the idempo-
tent representations of ζ, ζ1,js e1,js + ζ2,js e2,js for s = 1, 2, 3 with the space cone SMk(ζ0), the
null cone NMk(ζ0), and the time cone TMk(ζ0) for k = 1, 2, 3 is meaningful when s = k.

Theorem 5. Let the idempotent elements e1,js and e2,js for s = 1, 2, 3 and SMk(O), NMk(O), and
TMk(O) denote the space, null, and time cone of the origin for k = 1, 2, 3, respectively. Then:

i. e1,j1 , e2,j1 /∈ M1, e1,j1 , e2,j1 ∈ NM2(O) and e1,j1 , e2,j1 ∈ NM3(O) for s = 1;
ii. e1,j2 , e2,j2 ∈ NM1(O), e1,j2 , e2,j2 /∈ M2 and e1,j2 , e2,j2 ∈ NM3(O) for s = 2;
iii. e1,j3 , e2,j3 ∈ NM1(O), e1,j3 , e2,j3 ∈ NM2(O) and e1,j3 , e2,j3 /∈ M3 for s = 3.

Proof.

i. Let s = 1 and ζ = x0 + j1x1 + j2x2 + j3x3 ∈ M1 for k = 1. Hence, x0x1 − x2x3 = 0. The
idempotent elements e1,j1 , e2,j1 ∈ H ⊆ H2 are

e1,j1 =
1 + j1

2
=

1
2
+

j1
2
+ j20+j30,

e2,j1 =
1− j1

2
=

1
2
− j1

2
+ j20+j30.

Since x0x1 − x2x3 6= 0 for the idempotent elements, e1,j1 , e2,j1 /∈ M1. On the other

hand, x0x2 − x1x3 = 0 and ζζ
j2 = x2

0 − x2
1 + x2

2 − x2
3 = 0 for the bihyperbolic number

ζ ∈ NM2(O) for k = 2. If this is considered, then e1,j1 , e2,j1 ∈ NM2. If the bihyperbolic

number is chosen such as ζ ∈ NM3(O) for k = 3, then x0x3 − x1x2 = 0 and ζζ
j3 =

x2
0 − x2

1 − x2
2 + x2

3 = 0 are obtained. Therefore, e1,j1 , e2,j1 ∈ NM3.
Cases (ii.) and (iii.) can be proven similarly.

4. Topologies of Bihyperbolic Numbers

In this section, we establish topologies on the hypersurfaces Mk ⊂ H2 for k = 1, 2, 3
from a similar point of view as that of Zeeman and Nanda [28–31]. They introduced and
developed e-, s-, and t-topologies on Minkowski space. For further details, the readers
are referred to [32–34] and the references therein. The basic difference in our approach is
modeling the semi-Euclidean space with bihyperbolic numbers and defining open balls via
bihyperbolic numbers.
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4.1. Norm Topologies of Bihyperbolic Numbers

Let us restrict ourselves to one of the hypersurface Mk ⊂ H2 for k = 1, 2, 3 based on
the definitions of cones of a bihyperbolic number ζ0 in H2. Assume that ζ = x0 + j1x1 +
j2x2 + j3x3 ∈ Mk, then the Euclidean norm of the vector ζ = (x0, x1, x2, x3) is

‖ζ‖ =
√

x2
0 + x2

1 + x2
2 + x2

3.

Now, we define the norm e-, s-, and t-topologies by considering the Euclidean norm
on Mk ⊂ H2.

4.1.1. Norm e-Topology

The Euclidean open balls of radius δ and center ζ0 ∈ Mk are

D(ζ0, δ) = {ζ ∈ Mk, ‖ζ − ζ0‖ < δ}.

For all δ > 0 and ζ0 ∈ Mk, the family of the Euclidean open balls is denoted by

BE
N = {D(ζ0, δ) : δ > 0, ζ0 ∈ Mk}.

