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Abstract: Atherosclerotic plaque deposition 
within the coronary vessel wall leads to arterial 
stenosis and if not adequately treated, it may 
potentially have deteriorating consequences, such 
as a debilitating stroke, thus making early 
detection of the most importance. The manual 
plaque components annotation process is both 
time and resource consuming, therefore, an 
automatic and accurate segmentation tool is 
necessary. The main aim of this paper is to present 
the model for identification and segmentation of 
the atherosclerotic plaque components such as 
lipid core, fibrous and calcified tissue, by using 
Convolutional Neural Network on patch-based 
segments of ultrasound images. There was some 
research done on the topic of plaque components 
segmentation, but not in ultrasound imaging data. 
Due to the size of some plaque components being 
only a couple of millimeters, we argue that training 
a neural network on smaller image patches will 
perform better than a classifier based on the whole 
image. Besides the size of components, this 
decision is motivated by the observation that 
plaque components are not uniformly distributed 
throughout the whole carotid wall and that a 
locality-sensitive segmentation is likely to obtain 
better segmentation accuracy. Our model achieved 
good results in the segmentation of fibrous tissue 
but had difficulties in the segmentation of lipid and 
calcified tissue due to the quality of ultrasound 
images.  
 

Index Terms: carotid atherosclerotic plaque 
deposition, convolutional neural network, patch-
based segmentation, plaque composition, 
ultrasound 
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1. INTRODUCTION 

ORONARY artery stenosis (CAS) is one of the 
most occurring diseases that seriously 

threatens human health [1].  Early detection of 
this disease is very important, because if not 
adequately treated, it may potentially have 
deteriorating consequences, such as a 
debilitating stroke. Although this disease is often 
presented in the older population, there is an 
increasing number of young individuals that are 
at risk of premature CAS caused by poor life 
choices, obesity and other risk factors [2,3]. Many 
young people with early disease are at risk and 
consequently more patients are being treated at 
younger ages, requiring a direct assessment of 
treatment response [4]. 
 The main cause of CAS is a deposition of 
atherosclerotic plaque within the coronary vessel 
that significantly reduces blood flow. Carotid 
atherosclerotic plaque deposition over time often 
leads to stroke and Transitional Ischemic Attack 
(TIA). Stroke represents the third leading cause 
of death in North America with a high mortality 
rate [5]. These serious accidents occur when 
atherosclerotic plaques in the arteries suddenly 
rupture, leading to the obstruction of the blood 
flow to the heart or the brain [6]. Although it was 
thought that evaluation of the Intima-Media 
Thickness (IMT) of the Common Carotid Artery 
(CCA) is the most useful tool for the investigation 
of preclinical atherosclerosis, it is now generally 
accepted that carotid plaque composition is a 
phenomenon distinct from IMT and has a 
stronger association with cardiovascular disease 
events [7]. The consensus is that rupture-prone 
vulnerable plaques are characterized by a thin or 
ruptured fibrous cap and a large lipid core, with a 
presence of some amounts of calcified tissue [8]. 
This is the reason that identification of lipid, 
fibrous, and calcification atherosclerotic plaque 
components are essential to pre-estimate the risk 
of cardiovascular disease and stratify patients as 
a high/low risk. This would allow patients to be 
treated in a preventive and adequate manner [9]. 
 So far, most of the computational techniques 
for plaque tissue characterization have been 
developed for multi-contrast MRI. Besides MRI, 
computed tomography angiography (CTA), 
nuclear imaging and multi-detector computed 
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tomography are used for detection. The problem 
with all of the mentioned imaging modalities is 
the high cost and scanning limitations that make 
its use in daily clinical practice limited. On the 
other hand, B-mode ultrasound (US) is widely 
used for the detection of artery stenosis due to its 
ease of use, availability and drastically lower 
cost. Because of mentioned advantages, the goal 
of this research was to develop a reliable tool for 
identification and segmentation of the 
atherosclerotic plaque components, by applying 
Deep Learning methods on US imaging data of 
carotid artery. 
 There are various works done on the topic of 
plaque segmentation that approach the problem 
in different ways on different imaging data. 
Athanasiou et al. [10] achieved 0.81 and 0.71 
Jaccard similarity coefficients for calcification and 
lipid components, respectively. They used 
random forests algorithm for the classification of 
features that were extracted from Optical 
coherence tomography (OCT) imaging data. 
Rezaei et al. [11] proposed a set of algorithms for 
segmentation, feature extraction, and plaque type 
classification. A hybrid model using the fuzzy c-
means (FCM) and k-nearest neighbor (KNN) 
algorithm was proposed to accurately segment 
the plaque area of intravascular ultrasound 
(IVUS) images. On MRI images, Clarke et al.  
[12] achieved respectable results using a 
minimum distance classifier algorithm. On the 
other hand, Hofman et al. [13] tested multiple 
supervised learning algorithms on MRI images, 
but low accuracy for calcification components has 
been found in every model. 
 Unfortunately, there isn’t a lot of research done 
for plaque segmentation on ultrasound images of 
the carotid artery, due to their low image quality 
with incorporation of significant noise, artifacts 
etc. [14]. This is the reason why its role in 
vulnerable plaque assessment is overlooked, as 
most reviews focus on the limitations of Intima-
Media thickness (IMT) [15-17]. Some research 
papers accomplished localization of plaque 
segments but were not able to classify plaque 
composition [18,19]. Lekadir et al. [20] presented 
a convolutional neural network (CNN) model for 
automatic classification of plaque composition 
that showed good accuracy. The problem with 
their approach is the inability of CNN model to 
work with US image of the whole carotid wall, but 
with a patch image of each plaque segment 
individually. This is inconvenient because it 
requires a lot of manual plaque segments 
extraction. Also, due to the fact that their model 
only performs classification and not 
segmentation, there is a lack of clear visual 
representation of the carotid wall plaque 
constitution. Nevertheless, this paper and 
numerous other researches showed that 
convolutional neural networks are the state-of-
the-art in image segmentation.  

