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Abstract 

INTRODUCTION: The development of epidemiological curve models is one of the key factors in the combat of 
epidemiological diseases such as COVID-19. 
OBJECTIVES: The goal of this paper is to develop a system for automatic training and testing of AI-based regressive 
models of epidemiological curves using public data, which involves automating the data acquisition and speeding up the 
training of the models. 
METHODS: The research applies Multilayer Perceptron (MLP) for the creation of models, implemented within a system 
for automatic data fetching and training, and evaluated using the coefficient of determination (R2). Training time is 
lowered through the application of data filtering and simplifying the model selection. 
RESULTS: The developed system can train high precision models rapidly, allowing for quick model delivery All trained 
models achieve scores which are higher than 0.95. 
CONCLUSION: The results show that the development of a quick COVID-19 spread modeling system is possible. 
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1. Introduction

Coronavirus Disease 2019 (COVID-19) is a contagious 
disease, which results as an infection by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. 
After the first case was recorded over a year ago, COVID-
19 has spread worldwide and has been declared a Public 
Health Emergency of International Concern in January 
2020 by World Health Organization (WHO), with its 
status being raised to a pandemic in March 2020 [2]. 
Since then, many efforts have been made to combat the 

spread of COVID-19 across the world. Governments have 
issued restrictions on public activities, mandatory testing, 
and lockdowns [3]. Researchers across the world have 
attempted to assist in the combat against this disease in 
various ways – either through the development of spread 
models [4], vaccine development [5,6] or through the 
modeling of various influences the pandemic may have on 
society [7,8]. One of the tools that have shown high 
usability was artificial intelligence models – either for 
spread prediction [9] or for patient diagnosis [10]. Some 
examples of the research in modeling the COVID-19 
spread follow. 

EAI Endorsed Transactions on 
Bioengineering and Bioinformatics 

03 2021 - 08 2021 | Volume 1 | Issue 3 | e2

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/
mailto:sbaressisegota@riteh.hr


S. Baressi Šegota et al.

2 

Melin et al. (2020) [11] have used the method of self-
organizing maps for the prediction of spatial spread 
relationships in the COVID-19 pandemic. The authors 
successfully grouped countries with similar behaviors, as 
one of the first papers considering the spatial relations in 
AI modeling, as opposed to time-wise ones. Rustam et al. 
(2020) [12] apply four different supervised learning 
algorithms – namely linear regression, least absolute 
shrinkage and selection operator (LASSO), support vector 
machine (SVM), and exponential smoothing (ES) to 
develop COVID_19 future forecast models, for the 
number of infected, deceased and recovered patients. The 
goal of the research was to develop models for 10 days in 
advance. The results show that the ES achieves the 
highest scores, followed by LR and LASSO, with SVM 
performing poorly in the observed prediction task. Farooq 
and Bazaz apply a deep learning model, with the focus on 
the development of mortality reduction strategies, 
applying adaptive incremental learning for the model 
training. The authors conclude that lowering the number 
of deaths requires massively available vaccination or, 
lacking the previous, controlled natural immunization. 
Mollalo et al. (2020) [14] demonstrate the application of 
artificial neural network to regress the incidence rates of 
COVID-19 in the USA. Authors apply the MLP neural 
network and achieve a high-quality model with Getis-Ord 
Gi* (ρ<0.05). Another example of MLP being applied to 
the problem of COVID-19 spread prediction is by Car et 
al. (2020) [15], which applies MLP for the problem of 
regressing the values of confirmed, deceased, and 
recovered patients – without observing the epidemiology 
curve (active cases). The authors state and achieve two 
goals – developing a high-quality global regression 
model, and the determination of the optimal 
hyperparameter combinations. Narrowing the 
hyperparameter selection and the model creation 
methodology in the presented work will be based on that 
paper. 

While many papers are presenting the modeling of the 
various aspects of the COVID-19 pandemic using AI-
based methods, most papers do not consider the real-
world application of the developed models. Namely the 
automation of re-training and result delivery, which will 
be the focus of the presented work. 

