
Efficient Evolutionary Optimization using Predictive

Auto-scaling in Containerized Environment

Milos Ivanovica,∗, Visnja Simica

aUniversity of Kragujevac, Faculty of Science, 12 Radoja Domanovica Street, 34000
Kragujevac, Serbia

Abstract

Solving complex real-world optimization problems is a computationally de-
manding task. To solve it efficiently and effectively, one must possess expert
knowledge in various fields (problem domain knowledge, optimization, paral-
lel and distributed computing) and appropriate expensive software and hard-
ware resources. In this regard, we present a cloud-native, container-based
distributed optimization framework that enables efficient and cost-effective
optimization over platforms such as Amazon ECS/EKS, Azure AKS, and on-
premise Kubernetes. The solution consists of dozens of microservices scaled
out using a specially developed PETAS Auto-scaler based on predictive an-
alytics. Existing schedulers, whether Kubernetes or commercial, do not take
into account the specifics of optimization based on evolutionary algorithms.
Therefore, their performance is not optimal in terms of results’ delivery time
and cloud infrastructure costs. The proposed PETAS Auto-scaler elastically
maintains an adequate number of worker pods following the exact pace dic-
tated by the demands of the optimization process. We evaluate the proposed
framework’s performance using two real-world computationally demanding
optimizations. The first use case belongs to the manufacturing domain and
involves optimization of the transportation pallets for train parts. The sec-
ond use case belongs to the field of automated machine learning and includes
neural architecture search and hyperparameter optimization. The results
indicate an IaaS cost savings of up to 49% can be achieved, with almost

∗Corresponding address: University of Kragujevac, Faculty of Science, 12 Radoja Do-
manovica Street, 34000 Kragujevac, Serbia. Tel.: +381 34 336223; fax: +381 34 335040.

Email addresses: mivanovic@kg.ac.rs (Milos Ivanovic), visnja@kg.ac.rs (Visnja
Simic)

Preprint submitted to Applied Soft Computing July 12, 2023

unchanged result delivery time.

Keywords: Parallel metaheuristics based optimization framework,
auto-scaling cloud resources, machine learning, resource usage prediction

1. Introduction

Complex real-world optimization problems can be successfully solved us-
ing evolutionary metaheuristics-based techniques such as a genetic algorithm
(GA) [1]. However, the complexity of the problems often induces unreason-
ably long resolution times, especially when the computational cost of the
fitness evaluation is extremely high.

Speeding up the execution of evolutionary algorithms (EAs) can be achieved
by distributing population using master-slave (manager-worker), island, cel-
lular, hierarchical, or pool model to parallelize an evolution task at the pop-
ulation, individual, or operation levels [2, 3]. Implementation of parallel
metaheuristics has previously been mainly realized using HPC clusters, com-
puting grids, GPUs, and volunteer peer-to-peer systems [4, 5, 6, 7, 8, 9].
Recent availability of Cloud on-demand massive computing resources of-
fered new opportunities for the development of highly scalable and cost-
effective optimization-as-a-service frameworks based on parallel evolutionary
algorithms [10, 11]. On-demand access to cloud computing power makes it
ideal for executing demanding optimizations without the need for ownership,
operation and maintenance of computing infrastructure.

The ability to acquire and release resources on-demand to meet the end-
users’ needs is the most important property of Cloud Computing. However,
deciding upon the appropriate amount of resources to meet the users’ re-
quirements is quite difficult, and as such needs to be automated in the form
of an auto-scaling system. Many auto-scaling systems have been developed
[12, 13] with different approaches to avoid both overprovisioning and under-
provisioning of resources, and consequently, the cost increase or the violation
of the Service Level Agreement (SLA). The main problem with automatic
scaling is the timely response to sudden load changes. If not properly han-
dled, a rapid increase in resource demands would lead to a short-term dete-
rioration of performance, while a sudden decrease of demand would result in
overprovisioning and in unnecessary expenses. The auto-scaling techniques
handle resource demands variations using two main techniques: reactive and
proactive [12]. Reactive techniques use scaling action as a reaction to a

2

change in the system, where the change itself is not foreseen. Proactive
(predictive) techniques [14, 15] attempt to forecast upcoming changes in the
system, estimate required provisioning, and perform necessary scaling actions
before such changes occur.

To fully exploit the benefits of distributing EAs over Cloud resources
and efficiently utilize the computing resources, researchers are turning to
container-based technologies [16, 17, 18]. The containers are standalone
self-contained units bundling the software and its dependencies together,
replacing bulky virtual machine (VM) instances, and creating a lightweight
environment for the applications [19]. The use of containers allows an appli-
cation to be broken into smaller tasks, where each task is a microservice in a
different container. Microservice-based applications lead to faster creation,
operation, and removal of computing entities (containers) when compared
to traditional VMs. The emergence of container technologies in the Cloud
brought significant performance advantages compared to other virtualization
technologies, with performance approaching bare-metal, but with much bet-
ter flexibility. The density of computing entities can be significantly higher
since operating system services are absent and more containers can be exe-
cuted per machine. This is the main reason why the HPC community started
to seriously consider Docker [20], Singularity [21], and Kubernetes-based [22]
solutions. However, this imposes a challenge for auto-scaling, where more
adaptable, precise, and capable algorithms are required to manage the elas-
ticity of large-scale fleets of containers belonging to multiple applications
with dynamic elasticity requirements. Keeping this in mind and considering
the evolutionary-based optimization, a significantly different approach has to
be taken regarding orchestration and scalability than in Simic et al. [11], or
Dziurzanski et al. [17].

The existing auto-scalers, whether built-in Kubernetes or others such as
Fission auto-scaler [23], and PASCAL auto-scaler [15] do not take into ac-
count the specific behavior of the evolutionary based optimization process,
in particular the ones with the high computational cost of fitness evaluation.
GA involves generational population improvement, where the entire popu-
lation is evaluated in each generation, and the best individuals are selected
to produce offspring. The need for a large number of distributed workers
to perform evaluations is cyclic and follows the generational shift in the GA
(Fig. 1).

This means that when faced with sudden resource demands at the be-
ginning of a population evaluation, an auto-scaler must rapidly increase the

3

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000

N
u

m
b

er
 o

f
ac

ti
ve

 e
va

lu
at

io
n

s

Time [s]

Fig. 1: The number of active evaluations of individuals over time

number of workers in the cloud to cope with additional load requirements and
thus avoid under-provisioning. On the other hand, the duration of the fitness
assessment in one population may vary from individual to individual. For
example, real-world optimization problems often require a simulation model,
such as a finite element model, to be executed as a black-box objective func-
tion evaluator. When a simulation has an adaptive time step, the evaluation
of a certain number of individuals will take much longer than the evaluation
of the rest of the individuals in the population. Therefore, most of the en-
gaged workers would complete assigned evaluations and then idly wait for
the remaining few to complete their work, leading to over-provisioning. To
reduce unnecessary resource consumption and underlying infrastructure cost,
idle workers should be stopped. Hence, the efficient auto-scaler would have
to follow the GA’s specific rhythm of demand for computing resources and
avoid keeping idle workers, by elastically maintaining the adequate number
of workers without affecting the quality of service.

With all that being said, the auto-scaler in compliance with the dis-
tributed evolutionary optimization in the container-based cloud environment
should meet certain requirements. It must be able to establish a mapping be-
tween the characteristics of the individuals in each generation and the time
needed for a generation’s evaluation through some predictive model. This
would allow auto-scaler to perform a scaling-out action at the most conve-

4

nient time to meet the incoming workload. On the other hand, there is a
need to control the lifetime of each worker and adequately scale down to
avoid unnecessary overprovisioning situations.

In this paper, we propose PETAS (Predicted Evaluation Time Auto-
Scaling), a proactive, application-specific auto-scaler to provide efficient and
cost-effective distributed evolutionary optimization in the containerized en-
vironment. PETAS operates by predicting patterns in the behavior of opti-
mization processes to make the appropriate and timely scaling decisions and
meet the above-mentioned requirements.