The topology on Mk generated by the basis BE
N is called the norm e-topology and

indicated by τE
N .

Nevertheless, the semi-Euclidean space is not locally homogeneous, and the Euclidean
topology on it is inadequate. Zeeman suggested in [28,29] a new topology instead of the
Euclidean topology. Subsequently, the space topology (s-topology) and time topology (t-
topology), which are weaker versions of Zeeman’s fine topology, were introduced [30–34].
With similar thoughts, we define norm s- and t-topologies on the hypersurfaces of H2
as follows.

4.1.2. Norm s-Topology

Let D(ζ0, δ) be any Euclidean open ball with center ζ0 and radius δ in BE
N and SMk(ζ0)

be the space cone, then
DS(ζ0, δ) = D(ζ0, δ) ∩ SMk(ζ0)

is called the s-ball on hypersurface Mk. The family of all s-balls is denoted by BS
N . Hence,

BS
N becomes a basis for a topology on Mk. The topology generated by the basis BS

N is called
the norm s-topology on Mk and denoted by τS

N .
Similarly, we can define the norm t-topology by changing SMk(ζ0) with the time cone

TMk(ζ0).

4.1.3. Norm t-Topology

Any t-ball on hypersurface Mk is defined as

DT(ζ0, δ) = D(ζ0, δ) ∩ TMk(ζ0).

The family of all t-balls is denoted by BT
N and composes a basis for a topology on Mk. The

topology generated by the basis BT
N is called the norm t-topology on Mk and represented

with τT
N .

There are three types of Cartesian products on H2. These products are given by the
following definitions.

Definition 1. Let X ⊆ H2 and images of X under transformations h1 and h2 be represented by

h1(X) = X1 = { z1|z1 = h1(ζ), ζ = z1 + j2z2 and ζ ∈ X},

h2(X) = X2 = { z2|z2 = h2(ζ), ζ = z1 + j2z2 and ζ ∈ X}.
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Then, the hyperbolic Cartesian product of X1 and X2 according to the basis {1, j2} is given by

X1×HX2 = { z1 + j2z2|z1 ∈ X1, z2 ∈ X2}

and it is called the Cartesian hyperbolic representation of X.

Definition 2. Let X ⊆ H2 and images of X under transformations h1,js and h2,js for s = 1, 2, 3 be
represented by

h1,js(X) = X1,js =
{

ζ1,js
∣∣ζ1,js = h1,js(ζ), ζ = ζ1,js e1,js + ζ2,js e2,js and ζ ∈ X

}
,

h2,js(X) = X2,js =
{

ζ2,js
∣∣ζ2,js = h2,js(ζ), ζ = ζ1,js e1,js + ζ2,js e2,js and ζ ∈ X

}
.

Then, the idempotent Cartesian product of X1,js and X2,js according to the basis
{

e1,js , e2,js
}

given by

X1,js×Ijs
X2,js =

{
ζ1,js e1,js + ζ2,js e2,js

∣∣ζ1,js ∈ X1,js , ζ2,js ∈ X2,js
}

is called the Cartesian idempotent representation of X.

The Cartesian idempotent representation for s = 3 was given in [9].

Definition 3. Let X ⊆ H2 and images of X under transformations λ1, λ2, λ3 and λ4 be
represented by

λ1(X) = X1 = {w1|w1 = λ1(ζ), ζ = w1i1 + w2i2+w3i3 + w4i4 and ζ ∈ X},

λ2(X) = X2 = {w2|w2 = λ2(ζ), ζ = w1i1 + w2i2+w3i3 + w4i4 and ζ ∈ X},

λ3(X) = X3 = {w3|w3 = λ3(ζ), ζ = w1i1 + w2i2+w3i3 + w4i4 and ζ ∈ X},

λ4(X) = X4 = {w4|w4 = λ4(ζ), ζ = w1i1 + w2i2+w3i3 + w4i4 and ζ ∈ X}.