One of the key issues with modeling of COVID-19 
using AI-based algorithms is the time needed for the 
development of models. While self-learning, most 
Machine Learning (ML) models are complex to train due 
to the iterative process of model training, during which 
the internal parameters of the models are continually 
adjusted based on the error that is currently achieved by 
the model [16]. Due to these adjustments consisting of 
complex mathematical operations to determine the 
gradient of the neural network error being repeated for 
each data point time is of great concern [17]. Still, due to 
the unpredictable nature of COVID-19, the modeling 
process should be updated as often as possible with the 
newly collected data – as insights contained in the novel 
data may introduce information that may improve the 

models, enabling a higher precision. This may be 
achieved either using incremental learning paradigm (also 
known as online learning) [18] in which the model is 
retrained using newly acquired data or through the full 
retraining of the models with the entire dataset (including 
old, and newly acquired data) [19]. 

In the presented work the authors aim to test the 
following: 

• Can the epidemiological curve be regressed with
a satisfying precision from just the data
containing the number of active cases?

• Can the process of regressing the
epidemiological curve using AI be developed as
the continual data gathering and retraining
model?

• Can the process of training the ML models be
adjusted based on the previous research to speed
up the training processes, while still obtaining a
high precision model?

• Does the retraining of algorithms with the entire
dataset achieve better results than the
incremental learning approach for the given
case?

The goal of this research is to provide information on the 
most practical manner of model training in the case of 
pandemic spread modeling, as the knowledge of such an 
approach may prove important in the upcoming 
pandemics for early warning systems. The presented 
paper provides information on model training practices 
which will allow to achieve both higher precision 
epidemiological curves and to develop those models more 
quickly in case of future pandemics or epidemics. 

2. Materials and Methods

In this section, the methodology of the work will be 
presented. First, the overview of the dataset and the 
description of data transformation will be given. This 
section will be followed by the description of the used 
MLP Regressor methodology, with the description of the 
automated pipeline being given at the end of the section. 

2.1. Dataset 

The data used in the presented research has been obtained 
from the “COVID-19” Data Repository made available by 
the Centre for Systems Science and Engineering (CSSE) 
at John Hopkins University (JHU), with support from the 
ESRI Living Atlas Team and the Johns Hopkins 
University Applied Physics Lab (JHU APL) [20]. The 
dataset contains time-series information for three patient 
groups – confirmed patients, recovered patients, and 
deceased patients. Starting date in the dataset is 22nd 
January 2020, and it has been updated daily since, by 
collecting information from various sources such as the 
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World Health Organization (WHO), European Centre for 
Disease Prevention and Control (ECDC), National Health 
Commission of the People’s Republic of China (NHC), 
and others [21].  

The data within the dataset is formatted as time-series. 
For each province within a country the cumulative 
number of confirmed, deceased, and recovered patients is 
marked for each date since the start of the dataset. Dataset 
collects information for 273 locations worldwide, within 
82 countries. The data is regularly curated, with errata 
being given for data that may have not been precise in the 
past and has since been updated.  

The main benefit of the JHU dataset is that it contains 
information for the three patient groups – confirmed, 
deceased, and recovered, which are the three values 
needed to calculate the number of active cases. An 
example of the data contained in the dataset is given in 
Table 1. 

Table 1. An excerpt of the data contained in the JHU 
COVID-19 Dataset 

Country Lat. Long. 22/01 23/01 24/01 … 
Albania 41.2 20.1 0 0 0 

… Algeria 28.0 1.6 0 0 2 
Andorra 42.5 1.5 0 0 0 
Angola -11.2 17.9 0 0 0 
… … 

Epidemiology Curve 

The epidemiology curve represents the number of active 
cases through time. Active cases are the group of patients 
who have been infected by the disease, and remain 
infected – in other words, not counting the patients that 
have recovered from the disease or passed away due to it. 
If the number of confirmed cases is given as NC, deceased 
as ND, recovered as NR, then the number of active cases, 
NA, can be given as [22]: 

NA = NC – (NR+ND).  (1) 

The number of active cases is a crucial piece of 
information for disease tracking as it provides information 
on the number of patients who are still capable of 
infecting other people, allowing for the further spread of 
the disease. The epidemiology curve obtained from the 
data within the JHU dataset, as well as the values of 
confirmed, deceased, and recovered patients through time, 
are given in Figure 1. 