PETAS is developed to improve the already established distributed op-
timization framework WoBinGO [9, 11]. WoBinGO was developed for effi-
cient solving of real-world optimization problems with high computational
cost of the fitness evaluation. The framework is intended for parallel execu-
tion of GA to solve single-objective and multi-objective optimization prob-
lems. WoBinGO uses a manager-worker parallelization model and allows
both: parallel evaluation of a population in GA and parallel execution of
multiple instances of the parallel GA. It has been successfully employed for
solving complex real-world optimization problems over HPC clusters, grids
[9], and more recently, IaaS clouds [11]. The enhancements presented in
this paper are intended to facilitate its use over the broadest spectrum of
container-based cloud platforms such as Amazon ECS/EKS, Azure AKS,
and on-premise Kubernetes. Additionally, the framework is modernized to a
cloud-native microservice architecture. WoBinGO now consists of dozens of
containerized microservices. Only three mandatory microservices are present
throughout the whole optimization, while the rest are scaled by a specially
developed application-level PETAS Auto-scaler, which uses machine learning
techniques for workload pattern prediction.

Since our main concern is to enable end-users to efficiently, in terms of
time and money, access solutions to their optimization problems, we evalu-
ated our framework through solving two real-world optimization problems.
The first is an intricate engineering optimization problem of transportation
pallets design and production. The second benchmark problem concerns
finding the optimal architecture of the artificial neural network to achieve
the highest accuracy for a specific dataset. The experimental evaluation per-
formed on these two problems demonstrates how PETAS proactive scaling,
which uses a machine learning model to predict workload behavior, results
in reducing operating costs without negatively impacting performance.

The rest of the paper is organized as follows: relevant related work is

5

reviewed in Section 2; the software framework’s architecture is described in
Section 3. The workflow of the optimization process using our solution is
given in Section 4. Section 5 presents PETAS auto-scaling details. The
experimental evaluation of the proposed software framework is described in
Section 6 followed by the discussion of the obtained results in Section 7 and
concluding remarks in the last section.

2. Related work

This section summarizes the related work in the area of parallel EAs
distributed over cloud resources focusing on container-based approaches.

Distributing parallel EAs over cloud resources has been the focus of sev-
eral research groups over the past decade. One of the first frameworks in-
tegrating parallel EAs with Cloud was proposed in [24] and it relied on [25]
to distribute MOEAs on Enterprise Clouds. The other example of Cloud
usage in evolutionary computation can be found in [26], which presents a dis-
tributed evolutionary computation system that relies on two different cloud
storage services (Dropbox and SugarSync) for the file synchronization among
islands, while each island is hosted by a different computer. Kurschl et al.
[27] propose a reference architecture for cloud-based optimization services
based on the Microsoft .NET framework and provide the prototype of a
cloud-based optimization service (OaaS) intended only for the Azure cloud
provider and using a Microsoft solution for automatic scaling of computa-
tional resources, which makes it highly platform dependent. Additionally,
it requires users to establish a computing infrastructure on their own. In
[28], a framework was introduced for distributing expensive fitness evalua-
tions across an elastic, heterogeneous pool of computing nodes that include
both personal computers of users/volunteers as well as a variable-sized pool
of cloud computing nodes. Garcia-Valdez et al. [29] introduce the population
storage model for the development of pool-based EAs that can be executed
over cloud computing resources. The evolving population is stored in a cen-
tralized repository, while distributed clients asynchronously extract a subset
of individuals and return a new subset of individuals after performing the
search operators. The framework is configured to run on a cloud architec-
ture using Heroku for the server and PiCloud for simulating workers. In [30],
the authors present a proof of concept to map the island model of EA to
the cloud-native format to be executed in a serverless manner, but with the
fixed number of islands that could not be altered during the optimization

6

process. Lu et al. [31] propose to integrate the evolution operations of GA
into Apache Hadoop or Spark to enhance the effectiveness and efficiency of
GA parallelization. Authors devise the mechanism to fairly select the par-
ents for crossover and mutation operations and avoid premature convergence
in the parallel and distributed architecture. Their experiments have shown
that the proposed architecture on Apache Hadoop as well as Spark performs
more efficiently than the two reference architectures.

Numerous authors [32, 33, 34] have suggested using the MapReduce paradigm
for parallelization of EAs over a cloud infrastructure, to relieve programmers
of most of the distributed computation issues. An additional motivation for
the use of this model stems from the fact that it is natively supported by
several cloud infrastructures. All three different models of parallel GA are
adapted to the MapReduce paradigm and issues and concerns about them
are discussed.

As container-based virtualization became widely used in Cloud comput-
ing, many auto-scaling frameworks emerged to dynamically provision dis-
tributed services in responses to variations in the incoming load [15, 14].
PASCAL framework, for example is intended for a distributed stream pro-
cessing (namely Apache Storm [35]) and as an auto-scalable distributed data-
store (Apache Cassandra [36]). PETAS, in contrast, relies on a more general
containerization frameworks such as Kubernetes and is specialized for evolu-
tionary based optimization. While PASCAL carries out both scale-out and
scale-in actions based on recent load, PETAS handles only scale-out action
using predictive techniques. As opposed to PASCAL, PETAS scale-in policy
is trivial, but most efficient for the case of evolutionary optimization - each
pod goes down immediately when there is no work left.

Frameworks for distributed evolutionary algorithms are utilizing contain-
ers to gain more flexibility and efficiency. One of the first attempts in this
area was carried out by Salza et al. [37]. In this paper, the authors pro-
pose the use of container technologies (Docker, CoreOS, and RabbitMQ),
but they do not make an empirical assessment of the effectiveness of such
systems. In [16], authors further propose a conceptual workflow describing
the development, deployment, and execution of distributed GAs. Following
that workflow, the master-slave parallel GA was implemented using contain-
ers to distribute fitness evaluation on a predefined number of slave nodes. In
contrast, our solution elastically adapts the number of engaged nodes using
a custom auto-scaler that interacts with the Kubernetes container orchestra-
tion system. The framework for master-slave parallelization of population-

7

based metaheuristics, presented in [38] uses containers to encapsulate each
of the several microservices carrying out the tasks of the master and slaves.
In contrast to our work, the number of engaged nodes is static and predeter-
mined for the problem being solved. In [17] authors use Docker containers
and Kubernetes to implement the Island Model of GA in the cloud, for solving
process planning and scheduling problems in smart factories. Each container
executes one or more islands, while the number of islands is determined using
one of the proposed strategies. Each strategy dynamically adjusts the number
of islands based on the quality and diversity of the currently obtained Pareto
Front. The Fission auto-scaler steers the number of containers, which are ex-
ecuted in a serverless manner without requiring any VM to be instantiated in
advance. The scalability of the proposed solution, unlike ours, is not aimed at
saving time and money, but at improving the quality of obtained solutions by
removing those islands which are not producing promising results and adding
new ones. Valdez et al. [18] present reactive container-based application for
the asynchronous execution of multi-population algorithms. Their solution
allows the decoupling of the population and the population-based algorithm
where different algorithms can be applied to each population. The model
implemented by the framework is based on the asynchronous exchange of
messages between stateless functions that react to a continuous stream of
data; populations are the messages that flow in this stream. Though the
suggested approach is very interesting from the research point of view, it
can hardly be suitable for providing efficiency in terms of performance and
monetary cost when it comes to real-world optimization problems with the
high computational cost of fitness evaluation.

Although there is a significant number of software frameworks for dis-
tributed EAs that exploit the power of the cloud, not many of them use the
containerized approach yet. Among those that do use containers, only [17]
auto-scale them, but to obtain quality and diversity of Pareto Front. None
of the papers we encountered so far reports elastic auto-scaling of containers
to improve the cost-effectiveness of the optimization process.

3. Architecture

The adoption of Linux containers has recently led to the rise of microservice-
based architectures in which monolithic applications are broken down into
multiple services exposing interfaces. Containerization is a method for soft-
ware packaging so that it can run in an isolated environment with its depen-

8

dencies. In contrast to Virtual Machines (VMs) which perform virtualization
at a hardware level, containers do so at the operating system level. They run
on a shared operating system but, being isolated in a self-contained environ-
ment prevents them from influencing the host machine or affecting processes
running in other containers. Containers provide lightweight virtualization
with fast and flexible deployment. Scheduling the execution of container-
based workloads over the pool of shared computing resources is done by a
container orchestration platform.