Then, the spectral Cartesian product of X1, X2, X3, and X4 according to the basis
{i1, i2, i3, i4} is

X1×UX2×UX3×UX4 = {w1i1 + w2i2 + w3i3 + w4i4|ws ∈ Xs, s = 1, 2, 3, 4}

and X = X1×UX2×UX3×UX4 is called the Cartesian spectral representation of X.

The symbol ×U is defined, since ws ∈ Xs are the real numbers for s = 1, 2, 3, 4, and the
usual topology will be taken on the real numbers set R in the next subsections. Now, we
can define the hyperbolic, idempotent, and spectral topologies of bihyperbolic numbers by
using the new Cartesian representations.

4.2. Hyperbolic Topologies of Bihyperbolic Numbers

‖z‖ =
√

x1
2 + x22 for z = x1 + j1x2 ∈ H is the Euclidean norm on H. Hence, we can

easily define the Euclidean topology on the set of hyperbolic numbers H. Namely, the
Euclidean open ball is D(z0, δ) = {z ∈ H, ‖z− z0‖ < δ} for z0 ∈ H and δ > 0. Clearly, the
family of these Euclidean open balls is a basis for the usual Euclidean topology on H and is
denoted by BE.

4.2.1. Hyperbolic e-Topology

Let D1 and D2 be any Euclidean open balls on H, then

BE × BE =
{

D1 × D2

∣∣∣ D1, D2 ∈ BE
}
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is a basis for a product topology on H × H. Since H × H ∼= H2,

BE
H =

{
D1×H D2

∣∣∣ D1, D2 ∈ BE
}

is a basis for a topology on H2 such that

D1×H D2 = D1

(
z1

0, δ1

)
×H D2

(
z2

0, δ2

)
:=
{

ζ = z1 + j2z2

∣∣∣ ∥∥∥z1 − z1
0

∥∥∥ < δ1,
∥∥∥z2 − z2

0

∥∥∥ < δ2

}
.

The topology generated by this basis is called the hyperbolic e-topology and denoted
by τE

H .

4.2.2. Hyperbolic s-Topology

Let us consider D(z0, δ) ∈ BE for all z0 ∈ H and all δ > 0, then

D(z0, δ) ∩ SH(z0) = DS(z0, δ)

is an s-ball. In this case, the family of all s-balls is BS, and BS is a basis for a topology on H.
Moreover,

BS × BS =
{

DS
1 × DS

2

∣∣∣ DS
1 , DS

2 ∈ BS
}

is a basis for a product topology on H × H. The family on H × H ∼= H2

BS
H =

{
DS

1×H DS
2

∣∣∣ DS
1 , DS

2 ∈ BS
}

is a basis for a topology on H2 such that

DS
1×H DS

2 = DS
1

(
z1

0, δ1

)
×H DS

2

(
z2

0, δ2

)
:=
{

ζ = z1 + j2z2

∣∣∣ z1 ∈ DS
1 , z2 ∈ DS

2

}
.

The topology generated by BS
H on H2 is named the hyperbolic s-topology and denoted

by τS
H .

4.2.3. Hyperbolic t-Topology

Let D(z0, δ) ∈ BE for z0 ∈ H and δ > 0, then

D(z0, δ) ∩ TH(z0) = DT(z0, δ)

is called the t-ball. The family of all t-balls is shown as BT , and it is a basis for a topology
on H. Hence, the family

BT × BT =
{

DT
1 × DT

2

∣∣∣ DT
1 , DT

2 ∈ BT
}

is a basis for a product topology on H × H, and moreover, the family

BT
H =

{
DT

1×H DT
2

∣∣∣ DT
1 , DT

2 ∈ BT
}

is a basis for a topology on H2 where

DT
1×H DT

2 = DT
1

(
z1

0, δ1

)
×H DT

2

(
z2

0, δ2

)
:=
{

ζ = z1 + j2z2

∣∣∣ z1 ∈ DT
1 , z2 ∈ DT

2

}
.

