
 

 
Abstract: Cardiovascular disease (CVD) is one of 

the leading causes of death in urban areas. Carotid 
artery segmentation is the initial step in the 
automated diagnosis of carotid artery disease. The 
segmentation of carotid wall and lumen region 
boundaries are used as an essential part in 
assessing plaque morphology. In this paper, two 
types of Convolutional Neural Network (CNN) 
architectures are used for segmentation: U-Net and 
SegNet. The models used in this paper are applied 
on 257 ultrasound images containing a transverse 
section of the vessel acquired by ultrasound. 
Ultrasound imaging is noninvasive, completely 
unharming for the patient and a low-cost imaging 
method, but the main challenge when working with 
this kind of images is a very low signal to noise 
ratio and the process of imaging is highly 
dependent on the device operator. Different 
models are tested for various ranges of 
hyperparameter values and compared using 
different metrics. The model presented in this 
paper achieved over 94% Dice Coefficient for wall 
and lumen segmentation when trained during 100 
epochs. 
 

Index Terms: carotid artery, convolutional neural 
network, SegNet, segmentation, U-Net 

1. INTRODUCTION 

AROTID artery disease (CVD) occurs under 
the influence of atherosclerotic narrowing, 

which usually forms most rapidly in the neck 
where the carotid artery is branching [1]. CVD is  

 
This paper is supported by the project that has received funding 

from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 755320 (TAXINOMISIS 
project). This article reflects only the author's view. The 
Commission is not responsible for any use that may be made of the 
information it contains. This research is also funded by Serbian 
Ministry of Education, Science, and Technological Development 
[451-03-9/2021-14/200107 (Faculty of Engineering, University of 
Kragujevac)]. Fourth author also acknowledges the support from 
L'OREAL-UNESCO awards "For Women in Science" in Serbia. 

N. Radovanović, A. Blagojević, T. Šušteršič and N. Filipović is 
with the Faculty of Engineering, University of Kragujevac and 
Bioengineering Research and Development Center (BioIRC), 
Kragujevac, Serbia (e-mail: nradovanovic@kg.ac.rs, 
andjela.blagojevic@kg.ac.rs, tijanas@kg.ac.rs, fica@kg.ac.rs).  

L. Dašić is with Bioengineering Research and Development 
Center (BioIRC), Kragujevac, Serbia (e-mail: 
ldasis345@gmail.com)  

 
manifested by the formation of zones of lipid  
deposits, accumulated macrophages filled with 
lipids in the wall of the blood vessel. The 
deposition process continues and plaque forms. 
Narrowing of the arteries is usually caused by the 
accumulation of plaque, which consists of 
cholesterol, calcium, fibrous tissue and other 
cellular elements that keep forming at the 
microscopic sites of the lesion in the artery wall. 
In its early stages, carotid artery disease often 
shows no signs or symptoms. This condition can 
go unnoticed for a long time until the degree of 
stenosis and/or the shape of the plaque is such 
as to prevent blood flow to the brain, causing a 
stroke. Stroke is the third leading cause of death 
and disability in the world and 80% to 85% of 
strokes are ischemic strokes caused by stenosis 
[2]. A very important step in the prevention of this 
disease is understanding and constant 
monitoring of the changes in the geometry of the 
common carotid artery. Ultrasound examination 
is a non-invasive routine examination used to 
diagnose atherosclerosis. The manual 
examination consists of carotid artery ultrasound 
imaging and interpretation of acquired images by 
an expert. 
 Various systems have been created which can 
automatically segment the carotid artery in 
ultrasound images in a very efficient way, assess 
plaque morphology and single out a region of 
importance for diagnosis [3, 4, 5, 6]. These 
methods involve segmentation of the lumen and 
wall regions, which in combination give a 
segmented carotid artery.  
 Deformable models are shapes or curves on 
an image that can reshape or move under the 
influence of the information gathered from the 
image. These models found various applications 
in digital image processing such as edge 
detection, shape modeling and segmentation [7]. 
Mao et al. [8] developed a model for carotid 
artery segmentation in two-dimensional 
ultrasound images taken in B-mode based on a 
deformable model. The authors used one point 
for initialization of the deformable model, and 
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then based on mathematical morphologic 
operations generated the initial contour. The 
model was trained to fit the contour to the wall 
and lumen contour based on the geometric 
properties of the contour and gradient of the grey 
intensities calculated inside and outside of the 
current contour. Abolmaesumi et al. [9] presented 
their model for real-time segmentation of the 
carotid artery on the sequence of images 
acquired by ultrasound. They used the A* 
algorithm modified by temporal Kalman filter for 
tracking the center of the carotid artery through 
time, and spatial Kalman filter for contour 
estimation. Various methods have been also 
developed for the three-dimensional ultrasound 
image segmentation based on a geometrically 
deformable model [10, 11]. 
 Machine learning and deep learning methods 
are state of the art for digital image 
segmentation. Xie et al. [12] used U-Net 
convolutional neural network for carotid artery 
lumen segmentation in the ultrasound images 
containing the longitudinal section of the carotid 
artery and achieved 91.9-96.6% accuracy 
depending on the carotid artery region that was 
segmented. Jiang et al. [13] used a modified U-
Net architecture for carotid artery segmentation in 
the ultrasound images containing the transverse 
section of the artery. The authors used 3 different 
U-Net models along with SAN neural network for 
averaging the segmentation results given by 
three models and achieved a 70% Dice 
coefficient. Our goal is to improve the results 
achieved by current methods by extensive neural 
network architecture modifications along with 
preprocessing and postprocessing methods. 
 In this work, we present and compare the 
results achieved by convolutional neural network 
models based on U-Net and SegNet architecture 
for segmentation of lumen and wall regions of the 
carotid artery in two-dimensional greyscale 
ultrasound images. 