Figure 1. Visualization of Data within the JHU 
COVID-19 dataset, along with the epidemiology 

curve calculated from the presented data 
Data processing 

As previously mentioned, the dataset used in this 
research is made available in the time-series format. 
While good for observation, such a format is not 
appropriate for use with the regressive AI-based methods 
and needs to be transformed. The first step is the data-
filtering. This step is crucial in the development of a 
continual data gathering and retraining pipeline, the 
reason being that a large amount of data raises the time 
necessary for the training [23]. By splitting the dataset, in 
this case by filtering it by each Country/Province, the 
individual training can not only be speed-up – but the 
option of parallelizing calculations for curves of separate 
countries is possible. This approach allows full utilization 
of High-Performance Computer (HPC) architectures 
which are massively parallel [24].  

After the filtering, the data needs to be transformed 
into a regression dataset. This is done to enable the use of 
AI-based regression methods. For each of the countries, 
the latitude and longitude are recorded. Then, the number 
of days since the beginning of the dataset (22nd January 
2020) is calculated, with the beginning of the dataset 
being 0. The corresponding number of patients is then 
written in a row with the corresponding latitude and 
longitude of the country the data was recorded in, as well 
as the number of days elapsed from the start of recording 
to the day the data was recorded. The example of the 
transformed dataset is given in Table 2. Note that the 
name of the country has been removed, as MLP models 
will take only numeric inputs of latitude and longitude. 

In addition to modeling the numbers of confirmed, 
deceased, and recovered cases the number of active cases 
will be modeled as well. With modeling of the 
epidemiological curves in this manner, two ways can be 
used for the calculation of the number of active cases. 
First is taking the output from the previously mentioned 
three models, using Equation (1) – this will be referred to 
as the “derived” model. The second is to determine the 
epidemiology curve from the recorded data using 
Equation (1), and then modeling those values in the same 
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manner as each one – this will be referred to as the 
“modeled” model. Both approaches will be used in the 
presented work. For the “modeled” model the data needs 
to be calculated in advance, and this is done by taking the 
same approach to transforming the dataset, except that the 
output is taken from all three datasets and calculated using 
Equation (1). 

Table 2. An excerpt from the transformed dataset 

Lat. Long. Days Deaths 
28.0 1.6 0 0 
28.0 1.6 1 0 
28.0 1.6 2 2 
28.0 1.6 3 4 
… … … … 

The four datasets prepared in this manner are now 
ready to be used for the training of MLP neural network 
models. 

2.2. MLP Regressor 

MLP Regressor is an artificial neural network 
consisting of the input layer, one or more hidden layers, 
and an output layer; each of which consists of one or more 
neurons [25]. Neurons in the subsequent layer are 
connected to ones in the previous layer through weighted 
connections and act as summators. The input layer 
consists of the number of neurons equal to the number of 
inputs – 3 in the presented research (latitude, longitude, 
and days elapsed). The output layer consists of a single 
neuron [26]. In cases, such as the presented work, where 
more than one value needs to be modeled, multiple neural 
networks need to be trained – with each one regressing a 
separate value [15]. 

One of the key issues in the timely development of 
MLP models, beyond the previously mentioned training 
process, is determining the optimal model architecture 
[27]. Model architecture is defined through the 
hyperparameters which define the number of hidden 
layers, the number of neurons per layer, solver, activation 
function of the neurons, learning rate as well as its type, 
and the regularization parameter value. Common practice 
is to set possible values of the hyperparameter values 
based on previous experience with similar problems and 
datasets and then test all possible combinations of the set 
hyperparameters – an approach known as grid search [28]. 
In previous research by the authors [15] a total of 48384 
MLP Regressor models were created to determine the 
optimal model. Part of the paper’s goal in that research 
was determining the optimal hyperparameters of the MLP 
networks. Due to that, the selected parameters for this 
research will be based on the ones determined in that 
paper, with the addition of a single larger network. The 
larger network, where larger stands for the higher number 
of neurons per layer, is used as a fallback. The larger 

networks have a higher chance of successfully regressing 
a complex task [29]. In general, larger networks of that 
kind are avoided for two reasons – training times and 
overfitting issues. In the case of the research presented in 
this paper overfitting, which is an issue where the network 
fits the data too well – without generalization, causing it 
to perform badly on newly introduced data, is addressed 
using 10-fold cross-validation [30, 31]. The time issue in 
training the larger network is addressed with a lower 
number of other possible hyperparameter values, making 
the model training faster. The hyperparameter values used 
for the re-training of the neural networks are given in 
Table 3. 