The architecture of the proposed system relies upon the usage of Docker
[20], an open-source engine for containerization, and Kubernetes [22], con-
tainer orchestration platform. Docker allows instantiating application con-
tainers, which are intended to contain all the components of an application.
The engine creates containers out of images and provides an online registry
to push/pull these images. An image is a lightweight, standalone, executable
package of software that encompasses all necessary elements to run an appli-
cation: code, runtime, system tools, system libraries, and settings. Images
become containers when they run on Docker Engine.

Kubernetes is a framework designed to manage containerized workloads
on clusters. A Kubernetes node may be a VM or a physical server. Each
node contains services necessary to run pods. Pods are the smallest, most
basic deployable objects in Kubernetes. A pod represents a single instance of
a running process in a cluster and encapsulates one or more tightly coupled
containers that are co-located and share the same set of resources. Multiple
pods can be used to scale an application horizontally. However, as pods are
not intended as durable entities, if a node fails, the pods will not survive.
Kubernetes is designed to maintain the desired state, such as the desired
number of pods.

The Kubernetes command-line tool, kubectl enables user to run com-
mands against Kubernetes clusters: deploy applications, inspect and manage
cluster resources, and analyze logs. Our custom PETAS Auto-scaler interacts
with the Kubernetes API to launch pods. In our case, a pod corresponds to
a single worker container that performs evaluation tasks. Fig. 2 shows the
overall architecture of the proposed system comprising of four mandatory
components which must be available through the entire optimization pro-
cess: JARE, Binder manager, PETAS Auto-scaler, Binder worker gateway,
and computationally demanding Binder worker microservice that is subject
to scaling. The main functional modules of the system are:

9

JARE

PETAS
Auto-scaler

Binder worker gateway

kubectl API

Launch

Binder manager

Binder
worker 1

Binder
worker 2

Binder
worker M

Evaluate (POST request)

Logging

Expose
rsync

New op�miza�on task

Kubernetes cluster

Fig. 2: Architecture of the proposed software framework

• JARE – the service that carries out the optimization process. It oper-
ates according to the manager-worker principle, i.e. when a generation
is to be evaluated, JARE asynchronously sends POST requests to the
gateway (one per individual) and waits for the results. When an eval-
uation of the whole generation is complete, the service applies the GA
operators: selection, crossover, and mutation to obtain the next gen-
eration. The new generation is then being sent for the evaluation, and
the whole process repeats until the GA stopping criterium is reached.

• Binder manager - accepts an evaluator from the JARE service and
provides workers with a rsync [39] interface to download the evaluator.
The evaluator contains everything needed to run a simulation (i.e. finite
element), including executables, libraries, templates, and data files. It
is often a few hundred megabytes in size.

• Binder worker – simple containerized microservice-based upon the
Python-Flask framework [40]. The pod that is running a Binder worker
exposes only a single API method that accepts an individual, runs the
simulation internally, and returns results to the caller. It is easy to
support any software requirement by adjusting the available Dockerfile
of the Binder worker image. That way, the evaluator itself can be de-
veloped in any programming language and it may require any runtime.

10

The background process regularly checks for file compliance with the
Binder manager using the rsync protocol. Binder worker may be in
one of the following states:

– joining : the underlying pod is launched and becoming ready to
accept an evaluation task;

– ready to accept an evaluation task;

– busy performing a fitness evaluation;

Binder workers operate in one of two modes: (1) constantly up and (2)
automatic switch off. In the second mode, a potential infrastructure
cost saving is enabled. The worker switches off if it has spent a given
time Tidle in a ready state or has just completed an evaluation of an
individual, and there are no more requests left in the queue. After the
launch of the worker pods, it takes some time for them to become ready.
This includes time to create containers from the Binder worker image,
plus the time to synchronize files with the Binder manager. The over-
all duration depends on the size of the evaluator, the interconnection
network throughput, and the total number of worker pods.

• Binder worker gateway - The unique endpoint that operates accord-
ing to the reverse proxy principle. Nginx reverse proxy or Kubernetes
service can be employed for this purpose. The round-robin and least-
connections scheduling policies have been successfully applied. In this
paper, we opted for the Kubernetes service and round-robin policy.

• PETAS Auto-scaler – The component that manages the number of
Binder workers according to current and foreseen requirements. When
a generation is to be completed, the number of available pods is usually
low, due to adopted scale-in policy. Most of them have completed the
assigned evaluations and turned off. For that reason, PETAS periodi-
cally checks if there is a need to launch a new portion of worker pods.
Additionally, PETAS exposes an API method by which each Binder
worker reports its current state. This way, PETAS is informed about
the state of the distributed evaluation system at the time it decides to
launch a new portion of worker pods.

The main contribution of this work lies in the way PETAS Auto-scaler deter-
mines the time point to launch a new portion of pods to make them available

11

at the moment the next generation emerges. Based on the predictive model
trained by historical data, PETAS is capable of predicting the duration of an
individual’s evaluation and estimate the completion of the evaluation of the
current generation. This is an advantage compared to a classic batch execu-
tion supported by Kubernetes1 and other frameworks. If a classical batching
system is employed, a new group of Binder worker pods has to be launched on
each generation transition, and a certain amount of time is needed for them to
become ready to carry out evaluations. With PETAS, on the contrary, pods
are completely ready each time a new wave of evaluation requests emerges.
While PETAS scale-in policy is identical to Kubernetes batching approach,
PETAS scale-out policy is capable of providing clear performance benefit.
Further details about the proposed auto-scaler are discussed in Section 5.

4. Optimization Execution Workflow

The first part of this section describes the system’s internal workflow
during the execution of the optimization task. The second part outlines the
optimization workflow from the user’s point of view.

1. JARE creates an optimization task by transferring the objective func-
tion evaluator and accompanying files to the Binder manager (Fig.
3). PETAS Auto-scaler, being informed that the optimization has just
started, launches Wmax Binder worker pods to listen on a unique Binder
worker gateway.

2. Each Binder worker’s background synchronization process notices a
change within the Binder manager’s rsync file system and starts syn-
chronizing with it.

3. JARE begins the evolutionary process of GA. Each time a generation
of N individuals has to be evaluated, the service sends N asynchronous
requests to the Binder worker gateway.

4. The binder worker gateway further propagates the requests to worker
pods which immediately start the evaluation of the individuals. When
Wmax ≥ N , there is a big chance that all individuals are being evaluated
simultaneously. Each worker reports to PETAS that the evaluation of
an individual has begun.

1https://kubernetes.io/docs/concepts/workloads/controllers/job/

12

JARE
service

Binder
manager PETAS Binder worker

gateway
Binder
worker

Create optimization
task

Create initial
population

Evaluate population

Wait for results

Select
Crossover

Mutate

No

Stopping criteria
reached

Create new
population

Stop

Synchronize

upload
evaluator Launch Wmax worker

pods

All evaulations
started

Predict Ti
eval

Yes

Calculate Tlaunch

At Tlaunch time launch
Wmax pods

Listening

Propagate evaluation
task to a worker

Evaluate
Evaluation results

Return results

YesNext individual

No

Tidle expired

No

Turn off

Yes

Send N asynchronous requests

1 11

1

2
3

3 3 4

Report evaluation
start

4

4
4

56

Yes

7

Fig. 3: The system’s internal workflow during the execution of the optimization task

5. Upon completion of the evaluation, each worker returns the result and
takes the next individual for evaluation, provided that there are more
individuals in the queue. If there are not any, the worker pod automati-
cally switches off. As the time passes, the number of workers decreases,
which is a major contribution to infrastructure cost savings. A small
number of workers does not even get a job before their idle time (Tidle)
expires, and others complete all the evaluations in the current wave.