The topology generated by this basis is called the hyperbolic t-topology on H2 and
denoted by τT

H .
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4.3. Idempotent Topologies of Bihyperbolic Numbers

The idempotent e-, s-, and t-topology can be defined by making use of the idempotent
representations of the bihyperbolic numbers. These idempotent representations are given
by the equalities of (3). We only use the second and third idempotent representations
since the coefficients of the first representation are not hyperbolic numbers. They are
bihyperbolic numbers. This means that we consider the representations of a bihyperbolic
numbers according to e1,jl and e2,jl (l = 2, 3). Moreover, we construct another topology by
using the spectral representation given by Equation (4).

4.3.1. Idempotent e-Topology

The family of the open balls D
(
ζ0,jl , δ

)
is BE for all ζ0,jl ∈ H (l = 2, 3) and δ > 0, then

BE is a basis for the usual Euclidean topology on H. Furthermore, the family

BE
Ijl

=
{

D1×Ijl
D2

∣∣∣ D1, D2 ∈ BE, l = 2, 3
}

is a basis for a topology on H2. Here, the Cartesian product of D1 and D2 is defined by

D1×Ijl
D2 = D1

(
ζ1

0,jl , δ1

)
×Ijl

D2

(
ζ2

0,jl , δ2

)
:=
{

ζ1,jl e1,jl + ζ2,jl e2,jl

∣∣∣ ∥∥∥ζ1,jl − ζ1
0,jl

∥∥∥ < δ1,
∥∥∥ζ2,jl − ζ2

0,jl

∥∥∥ < δ2, l = 2, 3
}

.

The topology generated by this basis on H2 is called the idempotent e-topology and
indicated by τE

Ijl
.

4.3.2. Idempotent s-Topology

Let D
(
ζ0,jl , δ

)
∈ BE for ζ0,jl ∈ H (l = 2, 3) and δ > 0, then the s-ball is

D
(
ζ0,jl , δ

)
∩ SH

(
ζ0,jl
)
= DS(ζ0,jl , δ

)
and the family of all s-balls is denoted by BS. We know that BS is the basis for a topology
on H. Hence,

BS × BS =
{

DS
1 × DS

2

∣∣∣ DS
1 , DS

2 ∈ BS
}

is a basis for product topology on H × H ∼= H2 and

BS
Ijl

=
{

DS
1×Ijl

DS
2

∣∣∣ DS
1 , DS

2 ∈ BS, l = 2, 3
}

is a basis for a topology on the H2, where

DS
1×Ijl

DS
2 = DS

1

(
ζ1

0,jl , δ1

)
×Ijl

DS
2

(
ζ2

0,jl , δ2

)
:=
{

ζ = ζ1,jl e1,jl + ζ2,jl e2,jl

∣∣∣ ζ1,jl ∈ DS
1 , ζ2,jl ∈ DS

2 , l = 2, 3
}

.

The topology generated by this basis on H2 is called the idempotent s-topology and
denoted by τS

Ijl
for l = 2, 3.

4.3.3. Idempotent t-Topology

The family of the open balls D
(
ζ0,jl , δ

)
for ζ0,jl ∈ H and δ > 0 is BE, then the t-ball is

denoted by
D
(
ζ0,jl , δ

)
∩ TH

(
ζ0,jl
)
= DT(ζ0,jl , δ

)
.

Let the family of the t-balls be BT , then BT becomes a basis for a topology on
H. Hence,

BT × BT =
{

DT
1 × DT

2

∣∣∣ DT
1 , DT

2 ∈ BT
}
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is a basis for a product topology on H × H. On the other hand, since H × H ∼= H2,

BT
Ijl

=
{

DT
1×Ijl

DT
2

∣∣∣ DT
1 , DT

2 ∈ BT , l = 2, 3
}

is a basis for a topology on H2, where

DT
1×Ijl

DT
2 = DT

1

(
ζ1

0,jl , δ1

)
×Ijl

DT
2

(
ζ2

0,jl , δ2

)
:=
{

ζ = ζ1,jl e1,jl + ζ2,jl e2,jl

∣∣∣ ζ1,jl ∈ DT
1 , ζ2,jl ∈ DT

2 , l = 2, 3
}

.