From the above, it can be seen that the total number of 
the models trained, calculated as the product of the 
number of values per each hyperparameter, is 54. Such a 
low number of models, narrowed down by previous 
research, allows for a significantly faster training process.  

Each of the above-mentioned models is trained on 75% 
of the data points for the given country. Then, the 
remaining 25% is used for the evaluation. Evaluation is 
performed using R2. R2 signifies the amount of variance 
that exists in two separate datasets – the real recorded 
data, and the predicted data in the presented research [32]. 
The higher R2 value signifies a higher quality of 
regression – with the value of 1.0 signifying that all the 
variance is explained between the two datasets [33]. 

Table 3. The hyperparameter values used in the 
training process 

Hyperparameter Possible values 
Hidden Layers 4 
Neurons per layer 4,8,100 
Learning Rate 0.01, 0.1, 0.5 
Learning Rate Type Constant, Adaptive 
Solver LBFGS 
Activation Function ReLU 
L2 Regularization Value 0.01, 0.001, 0.0001 

2.3. Incremental learning approach 

Incremental learning (also referred to as online learning) 
is a technique that allows for the refitting of already 
trained AI-based models. This process can allow for 
previously trained models to be adjusted to newly 
acquired data without the need to re-train the entire 
model. This approach can be crucial in speeding up the 
processes of model adjustment. The goal of its use in the 
algorithm is to compare the speed and results of such an 
approach to the process of re-training of the entire model 
on the problem of COVID-19 spread prediction. 

To simulate the online learning the network is trained 
with a subset of the data, not including the data for the last 
30 days. The achieved model is then trained for 30 days, 
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with each increment in learning happening daily, or in 
other words, the model being incrementally trained for 
new data daily. This is done to compare to the 
methodology of re-training the entire model and 
delivering the updated models daily. The results of the 
incremental model are then compared to the results of 
retrained model which has been trained at the end of 
execution. 

2.4. Automated Pipeline for data 
acquisition, processing, training, and result 
delivery 

The automated pipeline consists of four main parts: 

• Data acquisition
• Processing
• Training
• Result delivery

This section will present each of these parts in turn, with 
examples of code used. The entirety of the code – 
consisting of a Bash script, and Python codes for 
transformation, training, and visualization are available in 
a Github repository [34]. 

Data acquisition 

The data is acquired from the daily updated Github 
repository. This allows the use of Git to retrieve the data 
which has been updated by the repository owners. The 
automated data acquisition script will check if the 
directory containing the repository “COVID-19” exists. If 
such the directory does not exist the manuscript will clone 
the repository using version control software. The same 
approach is used if the directory exists, but the repository 
has not been cloned in it. This is checked by moving into 
the COVID-19 directory and using the command to check 
if the repository exists. The benefit of using version 
control software to acquire data instead of directly 
downloading it is that the local repository is only partially 
updated. Only the difference between the existing data in 
the repository and updated data is downloaded – greatly 
speeding up the process of data acquisition. On the same 
connection, the download of the entire repository using 
Git clone takes 182 seconds, downloading the data 
repository as a ZIP archive and unzipping it takes 178 
seconds, and updating the manuscript with one day of 
new data takes 8.2 seconds (averaged over 10 runs). All 
timings in the manuscript were measured using the time 
command and are given as real times [35]. The script then 
extracts the CSV files containing the time-series data that 
will be used in the further steps of the manuscript. The 
data acquired in this manner can then be used in the 
further process of filtering and training. 