6. The moment PETAS is notified that an individual’s evaluation has be-
gun, due to a predictive algorithm described in Section 5.1, PETAS can
predict when the individual’s assessment will be completed, based on
the values of the individual’s decision variables. Upon receiving the no-
tification that the last evaluation in the current generation has begun,

13

it is straightforward to predict the approximate time when the current
generation’s assessment will be completed and the next generation will
begin. That way, PETAS “knows” when to launch the new portion of
Wmax pods to parallelize the evaluation of the next generation as much
as possible.

7. JARE service continues with the rest of the evolutionary algorithm,
and when the next generation is created, JARE sends N asynchronous
requests to the Binder worker gateway. The whole process repeats
as many times as necessary to meet the stopping criteria of GA (e.g.
predefined number of generations, no improvements to the current best
solution for a certain number of generations).

From the user’s point of view, the system is a black box that allows her/him
to perform optimization fully automatically, in the shortest possible time, and
without any expertise regarding basic optimization methods or the underly-
ing computing infrastructure. A user supplies the system with a definition
of an optimization problem through the web portal. The definition includes
a population size (N), the maximum number of generations in the GA, an
objective function evaluator, as well as lower and upper bounds of the de-
cision variables. The end-user does not, at any time, deal with the setting
of the underlying cloud infrastructure. WoBinGO performs the optimization
process as described in the first part of Section 4. An optimization can take
several hours during which the user can monitor its progress. The obtained
Pareto front is presented to the user through a web user interface and the
user can further select one solution and analyze it.

5. PETAS Auto-scaler

PETAS Auto-scaler manages the number of Binder worker pods according
to the current requirements. The optimization process initiates with Wmax

worker pods which are evaluating the individuals from the first generation.
When there is no more work to do, those pods are switching off contributing
to the IaaS cost savings. After an entire generation has been evaluated, there
are almost no Binder workers left, and the number of pods running Binder
workers can be increased through a scaling-out action. According to [14], the
following four dimensions of a scaling action can be defined:

• When should scaling action be performed? The time can be determined
using either reactive or predictive (proactive) techniques as explained

14

in the Introduction.

• How should the scaling be performed? Horizontal (scale-out/in) or
vertical scaling (scale-up/down).

• What resource must be scaled to meet a given SLA?

• How many resources must be added or released to satisfy the SLA?

PETAS provides a proactive horizontal scale-out of CPU/memory re-
sources whose number is determined by the Wmax, a maximum number of
worker pods. Our framework also includes scale-in action which is achieved
by automatically shutting down idle pods after the predefined Tidle has ex-
pired or there are no evaluations left in the queue. Additionally, as pointed
out in [14] a scaling action is defined by three points in time:

• The demand point (DPsa) is the point at which a scaling action is
required - the start of a next-generation assessment.

• The triggering point (TPsa) is the point at which a scaling action is
activated - when new Wmax pods are launched.

• The reconfiguration point (RPsa) is the point in time at which the
scaling action has been completely terminated - all newly launched
worker pods are ready to accept an evaluation task.

PETAS determines the TPsa time when the launching of new Wmax pods will
occur. The choice of TPsa must be made carefully: ideally, the scaling action
should be completed at the same time a new generation’s fitness evaluation
begins. If the launch occurs too late, the scaling action will be completed
after the beginning of a new generation’s evaluation (RPsa > DPsa) and
there will not be enough pods (<< Wmax) to handle N individuals. On
the other hand, if the pods are launched too early (RPsa << DPsa), the
new pods may reach their Tidle and switch off, leaving an insufficient number
of them to perform evaluations. The three crucial time points for scaling
Binder workers that perform fitness evaluations are depicted in Fig. 4. The
figure shows only a short period between the two generations. The blue line
represents the number of required workers which almost drops to zero at the
end of a generation, and then suddenly increases to the size of a generation,
N . Tsafe denotes the period between the moment when the new workers are

15

demanded and the moment when a scaling action covering that demand is
concluded (DPsa − RPsa). It is the safe marginal time to ensure that pods
will become fully ready to handle a new wave of evaluations. Tsafe value
does not affect the optimization process, but only the performance. It is
the parameter that can be optimized according to the specific problem and
specific underlying infrastructure.

N
um

be
r o

f r
eq

ui
re

d
w

or
ke

rs

T s
af
e

TPsa RPsa DPsa

Fig. 4: The demand point (DPsa) coincides with the beginning of a new generation. A
scale-out action that is triggered in TPsa ends in RPsa. To avoid under-provisioning it is
necessary to ensure Tsafe marginal time between RPsa and DPsa.

PETAS operates in two consecutive phases: a learning phase and an
auto-scaling phase. In the learning phase, PETAS utilizes ML to learn a
prediction model of the optimization process behavior. If historical data for
a specific optimization problem is unavailable, PETAS keeps Wmax worker
pods running in a static manner for a few generations, collecting the data.
When sufficient quantity of historical data is available, PETAS builds an
ML model of Teval, which is then utilized at runtime, during the auto-scaling
phase, to proactively scale the number of worker pods. The architecture
of PETAS consists of two modules: (i) PETAS Evaluation Time Predictor,
which is obtained through the learning phase, and (ii) PETAS Auto-scaler

16

for the second phase. Each of these modules operates as a black-box within
the proposed framework, which allows seamless replacement of each of these
modules.

5.1. PETAS Evaluation Time Predictor

This module is in charge of predicting the time that an individual’s evalu-
ation process will take (Teval) depending on the values of its decision variables.
PETAS Evaluation Time Predictor is a machine learning regression model
for Teval prediction. Whenever a new optimization problem is to be solved,
a dedicated PETAS Evaluation Time Predictor is built through a learning
phase. To generate the predictive model for a new optimization problem,
the evaluation times of individuals and their decision variables’ values have
to be collected by executing GA for a few generations with a static number
of workers (Wmax pods running all the time). Collected records have the
following form:

(xi
1, x

i
2, ..., x

i
m, T

i
eval),

where T i
eval is the evaluation time of individual i, (i = 1, N) given its decision

variables xi
1...x

i
m, and m denotes the number of decision variables. Using such

a data set, the ML model is trained, validated, and tested. The resulting ML
model is capable of predicting Teval based on the values of an individual’s
decision variables. Once a model is chosen for a given optimization problem,
it is used as such by the PETAS Auto-scaler for all subsequent executions
of a genetic algorithm intended to solve that particular problem. Training
of the predictor is explained in more detail in Section 6.1, where the specific
implementations for the particular use cases are described.

5.2. PETAS Auto-scaler

PETAS Auto-scaler decides when to launch new Wmax pods based on the
information received from the PETAS Evaluation Time Predictor. As shown
in Fig. 5, PETAS is notified whenever evaluation of an individual has begun
by receiving the following: T i

start - an evaluation beginning time for individual
i, and its decision variables xi

1, ..., x
i
m. For each individual i, PETAS Auto-

scaler invokes the PETAS Evaluation Time Predictor and receives predicted
value T̂ i

eval according to the values of decision variables xi
1...x

i
m. Upon the

start of all evaluations, and after all T̂ i
eval predictions are obtained, PETAS

Auto-scaler calculates the time to launch a new portion of Wmax pods the
following way:

17

TPsa = max
i

[
T i
start + T̂ i

eval

]
− Tsafe, (1)

where Tsafe is a safe marginal time. Upon completion of the scaling action,
a sufficient number of workers will be ready to receive the high workload
generated by the beginning of a subsequent generation’s evaluation process.

each individual i

Auto-scaler

kubectl

Calculate Tlaunch

Historical data
(x1,x2,...,xm, Teval)

Train ML model

Evalua�on Time
Predictor

for

(xi1,xi2,...,xim),Tistart

Predict Ti
eval

Fig. 5: PETAS simplified architecture

6. Experimental study

This section presents the evaluation of the proposed framework with the
intelligent auto-scaling of containers. The first goal of the experimental study
was to show that the pods’ launching pace determined by the proposed
PETAS auto-scaler is following the actual pace of change of generations.
Secondly, we wanted to determine the performance of our solution in terms
of the optimization time and cost. The proposed solution was tested us-
ing two real-world computationally demanding optimizations. The first use
case belongs to the manufacturing domain and involves optimization of the
transportation pallets for train parts. The second use case involves optimiza-
tion as a part of the neural architecture search (NAS) and hyperparameter
optimization of artificial neural networks.