2. MATERIALS AND METHODS 

 The methodology consists of data 
preprocessing, model creation, and validation of 
created methods. 

A. Preprocessing the Data 

The dataset consists of original images 
acquired by an ultrasound exam and labels made 
by experts for the lumen and wall regions 
separately. The data was collected during the 
TAXINOMISIS project [14] by the University of 
Belgrade, Faculty of medicine, from 108 patients. 
The images in the dataset contain different 
segments of the artery in both the transverse and 
longitudinal sections. Every image in the dataset 

is anonymized for the data protection and 
security of the patients. 

Ultrasound examination is well established as 
a completely safe, non-invasive method for 
atherosclerosis diagnosis, but there are many 
issues when working with this kind of images in 
digital image processing [15]. Ultrasound image 
acquisition is completely operator dependant and 
inadequate settings of the device can lead to 
poor image quality and wrong interpretation. 
Ultrasound images are usually degraded by 
multiplicative noise resulting in low image quality. 
These images can contain a lot of shadows 
which can obscure the regions of interest and 
have poor contrast that makes it even harder to 
extract important data [16]. 

Firstly, we manually separated only the images 
containing the transverse section leaving a total 
of 257 images for both lumen and wall 
segmentation. Since the examination was done 
in B-mode and Color mode simultaneously and 
the images contained some unusable data for 
segmentation like frequency and the gain of the 
ultrasound device, we had to crop only the 
greyscale ultrasound image and resize the 
images to the 256x256 resolution to be forwarded 
as input to the model. An example of the original 
image is shown in Figure 1. 

 

 
Figure 1: Original image. 

 Segmentation information delivered by the 
experts were obtained in the textual form of the 
spatial coordinates of the polygon that represents 
the lumen or wall region contour. For 
segmentation masks creation these polygons are 
loaded over the original image and resized along 
with it. Input image, expert contour, and 
generated mask are shown in Figure 2. For 
SegNet two masks are generated, one for 
marking the carotid artery and one for marking 
the background. 
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Figure 2: Examples of a) an original image, b) lumen (upper) 

and wall (lower) contours marked by an expert and c) 
generated masks. 

 Some images in the dataset have a very poor 
contrast that makes it very hard for an expert and 
an automatic segmentation tool to extract a 
region of interest (ROI). To reduce the effect of 
this problem and to improve the training quality of 
the model, a contrast improvement technique is 
implemented. We used CLAHE (Contrast Limited 
Adaptive Histogram Equalization) [17]. CLAHE is 
based on Adaptive Histogram Equalization that 
works by calculating multiple histograms for 
different regions of the image and then modifying 
them by stretching out the intensity distribution 
thus improving the contrast of every local region 
of the image. The main problem with this method 
is that the noise in the homogenous area of the 
image will be amplified which is always present in 
the ultrasound images. CLAHE method 
diminishes this problem by limiting the contrast 
gain to some predefined value. In Figure 3 the 
contrast improvement on the original image from 
the dataset is clearly visible when CLAHE 
method with 8x8 sized grid and clip limit 2 is 
used. 
 

 
Figure 3: Contrast improvement using CLAHE method 

B. U-Net Model 

Two different models for wall and lumen 
regions are created. The architecture was based 
on [18], but it was modified in terms of finding the 
optimal hyperparameters. The modifications of 
the original architecture resulted in adding three 
additional blocks in the encoder and decoder part 
of the network. Additional block in the encoder 
part of the network consists of two convolutional 
layers with 3x3 kernels with a max-pooling layer 

with a 2x2 kernel following them. After each 
convolutional layer in the block, the ReLU 
activation function is applied. The additional 
blocks in the decoder part correspond to the 
blocks in the encoder part but with a 
deconvolutional layer for upsampling instead of 
max-pooling layer. These blocks are added at the 
start of the encoder part in the original 
architecture, that is after the last layer in the 
decoder part. In the original architecture, the 
convolutional layers in the first block have 64 
kernels, doubling in every next block up to 1024 
in the base of the network. The additional blocks 
have 8, 16 and 32 kernels. In addition, Dropout 
with probability 0.1 after every block in the 
encoder part is applied, and with 0.2 probability 
after every block in the decoder part to reduce 
overfitting of the model. The resulting architecture 
after modifications is shown in Figure 4.  

