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Abstract— This paper presents development of an automatic 

diagnostic tool based on machine learning that analyses 

cardiac ultrasound images of patients with cardiomyopathy 

in several views (4 chamber apical, 2 chamber apical and M 

mode view). The main aim of the developed tool is to perform 

automatic left ventricle (LV) segmentation and to extract 

relevant parameters in order to estimate the severeness of 

cardiomyopathy in patients. Dataset included 1809 images 

with apical view and 53 images with M view from real 

patients collected at three Clinical Centers in UK and Serbia. 

Separate methodologies have been implemented for 

analyzing apical and M mode view, including U-net for 

segmentation, after which parameters such as left ventricular 

length (LVL), internal dimension (LVID), posterior wall 

thickness (LVPW) and interventricular septum thickness 

(IVS) are calculated, both in systole and diastole. The tool has 

also been implemented on the platform with a user-friendly 

interface, which allows these two modules to be used either 

separately or combined. In order to validate the model and 

compare the results between gold standard and developed 

methodology, two cardiology specialists have independently 

manually annotated LV and measured relevant parameters. 

The results show that the model achieves dice coefficient of 

92.091% for segmentation and average root mean square 

error (RMSE) of 0.3052cm for parameter extraction in apical 

view images and average RMSE of 1.3548cm for parameter 

extraction in M mode view. Fully automatic detection of 

cardiomyopathy in cardiac LV ultrasound images can help 

clinicians in supporting diagnostic decision making and 

prescribing adequate therapy. 

I. INTRODUCTION 

Ultrasound echocardiography has the highest priority in 

use among medical images that are used to describe and 

visualize the left ventricular (LV) for the purpose of 

evaluation of cardiac ventricles [1]. For example, dilated 

cardiomyopathy is described in ultrasound images as a 

large left ventricle that loses the capability to pump blood 

to the rest of the body. [2]. This condition can lead to heart 

damage and death, and therefore requires a quick and 

accurate diagnosis. For setting up the diagnosis ultrasound 

device is used. An ultrasound probe that passes over the 

heart area creates an ultrasound image that can be 

displayed at different angles and in different typical views, 

such as apical 4-chamber, apical 2-chamber, M-mode, etc. 

On one hand, apical view (separately in diastole and 

systole phases are necessary to estimate Left Ventricular 

Length, Diastolic, 2D - LVLd [cm] and Left Ventricular 

Length, Systolic, 2D – LVLs [cm] (subscript d and s 

correspond to diastole and systole phases) [3]. On the other 

hand, M-mode is crucial in estimating Interventricular 

Septum Thickness, Diastolic, M-mode - IVSd [cm], LV 

Internal Dimension, Diastolic, M-mode - LVIDd [cm], 

Left Ventricular Posterior Wall Thickness, Diastolic, M-

mode - LVPWd [cm], Interventricular Septum Thickness, 

Systolic, M-mode - IVSs [cm], LV Internal Dimension, 

Systolic, M-mode - LVIDs [cm], Left Ventricular 

Posterior Wall Thickness, Systolic, M-mode - LVPWs 

[cm] [3]. 

However, due to less clearly defined borders in image, 

automatic LV segmentation using 2D echocardiographic 

images is a very challenging task. It is common practice 

that an experienced cardiologist manually extracts a region 

of interest (ROI), but this is a time-consuming and error-

prone task [4]. For this reason, this research deals with the 

problem of left ventricular segmentation on ultrasound 

images using the dataset from patients with 

cardiomyopathy and automatic extraction of parameters 

that are needed to assess the patient's condition. These 

methods can be used to develop automated diagnostic tools 

that can help doctors in making accurate decisions and 

diagnoses. 

A. Related work 

Some of the main problems in developing an algorithm 

for automatic LV segmentation are specific characteristics 

of ultrasound images such as low signal-to-noise ratio, 

weak echoes, more than one anatomical structure in the 

image, etc. [1]. As a result, many authors have attempted 

to solve the segmentation problem using a variety of 

approaches, including active shape, active contours, layout 

methods, and machine learning methods [5, 6, 7, 8]. The 

literature shows that these approaches are not so sensitive 

to the initial conditions, and their main limitations are the 

image conditions. In contrast, deformable templates are 

robust to image conditions, however, they are very 

sensitive to initialization conditions [9]. 
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In order to overcome some of the shortcomings of the 