18

Use case 1: Optimization of the transportation pallets

Transportation pallets are essential in various industries for the success-
ful shipping of different products, including train parts. The pallet can be
designed and its load capacity can be analyzed using commercially available
software solutions, which already have modules for structural optimization.
However, a pallet that is optimally designed and constructed regarding tech-
nical requirements and material consumption is not necessarily optimal from
the point of view of the entire technological process, i.e. milling time, the
number of welds, the costs associated with the welding process, the sim-
plicity of the assembly process, the cost of transport to the end customer,
etc. The optimization of the transportation pallets for train parts, not only
from a structural point of view, but also taking into account the effectiveness
of the production process in terms of all the above-mentioned parameters,
is a complex multi-objective optimization problem. To solve this problem
successfully and timely, one must possess expert knowledge in process mod-
eling, optimization methods as well as distributed computing. Required hu-
man resources with an adequate level of expertise in any of these domains are
scarcely available and expensive. Besides, the necessary hardware equipment
and its constant maintenance are also expensive. In this regard, we evaluate
the proposed cloud-based optimization service that allows manufacturers to
optimize the design and production of pallets fully automatically in the short-
est possible time without having to deal with purchasing, configuring, and
maintaining specialized software and equipment. For solving the problem,
we used the NSGA-II multi-objective genetic algorithm [41]. The objective
functions aim to minimize pallet mass and its overall production cost. The
core of the objective functions’ evaluator was a finite element solver which
checks the strength of any model constructed from the combination of 44 dif-
ferent decision variables. The following set of genetic algorithm parameters
was adopted: population size of 50 individuals, a simulated binary crossover
with a probability of 0.9 and a distribution index of 20, and polynomial mu-
tation with a distribution index of 20 and probability of 1/l, where l is the
chromosome length. All results are taken from 10 independent runs. The
average time needed to evaluate a single individual, Teval was 127s, with a
standard deviation of 49s, which means that the heterogeneity of the indi-
viduals was relatively high. This can be attributed to the fact that finite
element analysis involves very diverse types of pallet constructions. Different
types of constructions have a different total number of finite elements, and

19

consequently, the evaluation times vary significantly. The Pearson correla-
tion between the decision variable Type of construction and the evaluation
time of ≈ 0.8 promises a good base for modeling Teval. The number of active
evaluations throughout the optimization processes for this problem is shown
in Fig. 1. Relatively high computational requirement and significant vari-
ance in evaluation time make this problem convenient for a proposed pod
auto-scaling approach.

Use case 2: Optimization of the deep ANN architecture

The second use case belongs to the field of automated machine learning
(AutoML) and involves joint neural architecture search and hyperparameter
optimization. Automated discovery of artificial neural network models from
the data is an optimization problem that can be solved by EAs. Evolutionary
algorithms were successfully used for evolving the structure of feed-forward
and recurrent neural networks [42, 43, 44]. Recently published papers evolve
only neural architecture itself and use gradient-based methods for optimizing
weights [45, 46, 47, 48, 49]. Despite their remarkable performance, architec-
ture search algorithms and hyperparameter optimization are computation-
ally highly demanding, requiring days of computing time, even when utilizing
multiple GPUs. The experiments were conducted to evaluate whether the
proposed container’s elastic auto-scaling approach can enable the efficient
solving of NAS and hyperparameter optimization problems.

To find optimal architecture and hyperparameters of deep feedforward
and recurrent neural networks, specific evolutionary operators suitable for
deep architectures must be used. The evolutionary algorithm evolves a pop-
ulation of models, i.e. deep neural networks (DNNs). Each individual in
the population represents one ANN, such that genes encode the following:
hidden layers count, number of neurons per layer, activation function, and
training algorithm. In every evolution step, each network in a population is
trained and its validation error is determined. The fitness is calculated such
that individuals with lower validation error have higher fitness. Through a
selection process, the best models (according to their fitnesses) are designated
as parents to crossover and generate offspring. The selection is implemented
using a standard tournament selection operator, while a one-point crossover
operator performs the crossover of individuals. The mutation operator is
applied randomly over a population to (1) change the number of neurons
in a specific layer, (2) change an activation function of a randomly selected

20

layer, or (3) add a new or delete an existing layer. The new generations are
created iteratively through selection, crossover, and mutation. The initial
population consists mostly of individuals of modest complexity, and due to
the DNN specific mutation, layers and neurons are added only if that will
lead to an evident fitness gain. Therefore, the algorithm has an inherent pref-
erence towards simpler (and more efficient) architectures, which is a desirable
feature in sense of production performance.

For this use case, we searched for an optimal deep neural network for the
well-known benchmark dataset Boston housing [50]. The decision variables
were the following: training algorithm, hidden layer count (1-10), neurons
per layer (5-25), activation function, and dropout rate (0-1). The Boston
housing dataset was divided into 70% training and 30% validation samples,
and the number of epochs was fixed to 3000. The NAS and hyperparameters
tuning was treated as a single-objective optimization problem to minimize
the neural network’s RMSE (root mean square error). The following set of
GA parameters was adopted: population size of 50 individuals, a simulated
binary crossover with a probability of 0.9 and a distribution index of 20, and
polynomial mutation with a distribution index of 20 and probability of 1/l,
where l is the chromosome length.

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

er
 o

f
ac

ti
ve

 e
va

lu
at

io
n

s

Time [s]

Fig. 6: Active evaluations for deep ANN architecture optimization problem

The average computational time to evaluate a single individual Teval was
514.5s, with a standard deviation of 111.7s. The number of active evaluations
throughout the optimization processes for this problem is shown in Fig. 6.
Relatively high heterogeneity of computational time was expected, since the

21

training time of ANN largely depends on the number of layers, number of
neurons per layer, etc. If we take a total number of neurons, it correlates with
evaluation time by Pearson coefficient of 0.903, promising a good predictive
potential. This optimization problem is, therefore, also suitable to be the
benchmark for the proposed predictive auto-scaling approach.

To execute all experiments, we employed an on-premise Kubernetes 1.20
cluster consisting of 7 physical nodes. Each node is equipped with dual Intel
Xeon E5-2683 v4 @ 2.1GHz CPU (32 physical cores), 128GB memory, and
10Gbps interconnection, totaling 224 cores and 896GB of RAM. The base
OS platform is CentOS 7.7 x86 64.

6.1. Building PETAS Evaluation Time Predictors
In this section, we describe the implementation of the PETAS Evaluation

Time Predictors for both use cases presented in the previous section. As
previously discussed, PETAS Auto-scaler is in charge of launching worker
pods timely to answer the requests for evaluation of a new generation. The
decision is taken based on the prediction received from the PETAS Evalua-
tion Time Predictor. This model is responsible for predicting an individual’s
evaluation time based on the corresponding decision variables’ values. To
generate the predictive model for each use case, the evaluation times of indi-
viduals and their decision variables’ values have been collected by executing
GA for a few generations with a static number of workers. This way, the
two data sets, each containing 5000 examples, were obtained for the two use
cases. As soon as PETAS Evaluation Time Predictor was trained employ-
ing obtained data sets, the PETAS Auto-scaler was capable of carrying out
automatic scaling.

For both use cases, the datasets were used to generate various prediction
models, after which the model with the lowest prediction error was chosen.
We considered five well-established regressors: Polynomial regressor (POLY),
Decision Tree regressor (DT), Random Forest regressor (RF), Support Vector
regressor (SVR), and Multilayer perceptron (MLP). To evaluate the predic-
tive capacity of these five models, k-fold cross-validation (k=10) [51] was
performed. Fig. 7 and Table 1 show the results of 10-fold cross-validation
comparing the predictive models for Teval prediction. The presented results
are the average scores obtained with the performance metrics for measuring
the prediction error of the regression model (MAE) and the proportion of
variance explained by the regression model (R2):

Mean Absolute Error (MAE): MAE = 1
n

∑n
i=1 |yi − ŷi|

22

R-squared (R2) coefficient of determination: R2 = 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−y)2

where yi denotes the actual output, ŷi is the predicted value, yi is the mean
of actual outputs, and n is the size of the dataset.