 

 
Figure 4: U-Net based architecture used for segmentation 

C. SegNet model 

Initially, the model was constructed based on 
[19]. This model was very prone to overfitting in 
the segmentation of both the lumen and outer 
wall regions and the training process was very 
time-consuming. We started by simplifying the 
architecture since the model already had batch 
normalization layers, so inserting the additional 
dropout layers made no difference. Simplification 
of the architecture resulted in removing 
convolutional layers from each block. Еаch block 
of the encoder part has one convolutional layer 
followed by ReLU activation function. After that, 
one batch normalization layer and one max-
pooling layer that stores the indices of the 
maximal elements are added. Blocks of the 
decoder part of the network have a similar 
structure with unpooling layers instead of max-
pooling layers that use the indices calculated in 
the max-pooling layer of the corresponding block 
in the encoder part. One block was also removed 
from both encoder and decoder parts of the 
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network resulting in an architecture shown in 
Figure 5. 

 

 
Figure 5: SegNet based architecture 

D. Post-processing 

We applied a post-processing procedure to 
reduce some of the false-positive pixels given by 
SegNet segmentation. The outputs of the SegNet 
model initially contained a lot of noise and 
disconnected components. The erosion and 
dilation operations were applied to the outputs. 
Firstly, erosion operation with a 3x3 sized kernel 
is applied to remove noisy parts and 
disconnected components except the one that is 
the wall or lumen region of the vessel. Because 
erosion reduced the area of the segmented wall 
and lumen region, dilation with 5x5 sized kernels 
is applied to expand the segmented area. We 
found that this technique significantly increased 
segmentation accuracy. 

3. RESULTS AND DISCUSSION 

Both models for wall segmentation and lumen 
segmentation with U-Net architecture were 
trained for 100 epochs and for 150 epochs for 
models with SegNet architecture. The batch size 
was 8 for both architectures and the Adam 
method for stochastic optimization was used. The 
training was done using Tensorflow and ran on 
Intel i3-9100F quad-core CPU.  

The models were trained on 231 images and 
tested on the remaining 26 images. Binary cross 
entropy metric was used to evaluate the U-Net 
models during training, and categorical cross-
entropy for SegNet models. Binary cross-entropy 
loss values during training for each epoch when 
U-Net is trained for lumen and wall segmentation 
are displayed in Figure 6 and Figure 7 
respectively. 

 

 
Figure 6: Loss function during training of U-Net model (lumen 

segmentation) 
  

Loss function has two spikes (around epochs 
40 and 80) when the U-Net model was trained for 
wall segmentation. This can happen due to 
batches containing unlucky data for optimization, 
e.g., contours with a deformed shape or a very 
small contour on the image.  
 

 
Figure 7: Loss function during training of U-Net model (wall 

segmentation) 
 

Categorical cross-entropy loss values during 
training for each epoch when U-Net is trained for 
lumen and wall segmentation are presented in 
Figure 8 and Figure 9 respectively. 

 

 
Figure 8: Loss function during training of SegNet model 

(lumen segmentation) 
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Figure 9: Loss function during training of SegNet model (wall 

segmentation) 
 
 Post-processing of the results improved 
segmentation given by the SegNet model by a 
significant margin i.e. from 62% Dice to 81% for 
wall segmentation and from 59% to 79% for 
lumen segmentation. Improvements after post-
processing are visible in Figure 10. 
 

 
Figure 10: Input image (top-left), manual segmentation (top-

right), SegNet output (bottom-left), Output after post 
processing (bottom-right). 

 
Testing results of the models on the 26 images 

that were not presented during training for both 
wall and lumen segmentation are shown in Table 
1. SegNet results are calculated after post-
processing of the outputs given by models. The 
models are evaluated using Dice similarity 
coefficient and IoU (Intersection over Union) 
metrics. 

 
Table 1: Dice coefficient and IoU values for U-Net and 

SegNet models 

 U-Net SegNet 
 Dice IoU Dice IoU 

Wall 94.91% 84.72% 81.23% 74.12% 
Lumen 94.22% 77.90% 79.11% 70.08% 

 
 

U-Net based model performs significantly 
better without any post-processing for both wall 
and lumen segmentation. The example of 
segmentation done by U-Net model is shown in 
Figure 11. 

 

 
Figure 11: Unet segmentation example (original image, lumen 

mask and U-Net model output), 
 
Segmentation outputs for wall and lumen 

regions can be overlapped to extract the 
important area which can be used for plaque 
assessment (Figure 12). 

 

 
Figure 12: Carotid artery extraction. 

4. CONCLUSIONS 

The main purpose of this work was to create 
an automatic segmentation system for both 
lumen and wall regions of the carotid artery from 
two-dimensional ultrasound images with 
transverse sections. Segmented wall and lumen 
regions are then overlapped, thus extracting the 
region of interest which usually takes up to 5% of 
the original image area. The extracted region can 
be used by an expert or another automated 
system for plaque assessment to detect the signs 
of CVD early on and prevent catastrophic events 
for the patient. 

Future work will be focused on creating an 
automatic plaque segmentation system from the 
extracted carotid artery. 
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