This topology is called the idempotent t-topology and denoted by τT
Ijl

for l = 2, 3.

4.3.4. Spectral Topology of Bihyperbolic Numbers

Let ζ ∈ H2; the spectral representation of ζ is ζ = w1i1 + w2i2 + w3i3 + w4i4, where
w1, w2, w3, w4 ∈ R. It is well known that the family of all open intervals of R generates the
usual topology on R. If any open interval in R is represented by D, then the family

BU = {D1×U D2×U D3×U D4|Dm = (xm − δm, xm + δm), m = 1, 2, 3, 4}

becomes a basis for a topology on H2, where

D1×U D2×U D3×U D4 := { w1i1 + w2i2 + w3i3 + w4i4| wm ∈ Dm, m = 1, 2, 3, 4}.

This topology is called the spectral topology on H2.

5. Comparative Evaluation

There are a few reasons why we might consider different topologies on the set of
bihyperbolic numbers. First, we have discovered the roles of bihyperbolic numbers in the
special theory of relativity by associating the real-valued norm of a bihyperbolic numbers
with the structures of hypersurfaces in the semi-Euclidean space. It is known that the
semi-Euclidean space is endowed with a bilinear structure that is symmetric and non-
degenerate, but not positive-definite, which do not, in general, induce a basis of topology
via the collection of the usual open balls with different radii. This means that there is no
nice generated topology to coincide locally with the Euclidean topology. Zeeman [28,29]
explained the roots of the problem obviously as follows: the semi-Euclidean space is not
locally homogeneous such as there is an associated light cone that separates space-like
vectors from time-like vectors at each point in this space. Furthermore, the group of all
homeomorphisms of four-dimensional Euclidean space is inadequate physically. In this
regard, Zeeman introduced alternative topologies, now known as the Zeeman topology
or the finest topology and, alternatively, the t-topology, which is the finest topology such
that the Euclidean topology is induced on the time axes only, and the s-topology, which
is the finest topology such that the Euclidean topology is induced only on the space-like
hyperplanes. Zeeman’s perspective attracted a great deal of attention on the research based
on topologies of non-Euclidean spaces and followed by studies such as [30–40].

As is known, to study the space–time geometry of special relativity, taking the hy-
perbolic numbers is a useful approach. While this relationship has been generally used
in the investigation of the two-dimensional case, there is a more recent study [10] on the
hyperbolic numbers together with their multidimensional generalizations. In this paper, W.
D. Richter introduced the space–time or spherical hyperbolic complex numbers in 3 and
4 dimensions. Alternative topologies on 3- and 4-dimensional Minkowski space–time may
be defined based on [10,28–40].

Topological structures on the bihyperbolic numbers set have not been clarified yet. Just
as the hyperbolic numbers are related to the Minkowski plane, the bihyperbolic numbers
are related to four-dimensional semi-Euclidean space, and defining topologies for non-
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Euclidean spaces is quite difficult as mentioned above. This gap has been closed in the
present study. By constructing these topologies, we presented a new mathematical tool
to analyze, explain, elaborate, and exemplify a variety of subjects related to differential
geometry and physics.

6. Conclusions

In light of the approach of Zeeman, we constructed new convenient topologies on the
set of bihyperbolic numbers. For this purpose, we defined the cones at any point of the
hypersurfaces in the semi-Euclidean space through bihyperbolic numbers and examined
their structures. Finally, all deductions and the alternative representations of bihyperbolic
numbers allowed us to define these topologies.
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