Table 1: R2 and MAE values obtained from the 10-fold cross-validation performed with
models obtained using the following algorithms: Polynomial Regression (POLY), Deci-
sion Tree (DT), Random Forest (RF), Support Vector Regression (SVR), and Multilayer
Perceptron (MLP).

Use case 1 Use case 2
ML algorithm MAE[s] R2 MAE[s] R2

POLY 11.61 0.68 37.92 0.84
DT 10.59 0.83 34.47 0.85
RF 7.44 0.91 31.36 0.88
SVR 16.66 -0.03 109.58 -0.16
MLP 9.43 0.84 47.39 0.78

POLY DT RF SVR MLP

8

10

12

14

16

18

(a)

POLY DT RF SVR MLP
20

40

60

80

100

120

(b)

Fig. 7: Spread of the mean absolute errors (in seconds) across each cross-validation fold
for each of the five ML models for Teval prediction: (a) Use case 1 - optimization of the
transportation pallets; (b) Use case 2 - optimization of the deep ANN architecture. The
box marks the 25th and 75th percentiles, with a line at the median. The whiskers extend
from the box to show the range of the mean absolute errors.

From Table 1 and Fig. 7, it can be seen that for both use cases all the
results go in favor of the Random Forest model. We further proceeded with
hyperparameters’ tuning of RF regressors trying to improve their prediction
capacity. The adopted RF model for the optimization of the transportation
palettes had the prediction error (MAE) value of 7.44s and its predictive ca-
pacity (R2) was 0.91. In the case of the deep ANN architecture optimization,
the adopted RF model had the prediction error (MAE) value of 31.36s and
its predictive capacity (R2) was 0.88. In both use cases, RF based PETAS

23

Evaluation Time Predictors were further utilized by PETAS Auto-scaler to
determine the time to launch new pods based on the predicted evaluation
times of the individuals that are currently being evaluated.

7. Results and discussion

In this section, we present and discuss the results of our experimental
study. To show the efficiency of the proposed framework in terms of the
achieved quality of the solution, the optimization results for both considered
experiments are presented first. In the second part, we demonstrate that
the proposed PETAS Auto-scaler leads to desirable provisioning of pods in
real-world optimization tasks. The third part is focused on determining the
performances of our solution in terms of the optimization time and cost.

7.1. Optimization results

The obtained optimization results for the considered manufacturing op-
timization problem are excellent. We considered two optimization scenarios,
one regarding the optimization of production, and the other regarding the
optimization of the overall solution. In the first scenario, we chose the solu-
tion that minimizes the welding costs while keeping the material costs at an
acceptable level. In that case, welding costs were reduced by a remarkable
52%, while material costs were increased by 18%. In the second scenario,
which includes all possible construction variants, the solution that showed
improvement according to all criteria was chosen as the optimal solution.
This solution provides a 12% reduction in pallet weight and reduces material
costs by 14% and welding by an incredible 41%. It should be noted that this
optimization with computationally hard, would take more than 20 hours if
done sequentially, but with the proposed software framework it only takes
an hour and a half, which means that the execution time is reduced by more
than 90%.

The search for the artificial neural network that achieves the smallest val-
idation error on the Boston housing benchmark resulted in the model with
excellent performance without any human expert intervention. The archi-
tecture details, hyperparameters, and performance measures of the obtained
model are given in Table 2.

7.2. Resource provisioning

The number of active pods throughout the optimization process is pre-
sented in Fig. 8. The results obtained throughout the palettes’ optimization

24

Table 2: Architecture details, hyperparameters, and performance of the ANN model ob-
tained using the proposed software framework

Architecture Hyperparameters Model performance
Number of
hidden lay-
ers

1
Activation
function in
hidden layer

ReLU
Training
Algorithm

Nadam RMSE [$1000] 2.78

Number
of neurons
per layer

8
Activation
function in
output layer

Sigmoid
Dropout
rate

23% R2 0.92

are depicted in Fig. 8a, while the results obtained with the ANN architec-
ture’s optimization are shown in Fig. 8b. The number of generations for
both experiments was set to 10 and the maximum idle time of a pod was set
to Tidle = 220s. In both charts, the blue line represents the number of pods
available to perform evaluations during the optimization process. The red
vertical lines indicate the points when the evaluation of the new generation
began. The green vertical lines indicate the moments when PETAS launched
new pods. By comparing the positions of red and green lines for each gen-
eration on both charts, it is noticeable that the pod’s launching occurs on
time. Launching pods a little before the start of the new generation’s eval-
uation (the green lines come before the red ones) gives pods sufficient time
to become ready to accept their fitness evaluation tasks. As stated above,
this intelligent scale-out feature represents a major advantage over classical
Kubernetes batching approach, in which the whole optimization process has
to wait for the pods to reach their readiness.

This proves that the proposed intelligent PETAS Auto-scaler is capable
of determining the right moments to launch worker pods. If we compare use
cases, it is noticeable that the intervals between pods’ launching and a new
generation commence (green and red vertical lines) are almost constant in
use case 1, while variable for the use case 2. This is understandable, given the
better performance of predictor for use case 1 in terms of prediction error.

7.3. Framework performance

Further, we considered the total optimization time (Topt) and the cumula-
tive uptime (Tcum). The total optimization time is the overall execution time
of the optimization process. The cumulative uptime is the total time through-
out which the cloud resources were used. It is directly and approximately
linearly proportional to the monetary cost of an IaaS provider’s service. The
cumulative uptime, represented by the area under curve, can be calculated

25

0 1000 2000 3000 4000 5000 6000
Time in seconds [s]

0

10

20

30

40

50

Ac
tiv

e
po

ds

Number of pods
New generation started
New pods created

(a)

0 1000 2000 3000 4000 5000 6000 7000
Time in seconds [s]

0

10

20

30

40

50

60

70

Ac
tiv

e
po

ds

Number of pods
New generation started
New pods created

(b)

Fig. 8: The number of active pods throughout the optimization process: (a) Use case 1 -
optimization of the transportation pallets; (b) Use case 2 - optimization of the deep ANN
architecture

as follows:

Tcum =

Tk∫
0

w(t)dt (2)

where Tk is the time needed to execute k generations in GA, and w(t) is
the current number of active pods at time t. If we again observe Fig. 8,
the area under the blue curve (Tcum) is relatively smaller for the first use
case, expecting more cost-saving. This is due to a relatively higher variance
of Teval in the Palette optimization use case. Higher variance of Teval gives
more space PETAS scale-in policy to save pods’ uptime.

Table 3: Comparison of PETAS, Batch, and Static solutions in terms of optimization time
Topt and cumulative pod uptime Tcum

Topt[s] Tcum[s]
Optimization problem PETAS BATCH STATIC PETAS BATCH STATIC
Palette optimization 6411 7167 6429 164621 250393 332852
ANN architecture opt. 7181 7830 6792 305091 318979 352160

To check the exact performance advantage of our approach, we compared
PETAS with two generic solutions. The first was classic Kubernetes batch
(BATCH), which launches Wmax pods on each generation shift. One job
corresponds to the evaluation of each individual in the generation. As stated
above, it behaves identically as PETAS on scale-in, switching off pods that

26

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Palette optimization ANN architecture optimization

To
p

t
[s

]

Optimization Time

0

50000

100000

150000

200000

250000

300000

350000

400000

Palette optimization ANN architecture optimization

Tc
u

m
 [

s]

Cumulative Pod Uptime

Fig. 9: Comparison of PETAS, BATCH, and STATIC approach in terms of (a) optimiza-
tion time Topt and (b) cumulative uptime Tcum for the two use cases

have completed their evaluations. However, on scale-out, significant time is
required to set up all pods in the cluster. PETAS aims at avoiding that
overhead. The second approach is STATIC, when scaling is off and we have
Wmax pods running and available all the time. STATIC is expected to have
a very good Topt, but since there is no scaling at all, a sub-optimal Tcum.