 In this paper, we describe the use of a deep 
learning CNN (U-net) for the identification of lipid, 
fibrous and calcification atherosclerotic plaque 
components on small patches of ultrasound 
images of the carotid artery wall, instead of 
working with the whole US image. These 
segmented patches are later reconnected in a 
way that shows plaque segmentation on an 
image as a whole. Reasons for using patch-
based segmentation are great segmentation 
results on different imaging data that were 
achieved in some previous research papers 
[21,22]. This is especially true when the size of 
the imaging dataset is extremely small, which is 
often the case with biomedical images [23]. 
Although patch-based segmentation is usually 
used on high-resolution imaging data [24], due to 
the small size of some plaque components (some 
calcification components are just a couple of 
millimeters in size), we argue that doing 
segmentation of US image in smaller patches 
would result in better results than what would be 
achieved by segmenting image as a whole. 

2. MATERIALS AND METHODS 

A.  Dataset 

In order to develop and validate a tool for 
identification and segmentation of the 
atherosclerotic plaque components on US 
images, a dataset of original and annotated US 
images was needed. Imaging data were collected 
during TAXINOMISIS project, from Ethniko kai 
Kapodistriako Panepistimio Athinon, Greece and 
Faculty of Medicine, University of Belgrade [25]. 
The dataset consists of 108 patients who 
underwent the US examination. Each patient had 
captured the common carotid artery, the 
branches and carotid bifurcation in transversal 
and longitudinal projections. It should be noted 
that only CCA images in transversal projections 
were used in the dataset. The examination was 
performed in B mode and Color doppler mode, so 
the dataset contained these types of images. 
Also, all imaging data were anonymized 
respecting the data protection and safety.  

During the preprocessing of the dataset, the 
US images were annotated together with the 
clinical experts, enabling efficient training, testing 
and validation of developed tools for detection 
and segmentation of atherosclerotic carotid 
artery. Two observers were participating in the 
image annotation. Image annotation has included 
labeling of atherosclerotic plaque components 
such as lipid core, fibrous and calcified tissue. All 
patients included in the dataset have fibrous 
plaque component as dominant one among other 
components. 