mentioned traditional methods, we will consider deep 

neural networks. In terms of image segmentation, Oktay et 

al. [10] presented the usage of neural networks in 3D left 

ventricular segmentation. Oktay et al. solved the problem 

of small training data by regularizing training with an 

anatomical 3D model of the heart, which was made based 

on a large database of manually annotated heart magnetic 

resonance imaging. Carneiro et al. [4] used the deep 

learning method which decouples the rigid and nonrigid 

classifiers, in order to perform LV segmentation in 

echocardiographic images using a 4-chamber view and get 

valuable results. Zyuzin et al. [11] implemented U-net to 

segment LV using 2D 4-chamber view echocardiography 

images. Also, usage of pre-trained U-net was proposed by 

some authors such as Smistad et al. [8]. They propose pre-

trained U-net and the Kalman filter, then compare the 

obtained results. The results showed that the Dice 

coefficient of Kalman filter and U-net were similar, but 

Hausdorff distance of the proposed U-net method was 

remarkably better. On the other hand, the application of U-

net in the LV segmentation on images of patients with 

cardiomyopathy cannot be found in the literature, so it 

cannot be said that previously proposed methods in 

literature will successfully segment LV in images, mainly 

because of the asymmetrical pattern of LV hypertrophy 

which is present in patients with cardiomyopathy. 

On the other side, regarding the automatic segmentation 

and extraction of relevant parameters on using M-mode 

view, with the exception of two papers, no research has 

dealt with the automatic detection of LV borders on M-

mode images. Unser et al. propose a method for automatic 

extraction of myocardial borders in M-mode 

echocardiograms by using several step processing 

algorithms - preprocessing for noise reduction, then 

enhancement of border characteristics using adequate 

filters and final extraction of borders by searching for 

optimal paths along the time axis [12]. However, they 

analyze typical M-mode echocardiograms from healthy 

persons, as well as they do not report the number of 

patients nor some statistical measures such as accuracy, 

false positive rate, true negative rate etc. The second, more 

recent paper, proposes a semiautomatic contour detection 

in M-mode images [13]. Their model starts with a manual 

candidate contour after which each candidate contour is 

moved towards the desired borders, behaving as active 

contours. Active contours method is known to be not so 

effective in the presence of higher level of noise, and it is 

uncertain how this approach would behave if the images 

are tested on patients and contain larger amount of noise.  
With all this said, it is clear that there is a need for a fully 

automatic LV segmentation and automatic extraction of the 
parameters of interest. A fully automatic LV segmentation 
system has the potential to streamline the clinical work-
flow and reduce the inter-user variability. 

II. MATERIALS AND METHODOLOGY 

A. Datasets 

During 2019 and 2020, we collected data from 12 

patients in the Institute of Cardiovascular Diseases, 

Vojvodina – Sremska Kamenica (ICVDV) and from 6 

patients in Newcastle University and Newcastle upon Tyne 

Hospitals NHS Foundation Trust (UNEW). In total, for the 

2D image ultrasound apical view we had 1809 recordings. 

The set of 1602 images was randomly split into two 

subsets, for training and validation (1360 for training and 

242 for validation) and the remaining 207 images were 

used as a testing set (without data augmentation). In order 

to increase the number of images for training, data 

augmentation was performed using mirroring effect in the 

training and validation phases. Validation data were used 

for fine-tuning the hyperparameters and for providing an 

unbiased evaluation of a trained model. It should be 

underlined that sets for validation and testing are different. 

The testing set includes only unseen real images, there are 

no artificially augmented images.  In addition, 53 patients 

were collected from Clinical Centre Kragujevac, Serbia 

(CCKG), with manually extracted discussed parameters of 

interest for the purposes of setting ground truth for 

comparison with the automated way. As a result, 53 

images with M-mode view were available as training 

dataset in automatic extraction of parameters for this view. 

For all sets, image resolution was 1016 x 708 pixels and 

all the images were in DICOM format. The ethics 

committee gave consent for research, as well as the 

research participants were informed about the study and 

approved the data uses.  

In order to account for the inter-observer variability, two 

expert radiologists blindly completed LV manual 

segmentations. When using the automatic segmentation 

process, the results were compared with the mean of the 

segmentation output by experts. Since the inter-observer 

variability was shown to be statistically significant in 

manual segmentation, automatic segmentation emerges as 

the solution to reduce the variability. 