Table 3 and Fig. 9 reflect the main contribution of this work in terms
of optimization time (left) and cumulative uptime (right) obtained from the
two use cases. Considering Topt, PETAS and STATIC deliver optimization
result at almost the same time, while BATCH is lagging behind due to ad-
ditional overhead of waiting pods to become ready on each GA generation
shift. However, the major advantage of PETAS is obvious if we compare Tcum

values in Fig. 9. In the case of the transportation palette optimization, the
ratio between PETAS and STATIC suggests that there is 49% decrease of the
cumulative uptime and 34% compared to BATCH. In the case of the ANN ar-
chitecture optimization process, the savings are not that high (approx. 14%),
but still significant, especially if optimization tasks are performed frequently
and for a large number of generations.

Table 4: Mean absolute error and Maximum of absolute error of PETAS predictor for the
two use cases

Optimization problem MAE[s] max(AE)[s]
Palette optimization 5.5 18

ANN architecture optimization 22.5 43

The Table 4 gives the Mean (MAE) and Maximum of absolute error
max(AE) measured as the interval between the moment PETAS launched

27

-35

-25

-15

-5

5

15

25

35

45

1 2 3 4 5 6 7 8 9 10

Er
ro

r
[s

]

Generation number

Palette optimization

-35

-25

-15

-5

5

15

25

35

45

1 2 3 4 5 6 7 8 9 10

Er
ro

r
[s

]

Generation number

ANN architecture optimization

a) b)

Fig. 10: The error in predicting the beginning of the evaluation of the new generation
throughout 10 generations of GA: a) Use case 1 - optimization of the transportation
pallets; b) Use case 2 - optimization of the deep ANN architecture

new pods, and the moment the evaluation of a new generation began. The
diagram shown in Fig. 10 shows the prediction error throughout 10 gener-
ations. This error should ideally be positive and equal to the time needed
for the pods to become ready to perform evaluations, or if we refer to equa-
tion (1), the error should be equal to Tsafe. Therefore, knowing the values
of MAE and max(AE) allows the correct choice of the Tsafe value, which
defines how long before the predicted time to launch the pods. To ensure
the proper operation, the value of Tsafe has to keep the safe margin against
max(AE) to cover eventual prediction error. However, if Tsafe value is too
large and the Tidle value is too small, the pods will launch too early and
switch off before the next generation begins, leaving the optimization pro-
cess without enough workers. The values of MAE and max(AE) express
the level of certainty that sufficient number of pods will remain ready when
the next generation starts. For both use cases, we chose Tsafe = 100s and
Tidle = 220s, meaning that we covered the 100s window before predicted
subsequent generation commencement and 120s after that point. Therefore,
the optimization process stays on the safe side, since the pod window covers
prediction errors of up to 100s. In the case of the palette optimization (use
case 1), even a tighter window would do the job, providing a bit more IaaS
cost saving. However, it is up to the user to choose a safety factor according
to the model accuracy, IaaS stability, and other factors.

28

8. Conclusion

In this paper, we have presented the software framework for solving opti-
mization problems with a cloud-native, micro-serviced, and containerized ar-
chitecture suitable for distributed, manager-worker execution of evolutionary
metaheuristics. The main contribution of this paper is a novel application-
level proactive auto-scaler of containerized evaluation workers, called PETAS.
Aiming to improve the cost-effectiveness of the WoBinGO framework dis-
tributed over the cloud nodes, PETAS adapts to the specific requirements
of evolutionary optimization. PETAS auto-scaler elastically maintains the
adequate number of worker pods following the exact pace dictated by the de-
mands of the optimization process. This is achieved by employing machine
learning techniques to enable PETAS to predict patterns in the behavior
of the optimization processes and, hence, make the appropriate and timely
scaling decisions.

We have performed an empirical evaluation of the proposed software
framework by utilizing it to solve two distinct real-world optimization prob-
lems. Through these computationally demanding optimization problems, it
was possible to empirically demonstrate how PETAS, based on its predictive
capacity, scales worker pods exactly in accordance with the pace of actual
demands of the generational changes. For both optimization problems, the
performance of our solution in terms of optimization time and infrastructure
cost has been empirically determined. The results showed that due to pre-
dictive auto-scaling, the proposed solution offers significant benefits in cost
savings, from a 14% to 49% decrease of the cumulative uptime. Thanks to
PETAS and the adopted scale-out policy, these cost savings were achieved
without compromising the optimization time, which is the most important
quality for the end-user.

However, the system is still not sufficiently automated to reach a produc-
tion readiness. We aim to extend this solution by integrating the PETAS
learning phase into the software’s framework workflow. According to the
analysis presented in this research, this is fully achievable. For both real-
world optimization problems, we showed that completely satisfactory PETAS
models could be produced using a very simple ML technique since the data
sets of historical runs are large and complete. Therefore, in the future,
PETAS learning phase will be fully automated employing some of the popu-
lar AutoML tools. With the integration of the AutoML scheme into PETAS,
together with the auto-tuning of a few remaining parameters such as Tidle

29

and Tsafe, the proposed optimization system will reach the level of maturity
and generality required from the production-ready PaaS.

Acknowledgements This work was supported by the Serbian Ministry of
Education, Science and Technological Development (Agreement No. 451-03-
9/2021-14/200122). The research was supported by the Scientific Fund of the
Republic Serbia, PROMIS, 6062556, DyRes System. Part of this research
was supported by CloudiFacturing and DIGITbrain, European Innovation
Projects, which receive funding from the European Union’s Horizon2020 re-
search and innovation program under grant agreements No 768892 and No
952071, respectively.

References

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st Edition, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1989.

[2] Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, J.-J.
Li, Distributed evolutionary algorithms and their models: A survey of
the state-of-the-art, Applied Soft Computing 34 (2015) 286–300.

[3] E. Alba, G. Luque, S. Nesmachnow, Parallel metaheuristics: recent ad-
vances and new trends, International Transactions in Operational Re-
search 20 (1) (2013) 1–48.

[4] G. Luque, E. Alba, B. Dorronsoro, An asynchronous parallel imple-
mentation of a cellular genetic algorithm for combinatorial optimiza-
tion, in: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’09, ACM, 2009, p. 1395–1402.
doi:10.1145/1569901.1570088.

[5] N. Cole, T. Desell, D. L. González, F. F. de Vega, M. Magdon-Ismail,
H. Newberg, B. Szymanski, C. Varela, Evolutionary algorithms on vol-
unteer computing platforms: The milkyway@ home project, in: Parallel
and distributed computational intelligence, Springer, 2010, pp. 63–90.

[6] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, B.-S. Lee, Efficient Hierarchical
Parallel Genetic Algorithms using Grid computing, Future Generation
Computer Systems 23 (4) (2007) 658 – 670.

30

[7] A. Munawar, M. Wahib, M. Munetomo, K. Akama, The design, usage,
and performance of GridUFO: A Grid based Unified Framework for
Optimization, Future Generation Computer Systems 26 (4) (2010) 633–
644.

[8] T. Van Luong, N. Melab, E.-G. Talbi, Parallel hybrid evolutionary al-
gorithms on GPU, in: IEEE Congress on Evolutionary Computation
(CEC), Barcelone, Spain., 2010, pp. 1–8.

[9] M. Ivanovic, V. Simic, B. Stojanovic, A. Kaplarevic-Malisic, B. Marovic,
Elastic grid resource provisioning with WoBinGO: A parallel framework
for genetic algorithm based optimization, Future Generation Computer
Systems 42 (2015) 44–54.

[10] S. Pimminger, S. Wagner, W. Kurschl, J. Heinzelreiter, Optimization as
a Service: On the Use of Cloud Computing for Metaheuristic Optimiza-
tion, in: International Conference on Computer Aided Systems Theory,
Springer, 2013, pp. 348–355.

[11] V. Simic, B. Stojanovic, M. Ivanovic, Optimizing the performance of
optimization in the cloud environment–An intelligent auto-scaling ap-
proach, Future Generation Computer Systems 101 (2019) 909–920.