B. Image Preprocessing 

The image preprocessing module is composed 
of steps shown in Figure 1. 

57



 

 

 

Figure 1:Ultrasound imaging data preparation process 
workflow of the image preprocessing module 

We are only interested in a region of 
ultrasound image where deposition of plaque 
takes place, which is, in this case, Media of the 
carotid artery wall. This is the reason why it is 
important to remove tissue that is surrounding the 
carotid artery in the imaging data and only extract 
the wall of the carotid. To perform Media 
segmentation, two different CNN models were 
used to segment the lumen and adventitia of the 
carotid artery. As input data for these two 
models, observers manually annotated lumen 
and adventitia of the carotid artery. An example 
of an original ultrasound image with lumen and 
adventitia annotated images is shown in Figure 2. 

 

 
 a)                          b)                        c) 

Figure 2: Original ultrasound image (a), annotated carotid 
lumen area (b), annotated carotid adventitia area (c) 

 
After successful segmentation, outputs of 

these CNN models are combined in a way that 
would construct imaging data that only shows 
carotid Media and thus gives a clear view of 
plaque deposition within it. 

With Media extracted, pictures were left with a 
large number of background pixels. This is 

extremely unfavorable, because it leads to a 
highly imbalanced dataset. For this reason, the 
excess background was cropped out, leaving 
only Media in the picture as shown in Figure 3b. 

With Media of carotid artery wall extracted, 
images were sent back to observers who 
annotated different plaque components. Images 
with plaque annotated are shown in Figure 3c. 

 

 
       a)        b)       c) 

Figure 3: Original ultrasound image (a), extracted 
carotid artery Media (b), annotated plaque (c) 

 
Unfortunately, due to the process of plaque 

components annotation being so time-consuming 
and high criteria for the selection of good 
samples, the dataset consists of only 67 
annotated images. This was one of the reasons 
for using a patch-based segmentation approach 
with U-net as a convolutional neural network 
model of choice. Images and corresponding 
masks were split into patches of size 16x16 
pixels resulting in a dataset of 9998 total patches.  
It should be noted that we tried to work with 
larger patches of size 32x32 pixels, but this didn’t 
show any improvement in segmentation results. 
The total dataset was split into two subsets: 90% 
of samples were part of the training dataset, 
while the remaining 10% represented the test 
dataset. 
 
C.  Methods 
 

Multi-class image segmentation (or pixel 
labeling) aims to label every pixel in an image 
with one of a number of classes. In this project, 
the problem of atherosclerotic plaque 
components segmentation is defined as a 
multiclass segmentation model, where four 
classes should be detected in images: 
background (area outside the segmented Media 
showed in Figure 3c), fibrous, calcified, and lipid 
atherosclerotic plaque components. 

Image input size was 16x16 pixels. Pixel map 
for the model was defined as follows:  
 
    background (0) is annotated with dark blue 

color,  
    fibrous plaque (1) is annotated with light blue 

color,  
    lipid plaque (2) is annotated with yellow color, 
    calcified plaque (3) is annotated with red 

color. 
 

We used U-net architecture in the plaque 
components segmentation model as many 
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previous reports showed that U-net achieves 
great results for the segmentation task on 
biomedical imaging data [26].  The original U-net 
model described by Ronnerberger et al. [26] was 
modified in a way that gives the best result on our 
dataset. The U-net model consists of an encoder 
to extract image features and a decoder to 
upsample feature maps to their original size. 

 