B. Proposed methods 

Methodology will be divided in two sections – section 

on methods used to analyze apical view and section on 

methods used to analyze M-mode view. Full workflow is 

shown in Fig. 1. DICOM image format is used as the input 

to the system. User friendly application will have the 

possibility for the user – doctor or a researcher to choose 

which view is represented by the image and should be 

further analyzed. Three possibilities are given – 4-

chamber, 2-chamber, or M-mode (Figure 1). Proposed tool 

will further analyze the images depending on the view: 

1. Apical 4-chamber/ Apical 2-chamber view analysis will 

include segmentation of the LV using U-net previously 

trained and calculating bordering rectangle, based on 

which parameters LVLd[cm] and LVLs[cm] A4C/A2C 

will be calculated. User should define if the view 

represents the systolic or diastolic phase.  

2. M-mode view analysis will include bordering of the 

characteristic areas of LV – septum in diastole phase, 

diameter in diastole, LV wall in diastole, septum in 

systole, diameter in systole and LV wall in systole. 

Based on these areas, parameters IVSd[cm], IVSs[cm], 

LVIDd[cm], LVIDs[cm], LVPWd[cm], LVPWs[cm] 
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will be calculated. User should define that the view is 

M-mode. 

 

Figure. 1. Workflow of the proposed methodology 

Diving more into analysis of 4-chamber view and 2-

chamber view analysis, it was mentioned that U-net is used 

to segment LV in ultrasound images. Standard U-net 

neural network architecture for segmentation was used. 

This architecture has proven to be applicable to various 

medical image segmentation issues [1, 14]. Proposed U-

net included two 3x3 convolutional layers and 2x2 max 

pooling in contraction path and consecutive 2x2 up-conv 

and two 3x3 convolutional layers in expansion path. In 

order to recover some of the fine-grained features cross-

over connections are used. After removing scale and 

patient data from the image, resulting images 708 x 708 

pixels size. Input to the network were images 128×128 

pixels size, meaning that both original input, as well as 

target mask images, were resized to this size. We have also 

tried analysis with higher resolution (256 x 256), but it was 

an overdemanding task for the computer and the results did 

not get any improvement. Additionally, as only one region 

in the image is the region of interest, a reduction in image 

resolution is justified. Also, ultrasound images that were 

used as masks were binarized. The training was performed 

for 10 epochs, using early stopping, with a regularization 

factor of 0.05 and learning rate of 0.001. The final output 

is a binary segmented image of LV. For the performance 

evaluation of the algorithm, we have used the dice 

coefficient D [15]. After segmentation, output image is 

forwarded to the system for drawing the bordering 

rectangle. The output result corresponds to the longer side 

length, which has a meaning of LVLd[cm] and LVLs[cm] 

A4C will. The same methodology is applied for the way 2-

chamber view, except the final outputs are LVLd[cm] and 

LVLs[cm] A2C.  

As far as the methodology for M-mode analysis is 

concerned, we firstly used adaptive histogram equalization 

called contrast limited adaptive histogram equalization to 

improve the image contrast. After this template matching 

will be introduced. It should be emphasized that for every 

new dataset, the template should be extracted manually 

just once for that dataset – that specific ultrasound device. 

After this, no further manual action is required. Found area 

matching the template will be extracted on the analyzed 

image and Canny edge detection will be performed 

subsequently. Output values after binarization are 

IVSd[cm], IVSs[cm], LVIDd[cm], LVIDs[cm], 

LVPWd[cm], LVPWs[cm]. Due to great deal of noise 

present in ultrasound images, the same described 

procedure is repeated for upper half of the image and lower 

half of image. This was found to reduce mean square error 

between the manually extracted values and those 

automatically determined by the algorithm.  

In addition, in order to convert the extracted parameters 

from unit pixels to the unit cm, it was required to extract 

from DICOM info data the information about the 

conversion scale. In the available images, DICOM tags 

(0018,602C) Physical Delta X and (0018,602E) Physical 

Delta Y contained the adequate values. 

Hardware components that were used for the purposes 

of this research are: a GPU Nvidia GeForce GTX960M, an 

Intel (R) Core (TM) i7-6700HQ CPU @2.60GHz and 8GB 

of RAM. Implementation of the algorithms was done in the 

Python 3.7.4 environment with Tensorflow 1.15. 