Data processing and MLP training 

Data is processed in the manner described in the previous 
section Data processing, applying the filtering and 
transformation as described, using a Python script that 
filters and transforms data. The script is executed, with 
the parallel processing of each training script. The 
parallelization to multiple cores is achieved with the 
internal functions of used libraries, which also serve as 
the basis for the implementation of hyperparameter search 
and testing the resulting models. The final step is 
visualization. The Python programs for training also store 
the models as a binary file, along with a text file 
containing the best performing hyperparameters and the 
achieved score of those hyperparameters. 

Visualization 

The script takes the stored models, as well as the dataset, 
and plots the entire domain using both the data in the 
original dataset used for modeling and the data obtained 
from the repository. Then, data is plotted for each day 
since the 22nd of January to establish the visual 
comparison of the real and modeled data. Then, the 
prediction is additionally calculated. By default, 
prediction is generated for 30 days in advance, but this 
can be adjusted within the visualization code. The same 
script also takes the R2 value calculated during the testing 
and displays it on the generated graphs. The script 
generates all the graphs presented in the following section 
– Results. These graphs can then further be used for
publications, webpages (directly if the used server is
LAMP enabled) or to be automatically sent to people who
can benefit from the information (epidemiologists,
government officials, health experts, and others).

The complete overview diagram of the automated data 
acquisition system is given in Figure 2. The local 
repository is synced with the one available online – an 
action which is set to repeat daily – at noon CET, which is 
an hour later than the standard automated update time for 
the JHU COVID-19 repository; to allow time for potential 
delays. Of course, the script can be executed manually at 
any time by the system administrator. Then, the process of 
data extraction, filtering, transformation followed by 
model training, testing, and finally – visualization is 
performed.  

2.4. Used hardware and software 

The hardware used for training consists of the Intel Xeon 
Gold 6240R (2.4 GHz base clock, 24 cores), with 64GB 
of RAM. Each of the models is trained on 8 cores of the 
aforementioned CPU, to achieve equal utilization. 
Machine used for training is based on Linux Ubuntu 
Server 18.04 LTS (kernel version GNU/Linux), 
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Figure 2. The illustration of the developed pipeline

3. Results

Table 3 demonstrates the average training times over 10 
runs for each of the goals. The exception is the derived 
epidemiology curve which is calculated using the results 
from previous models). The R2 scores of the models are 
also given in Table 3., also averaged over 10 runs. 

Table 3. Execution times and R2 scores of the 
trained models. 

Goal Training time [m] 
(N=10) 

R2 score 
(N=10) 

Confirmed 56 0.99998 
Recovered 62 0.98873 
Deaths 54 0.99999 
Epidemiology curve - 
modeled 55 0.99533 

Epidemiology curve - 
derived - 0.96052 

For the generation of the images data for Croatia has 
been used, although the script can generate data for any 
Country in the dataset through the modification of the 
appropriate variable, defined in the script. For all the 
Figures 3-7. the modeled data is shown in a dashed line, 
with real data shown in a full line. The vertical line at 
x=410 represents the division between the end of the 
collected data and the 30-day prediction (note that only 
the predicted data is shown in the graph). 

The generated figure for the model trend of the 
confirmed patients is given in Figure 3. As shown, this 
model has an extremely high fidelity – which is confirmed 
visually and through the highest achieved R2 score. 

Figure 3. Modeled and predicted data for confirmed 
patients in Croatia. 

In the case of recovered patients, it can be noticed that 
the regression quality is similarly high, but minor visual 
differences can be noticed on the test part of the dataset 
(beyond the 17th November). Still, the R2 value beyond 
0.99 shows that the regression quality is still high enough 
for the regression to be considered excellent. 
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Figure 4. Modeled and predicted data for recovered 
patients 

Figure 5 shows the model for deceased patients which 
has achieved the highest quality, with the R2 value 
tending to one. Visual inspection shows that the test part 
of the dataset (beyond 17th November 2020) is almost 
equal for both the model and the real data, confirming the 
validity of the high R2 value. 

Figure 5. Modeled and predicted data for confirmed 
patients in Croatia 

The modeled and real epidemiology curves are shown 
in Figure 6. Both the derived and modeled curves are 
shown, with the model curve being given as a dashed line 
and the derived curve as a dotted line.  

