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ERRORS IN PROCESSING OF VEHICLE VIBRATION DATA 
 
 
 
ABSTRACT: Vehicle vibration data are acquired during experimental measurements. Unfortunately, every 
measurement is associated with certain amount of measurement error. Since the validity of experimental results 
and their analysis directly depends on the amount of errors contained in the measurement process, error 
identification is a very important part of experimental research. 
 
After a brief discussion of possible measurement errors, the main attention in the paper has been given to 
statistical errors in analysis of the measurement results. Theoretical expressions for statistical errors of data 
processing are taken from the related literature and presented in a form that corresponds to real conducted 
measurement. Experimental data of vehicle vibrations – vertical accelerations at the centres of all four wheels and 
at the connection point between the front left damper and the car body were acquired during the road investigations 
of the vehicle. Statistical errors made during data processing are calculated, graphically presented and discussed. 
Finally, conclusions on reducing the amount of errors during vehicle investigations are drawn. 
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INTRODUCTION 

Vibrations are often found as direct or indirect objects of measurements conducted on the motor vehicle. 
Measurands are the vibration frequencies of individual vehicle elements due to excitations coming from the vehicle 
travelling over a rough road, the vehicle’s engine operation, the influence of the random side wind, the unknown 
shape of the vehicle’s trajectory, etc. Eigenfrequencies of the vehicle elements and different resonant effects are 
specially analysed. 
 
Vehicle vibration data, necessary for further analyses and research, are acquired during measurements, with the 
use of corresponding measurement instrumentation. Each measurement is the process with more or less 
pronounced effects that cause measurement error - one of the major factors that can affect a research results. An 
error is, by its nature, an indeterminate quantity and its value can therefore only be estimated. Thus, it is necessary 
to examine its nature of origin carefully and its causes and to classify them and determine its influence on 
measurement result reliability. Therefore, error identification presents a very important step in experimental 
research. In fact, measurements that do not report the range of possible measurement errors contain only limited 
information. 
 
The theory of measurement errors is explained, not only in general literature that deals with experimental methods 
[2, 3, 5, 7], instrumentation [9] or analysis of the results [1, 4], but also in literature related to motor vehicle 
investigation, e.g. [8]. This paper deals with statistical errors in processing and analysis of vehicle vibration 
measurement data. Experimental data on vehicle vibrations were acquired during complex investigations of 
interaction between the steering and the suspension system of the motor vehicle [6]. The analysis of the statistical 
errors is based on the theory presented in [1]. 
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A BRIEF REVIEW OF MEASUREMENT ERRORS 

There are two classification systems of measurement errors in use today [8]: the ISO classification and the 
engineering classification. 
 
The ISO classification system recognises Type A errors (if there are data to calculate a sample standard deviation) 
and Type B errors (if there are not data to calculate a sample standard deviation, so the sample standard deviation 
is obtained, for example, from experience or manufacturer’s specifications). The ISO classification does not provide 
information how to improve measurements. Thus, the engineering classification is the preferred approach. 
 
The engineering classification recognizes that there are two kinds of errors that arise in measurements: 1) 
systematic errors (bias) and 2) random errors. Systematic errors are constant in sign and intensity, or they change 
following a certain law in each repeated measurement of the same quantity. They arise due to the improper 
selection of the measurement method, the use of inaccurate instruments or the neglecting of influence of 
environmental factors. Systematic measurement errors may be completely or partially eliminated with appropriate 
corrections. Random errors are variable in sign and intensity. They arise due to simultaneous effects of many 
causes that contribute to small variation of the results. Thus, practically, they arise from unknown reasons. They 
are more difficult to detect and they can not be completely or partially removed or corrected. 
 
Measurement errors arise from many sources. Since the measurement necessitates the interaction between 
humans (experimenter or participant), experimental installation and (more or less) controlled environment, the main 
sources of measurement errors are humans, instrumentation and environment. 
 
Human errors are individual and they depend on training, competence, liability and routine of the experimenter (or 
the participant). They mostly arise from incompetence or carelessness of the experimenter. Some examples of 
human errors in measurements are: selection of improper measurement procedure and installation, incorrect 
layout, misuse and miscalibration of the instruments and incorrect reading or recording of the results. These errors 
may be difficult to recognize. Even the most skilful experimenters who carefully plan experiments, collect, manage, 
and analyze experimental data may still make mistakes in interpretation of data. 
 
Instrumentation errors often amount to a few percent, although most statistical analyses, and many of the 
researchers, assume that instruments are error free. In fact, instrumentation has its limitations or deficiencies. 
Some examples of instrumentation errors are: instrument overload, failure of the segment of the installation, 
instrument inaccuracy (due to spontaneous miscalibration), drift, hysteresis, saturation, nonlinearity and other 
variations of characteristics due to changes in environmental and experimental conditions. 
 