[12] T. Lorido-Botran, J. Miguel-Alonso, J. A. Lozano, A review of auto-
scaling techniques for elastic applications in cloud environments, Journal
of grid computing 12 (4) (2014) 559–592.

[13] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, P. Merle, Elasticity in cloud
computing: state of the art and research challenges, IEEE Transactions
on Services Computing 11 (2) (2017) 430–447.

[14] V. Rampérez, J. Soriano, D. Lizcano, J. A. Lara, FLAS: A combina-
tion of proactive and reactive auto-scaling architecture for distributed
services, Future Generation Computer Systems 118 (2021) 56–72.

[15] F. Lombardi, A. Muti, L. Aniello, R. Baldoni, S. Bonomi, L. Querzoni,
PASCAL: An architecture for proactive auto-scaling of distributed ser-
vices, Future Generation Computer Systems 98 (2019) 342–361.

31

[16] P. Salza, F. Ferrucci, Speed up genetic algorithms in the cloud using
software containers, Future generation computer systems 92 (2019) 276–
289.

[17] P. Dziurzanski, S. Zhao, M. Przewozniczek, M. Komarnicki, L. S. In-
drusiak, Scalable distributed evolutionary algorithm orchestration using
Docker containers, Journal of Computational Science 40 (2020) 101069.
URL https://doi.org/10.1016/j.jocs.2019.101069

[18] M. G. Valdez, J. J. M. Guervós, A container-based cloud-native archi-
tecture for the reproducible execution of multi-population optimization
algorithms, Future Generation Computer Systems 116 (2021) 234–252.

[19] S. N. Srirama, M. Adhikari, S. Paul, Application deployment using con-
tainers with auto-scaling for microservices in cloud environment, Journal
of Network and Computer Applications 160 (2020) 102629.
URL https://doi.org/10.1016/j.jnca.2020.102629

[20] Enterprise Application Container Platform, accessed: 2021-04-28.
URL https://www.docker.com/

[21] Singularity Documentation, accessed: 2021-04-28.
URL https://sylabs.io/docs/#singularity

[22] Kubernetes: Production-Grade Container Orchestration, accessed:
2021-04-28.
URL https://kubernetes.io/

[23] Fission Documentation, accessed: 2021-04-28.
URL https://docs.fission.io/docs/

[24] C. Vecchiola, M. Kirley, R. Buyya, Multi-Objective Problem Solving
With Offspring on Enterprise Clouds, in: Proceedings of the 10th In-
ternational Conference on HighPerformance Computing in Asia-Pacific
Region (HPC Asia 2009), 2009, pp. 132—-139.

[25] C. Vecchiola, X. Chu, R. Buyya, Aneka: a software platform for .NET-
based cloud computing, High Speed and Large Scale Scientific Comput-
ing 18 (2009) 267–295.

32

[26] K. Meri, M. G. Arenas, A. M. Mora, J. Merelo, P. A. Castillo, P. Garćıa-
Sánchez, J. L. J. Laredo, Cloud-based evolutionary algorithms: An al-
gorithmic study, Natural Computing 12 (2) (2013) 135–147.

[27] W. Kurschl, S. Pimminger, S. Wagner, J. Heinzelreiter, Concepts and re-
quirements for a cloud-based optimization service, in: Computer Aided
System Engineering (APCASE), 2014 Asia-Pacific Conference on, IEEE,
2014, pp. 9–18.

[28] G. Leclerc, J. E. Auerbach, G. Iacca, D. Floreano, The seamless peer
and cloud evolution framework, in: Proceedings of the Genetic and Evo-
lutionary Computation Conference 2016, ACM, 2016, pp. 821–828.

[29] M. Garćıa-Valdez, L. Trujillo, J.-J. Merelo, F. F. De Vega, G. Olague,
The evospace model for pool-based evolutionary algorithms, Journal of
Grid Computing 13 (3) (2015) 329–349.

[30] J.-M. Garćıa-Valdez, J.-J. Merelo-Guervós, A modern, event-based ar-
chitecture for distributed evolutionary algorithms, in: Proceedings of
the Genetic and Evolutionary Computation Conference Companion,
GECCO. ACM, New York, 2018, pp. 233–234.

[31] H.-C. Lu, F. Hwang, Y.-H. Huang, Parallel and distributed architecture
of genetic algorithm on Apache Hadoop and Spark, Applied Soft Com-
puting 95 (2020) 106497.
URL https://doi.org/10.1016/j.asoc.2020.106497

[32] P. Fazenda, J. McDermott, U.-M. O’Reilly, A library to run evolutionary
algorithms in the cloud using MapReduce, in: European Conference on
the Applications of Evolutionary Computation, Springer, 2012, pp. 416–
425.

[33] P. Sachar, V. Khullar, Genetic Algorithm Using MapReduce - A Critical
Review, i-manager’s Journal on Cloud Computing 2 (4) (2016) 41–47.

[34] F. Ferrucci, P. Salza, F. Sarro, Using Hadoop MapReduce for parallel
genetic algorithms: a comparison of the global, grid and island models,
Evolutionary computation 26 (4) (2018) 535–567.

[35] A.S. Foundation, ”Storm”, accessed: 2021-12-06.
URL http://storm.apache.org

33

[36] A.S. Foundation, ”Cassandra”, accessed: 2021-12-06.
URL http://cassandra.apache.org/

[37] P. Salza, F. Ferrucci, F. Sarro, Develop, deploy and execute parallel
genetic algorithms in the cloud, in: Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference Companion, 2016, pp. 121–
122.

[38] H. Khalloof, W. Jakob, J. Liu, E. Braun, S. Shahoud, C. Duepmeier,
V. Hagenmeyer, A generic distributed microservices and container based
framework for metaheuristic optimization, in: Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, 2018, pp.
1363–1370.

[39] rsync - Linux man page, accessed: 2021-04-28.
URL https://linux.die.net/man/1/rsync

[40] Flask’s documentation, accessed: 2021-04-28.
URL https://flask.palletsprojects.com/en/1.1.x/

[41] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: NSGA-II, IEEE transactions on evolutionary
computation 6 (2) (2002) 182–197.

[42] K. O. Stanley, D. B. D’Ambrosio, J. Gauci, A hypercube-based encoding
for evolving large-scale neural networks, Artificial life 15 (2) (2009) 185–
212.

[43] M. G. Epitropakis, V. P. Plagianakos, M. N. Vrahatis, Hardware-friendly
higher-order neural network training using distributed evolutionary al-
gorithms, Applied Soft Computing 10 (2) (2010) 398–408.

[44] R. Jozefowicz, W. Zaremba, I. Sutskever, An empirical exploration of
recurrent network architectures, in: International conference on machine
learning, PMLR, 2015, pp. 2342–2350.

[45] P. Vidnerova, R. Neruda, Evolving Keras Architectures for Sensor Data
Analysis, in: 2017 Federated Conference on Computer Science and In-
formation Systems (FedCSIS), IEEE, 2017, pp. 109–112.

34

[46] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu, Hier-
archical representations for efficient architecture search, arXiv preprint
arXiv:1711.00436 (2017).

[47] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, et al., Evolving deep
neural networks, in: Artificial intelligence in the age of neural networks
and brain computing, Elsevier, 2019, pp. 293–312.

[48] T. Elsken, J. H. Metzen, F. Hutter, Efficient multi-objective neu-
ral architecture search via lamarckian evolution, arXiv preprint
arXiv:1804.09081 (2018).

[49] B. Stojanovic, M. Milivojevic, N. Milivojevic, D. Antonijevic, A self-
tuning system for dam behavior modeling based on evolving artificial
neural networks, Advances in Engineering Software 97 (2016) 85–95.

[50] D. Harrison Jr, D. L. Rubinfeld, Hedonic housing prices and the demand
for clean air, Journal of environmental economics and management 5 (1)
(1978) 81–102.

[51] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learn-
ing: data mining, inference, and prediction, Springer Science & Business
Media, 2009.

35