The model curve has a higher regression quality – 
which can be evidenced by both a higher R2 score 
(0.99533) and the visual observation. The derived curve 
has a lower regression quality – shown by both the lower 
R2 score (0.96052), and visually. This is especially 

noticeable in the second half of the test part of the dataset 
– where the curve does not follow the real data, and the
prediction widely differs from the probable situation
which can be assumed from observing the current trend.
This difference is probably caused because the errors in
the individual models add together in the derived model,
causing a larger, perceivable error. Another thing of note
is that the visualization script does generate separate
images for both the derived and modeled epidemiology
curve – but for brevity, the combined image has been
presented.

Figure 6. Modeled and predicted data for active 
patients (epidemiology curve) in Croatia 

The final image that the script generates is the image 
that combines all the models. This is done for easier 
comparison between the different curves and a more 
condensed display. An example is given in Figure 7. 

Figure 7. The complete plot of all the generated 
models 
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The comparison of scores to the cited research with the 
scores achieved with the used model – both with online 
training and the entire model re-training is given in Table 
4. The online training model presents the scores which
have been updated over the course of one month using re-
fitting.

Table 4. R2 Score comparison 

Model Cited 
work [15] 

Model re-
training 

Online 
training 

Confirmed 0.940 0.999 0.989 
Recovered 0.781 0.999 0.997 
Deaths 0.986 0.999 0.999 
Epidemiology 
model - 0.995 0.980 

Epidemiology 
derived - 0.961 0.959 

4. Discussion

The models achieve a high regression quality when using 
the limited grid search values based on the previous 
research. The main thing to note is that the training time 
has been lowered from multiple days in original research 
[15] using multiple HPC nodes, to below a single hour
using a single compute node. The training time of the
script is below 90 minutes – accounting for a full dataset
download (in the case of the first run or the loss of the
data), and the generation of visualizations. This would
allow for a quick generation of the models and plots, with
updated models being ready for delivery less than 2 hours
after the new data has been uploaded to the online
repository.

It should be noted how the derived model for the 
epidemiology curve has a significantly weaker regression 
than the separate model. For this reason, the modeling of 
the epidemiology curve should be done only directly, 
instead of deriving it – due to the errors of individual 
models stacking and making an apparent error in the 
derived model [36]. As the modeled version of the 
epidemiology curve has a higher regression quality it 
should be noted that if only the epidemiology curve is 
needed the model training can further be sped up by only 
directly modeling the number of active cases using more 
resources, e.g., a full CPU node instead of a quarter of it 
as it has been utilized in the presented research. While this 
approach has merits, the authors still propose and have 
considered in this discussion, the training of all four 
models. The reason for this is that while the epidemiology 
curve is sometimes only information needed, the curves 
for the number of confirmed, deceased, and recovered 
cases can provide important information. For example – 
for the same number of confirmed cases, high mortality 
and low recovery rates will result in a low number of 
active cases – as will the high recovery rate and low 
mortality. Obviously, the second case is preferable. 

When comparing the results to online learning we can 
notice that this, incremental learning approach, achieves 
slightly worse results – but still within the bounds of 
acceptable models. The model refit times for incremental 
learning are negligible, so they have not been included.  

5. Conclusions

The aim of the research paper has been fully 
accomplished. First, it was determined that the 
epidemiological curve can not only be regressed using the 
data from the dataset, but this approach provides better 
results in comparison to calculating it from other 
regressed values. In addition to that, the results show how 
the MLP algorithm can be applied in the continual data 
gathering and retraining methodology for the presented 
problem, through the development of an automated data 
acquisition, data processing, model training, model 
validation, and result visualization or through the 
utilization of online learning. The results also demonstrate 
that the models can be developed using this script in a 
relatively short amount of time. It can be noticed that 
online learning may be used as an alternative to model 
retraining while achieving comparable results even more 
quickly. Still, it should be noted that such an approach 
will not adjust the model to the errata that may be added 
into the dataset, which may lower the accuracy. A 
possible solution to this issue is monitoring the used data 
repository for errata, and only retraining the entire model 
when necessitated by data errors. The crucial part in 
developing a faster model training was the utilization of 
past research by the authors, which allowed for the 
significant lowering of the number of possible 
hyperparameter combinations. 
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