III. RESULTS AND DISCUSSION 

The results have shown that proposed U-net deep 

convolutional neural network can learn to segment heart 

left ventricle in ultrasound images. In cases where external 

additional areas are recognized (Figure. 2a), they are easily 

removed in a fine-tuning stage (Figure. 2b). This was 

achieved by using kernel of size 3x3 for erosion in the 

images, which in return improved the accuracy by 0.52%.  

  

Figure. 2. Segmentation results performed by U-net and using manual 

annotation a) before fine tuning b) after fine tuning using erosion 

Loss function with its falling trend during training and 

validation is shown in Figure. 3, while the accuracy during 

training and validation data were increasing up to 93.67% 

and 88.36% respectively (Figure. 4).  

 

Figure. 3. Loss function during 

training and validation 

 

Figure. 4. Accuracy during 

training and validation 

For the comparison between manual segmentation and 

automatic segmentation by U-net, dice similarity 

coefficient was calculated. Test accuracy on 128x128 

images was 90.32%, test accuracy on 1016x708 images 

without kernel was 91.57%, and test accuracy on 

1016x708 images with kernel was 92.091%. The runtime 

of the training process was 96.08 ± 2.81s per epoch, but 

this may be reduced by optimizing the network 

architecture and computation graph, as well as by using 

better hardware configuration. 

In addition to that, automatic extraction of LVLd[cm] 

and LVLs[cm] A4C has shown to perform well, with root 

mean square error of 0.3052cm for all parameters, 

combined datasets. Although there could be some 
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improvements, it can be concluded the results are 

promising and can further be tested on other available 

datasets. Results for automatic extraction of parameters on 

Apical view images in the form of mean absolute error 

(MAE), mean square error (MSE) and root mean square 

error (RMSE) are presented in Table 1. 

TABLE I.   
RESULTS FOR AUTOMATIC EXTRACTION OF PARAMETERS ON APICAL 

VIEW ULTRASOUND IMAGES 

Parameter 

name 

ICVDV UNEW 

MAE MSE RMSE MAE MSE RMSE 

LVLd[cm] 

A4C 

0.1897 0.0459 0.2143 0.2442 0.0815 0.2855 

LVLs[cm] 

A4C 

0.2820 0.1124 0.3352 0.5180 0.2683 0.5180 

LVLd[cm] 

A2C 

0.0627 0.0088 0.0939 0.5314 0.7532 0.8679 

LVLs[cm] 
A2C 

0.2443 0.0823 0.2869 0.0340 0.0012 0.0340 

On the other hand, further automatic extraction of the 
parameters IVSd[cm], IVSs[cm], LVIDd[cm], 
LVIDs[cm], LVPWd[cm], LVPWs[cm] are reported in 
Table 2 in the form of mean absolute error (MAE), mean 
square error (MSE) and root mean square error (RMSE) 
for available dataset. 

TABLE II.   
RESULTS FOR AUTOMATIC EXTRACTION OF PARAMETERS ON M MODE 

VIEW ULTRASOUND IMAGES 

Parameter name 
CCKG 

MAE MSE RMSE 

IVSd[cm] 0.8921 1.3754 1.1728 

IVSs[cm] 2.1119 5.6667 2.3805 

LVIDd[cm] 1.0543 2.2327 1.4942 

LVIDs[cm] 1.4824 3.1217 1.7668 

LVPWd[cm] 0.4679 0.3660 0.6050 

LVPWs[cm] 0.6062 0.5030 0.7093 

IV. CONCLUSIONS 

Due to the characteristics of cardiomyopathy such as the 
specific shape and size of the LV, previous work dealing 
with the application of deep neural networks could not be 
compared with the results presented in this paper. The 
proposed method with U-net has been shown to segment 
LV successfully in a fully automatic manner. Even when it 
comes to different imaging conditions or the usage of a 
small training dataset, the method was shown to be robust. 
Extraction of the parameters was accomplished with a 
small mean square error. For parameter ex-traction in apical 
view images, the average mean square error (MSE) is 
0.2305cm and for parameter extraction in M mode view, 
the average MSE is 1.1025cm. In future, the model will be 
further improved by integrating the modules on the plat-
form and connect these segmentation and parameter 
extraction modules with parametric model of the left 
ventricle enabling automatic 3D left ventricle geometry 
creation based on ultrasound images. 
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