 
Figure 4: U-net model used for plaque components 

segmentation task 
 
 As seen in Figure 4, our U-net model is simpler 
than the original U-net model. The left branch is 
the encoder with five blocks, where each block 
contains two convolutional layers with a kernel of 
size 3x3 pixels followed by a 2x2 max-pooling 
layer. Encoder blocks use convolutional layers 
with 16, 32, 64, 128 and 256 filters respectively. 
The right branch shows a decoder with a 
structure symmetric to the encoder path. In each 
decoder block, 2×2 upconvolution and skip 
connection are followed by two more 
convolutional layers with 3×3 filters, and the last 
decoder block produces the segmentation mask 
with 1×1 convolution and sigmoid activation 
function. For each convolutional layer activation 
function of choice is a rectified linear unit (ReLU). 
All convolutional layers are padded so that the 
resulting segmentation map preserves the same 
height and width. In this way, the resulting 
segmentation map has the same resolution as 
the input image. Also, every other convolutional 
layer was followed by a dropout layer as a way of 
overfitting prevention. 
 For the training phase, we performed 100 
epochs, with batch size 16. Optimizers SGD, 
Adam and RMSprop were tested, but the results 
were fairly similar, so Adam was used in the final 
model. On the other hand, the choice of a loss 
function had a big impact on results. Categorical 
cross-entropy loss, which is often used in both 
multiclass classification and segmentation 
problems, had trouble with this dataset due to 
highly imbalanced classes. This imbalance is 
shown in Figure 5 where background and fibrous 
tissue constitute more than 95% of the image. 

 
Figure 5: Number of pixels for each class present on one 

image sample 
 

To handle this imbalanced data, a custom 
weighted loss function that combines categorical 
focal and dice losses was used. Weights for each 
class that gave best results are: [0.37 0.93 6.30 
7.41]. Weights were estimated according to the 
number of pixels for each class, resulting in 
classes 2 and 3 having larger weights values due 
to a lower number of pixels belonging to these 
two classes. 

3. RESULTS AND DISCUSSION 

For evaluation of the model, Jaccard similarity 
coefficient (JSC) is used, as is the case in 
segmentation tasks. JSC is computed as 
Intersection over Union between segmentation 
mask of one sample predicted by the U-net 
model and annotated image (ground truth) of the 
same sample. JSC values are shown in Table 1. 

 
Table 1. Mean and class-wise JSC scores 

 TEST DATASET 
Mean  
JSC 

53.75% 

Background class 
JSC 

95.94% 

Fibrous plaque class 
JSC 

67.34% 

Lipid plaque class 
JSC 

25.17% 

Calcified plaque class 
JSC 

26.54% 

 
As seen from the results, it was clear that the 

U-net model struggled to correctly segment lipid 
and calcified plaque components, while the 
fibrous component was mostly correctly 
segmented. This is due to previously mentioned 
imbalanced classes. Looking at the complete 
image created by connecting segmented patches 
presented in Figure 6c, another problem can be 
spotted. Instead of a couple of large segments of 
different plaque components (as seen on the 
annotated image in Figure 6b), the predicted 
segmented mask is filled with a lot of smaller 
segments. This is likely due to the small size of 
patches. It seems that splitting an image into 
patches also causes the loss of important 
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features in the process. Larger patches of size 
32x32 pixels were tested as well, but results did 
not improve.  
 

 
   a)        b)       c) 

Figure 6: Original ultrasound Media (a), annotated plaque 
components (b), U-net segmentation mask (c) 

  
 Since there isn’t other research done on the 
topic of plaque components segmentation in 
ultrasound imaging data, it is hard to compare 
results, but looking at JSC scores and 
segmented masks, it was clear that with the 
current ultrasound dataset, patch-based 
segmentation was not the right approach. It 
should be noted that some of the previously 
discussed works achieved better results but on 
different imaging data (MRI, OCT) with much 
larger datasets. 

4. CONCLUSION 

We developed a deep learning method for the 
segmentation of different plaque components of 
the carotid artery in ultrasound imaging data. 
Instead of using the whole image as input data, a 
developed U-net model was implemented to work 
on smaller patches that were then reconnected to 
display the segmentation mask of the whole 
ultrasound image. Unfortunately, it was shown 
that by splitting images into patches that are too 
small, deeper features of the image were lost 
along the way. This results in segmentation 
masks that are not accurate enough. There are 
strong indications that, with ultrasound images of 
higher resolution, bigger patches, that still contain 
enough features, should be extracted. 

Further research will focus on developing a 
method that would segment ultrasound images 
as a whole, instead of splitting them into patches. 
This way, important features would not be lost. 
The limitations of a small dataset will be handled 
in further research as well. 
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