Variable environmental conditions may cause measurement errors due to environmental influences. Variations of 
temperature, atmospheric pressure, air humidity, precipitation, natural wind and the influence of magnetic fields of 
the Earth and of other external sources, may indirectly produce measurement errors, for they may influence 
operation of the instrumentation and measurement results and some of environmental conditions may even affect 
the humans. 
 
Considering the magnitude, measurement errors may be large, medium, small, or insignificant. Large errors (20 % 
or more) are usually easy to detect, but finding the source can be difficult. Medium errors (5 to l0 %) are much more 
difficult to detect and can only be eliminated by understanding the limitations of the used method or equipment. 
Small errors (1% and less) are contained in many measurement methods. Fortunately, in many situations these 
small errors are not significant. High accuracy of measurements (with errors less than 0.l %), are not attainable and 
also not necessary in many aspects of engineering, including the investigation of motor vehicles. 

NORMALIZED STATISTICAL ERRORS IN DATA PROCESSING 

Most experimental investigations of motor vehicles vibration imply measurement of several quantities called 
“inputs” and several quantities called “outputs” of the vehicle as a system or of some vehicle’s subsystem. Thus, in 
time domain, the subject of investigation may be considered (modelled) as multiple input/output system with xi(t), 
i=1,2,…,m inputs and yj(t), j=1,2,…,n outputs. If spectral domain is considered, such multiple input/output systems 
may be presented as n multiple input / single output systems (for each output), depicted in Figure 1. Quantities 
shown in Figure 1a are: Xi  – Fourier transform of input xi,  i=1,2,…,m, Hiy – ordinary frequency response function of 
a transfer channel xi-y, Y – Fourier transform of output y(t) and N – Fourier transform of measurement noise, n(t), at 
the output Y, which includes all possible deviations from the ideal model (actually, quantity N denotes the influence 
of all possible errors that may occur during data acquisition on output Y). Conditioned spectral analysis produces 
quantities presented in Figure 1b: , i=2,3,…,m - uncorrelated inputs and L( )1−⋅ iiX iy – optimum frequency response 
function of a transfer channel Xi-Y, i=1,2,…m, while Y and N mean the same as in Figure 1a. 
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Figure 1 Multiple input/single output model of experiment: a) correlated inputs, b) uncorrelated inputs
 
During the analysis of random data, acquired during investigation of multiple input/output systems (like the motor 
vehicle or its subsystems), two types of errors occur: random errors and systematic (bias) errors. 
 
Random error is random dissipation of the results of the analysis of different samples of the same random 
quantities. It arises because averaging operations must be performed on a definite number of samples, N, or on 
one data record of definite length, T. This means that every analysis comprises random errors. The main sources 
of random errors in data analysis are [1]: 

• "measurement noise” in sensors and other instrumentation (“input noise”) and “computational noise” in 
digital calculations, 

• other unmeasured inputs that contribute to the output and that are not correlated to measured input and 
• non-linearities in the system between the inputs and the outputs. 

 
Analytical expressions for normalised random errors are [1]: 
 

• random error of auto-spectral density estimate, Sxx , of a measured input, x: 

[ ]
d

xxr n
)f(S 1
=ε  (1) 

where:  nd - is a number of averages used in the processing, 
 

• random error of cross-spectral density estimate, Sxy, of input, x, and output, y: 
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where: )f(xyγ  - is a positive square root of ordinary coherence function, , 2
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• random error of ordinary coherence function estimate, : 2
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• random error of  ordinary frequency response function intensity estimate, Hxy(f): 
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• random error of multiple coherence function estimate, : )f(x:y
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where m – is the total number of measured inputs, 
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• random error of partial coherence function estimate, : )f()!i(iy
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where i=1, 2,…, m – is the ordinal number of input, 
 

• random error of optimal frequency response function intensity estimate, Liy : 
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Systematic (bias) error is an error that occurs with the same intensity and in the same direction from analysis to 
analysis. It is defined as the difference between the expected value of the observed quantity (average of the 
repeated estimates) and the real value of the estimated quantity. Generally, bias errors arise due to [1]: 

• unknown “noise” at the input, not passing through the system, 
• resolution of spectral density estimate, 
• nonlinear system parameters and 
• other unmeasured inputs which contribute to the output and which are not correlated to the measured 

input. 
 
Normalised bias error of the auto-spectral density estimate of random input, x, is [1]: 
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where: Be – is frequency resolution of the auto-spectral density estimate and - is the second derivative of the 
auto-spectral density estimate, S

)('' fSxx

xx (f). 

STATISTICAL ERRORS IN THE ANALYSIS OF VEHICLE VIBRATION DATA 

In order to analyse statistical errors that occur during processing of vehicle vibration data, measurement data from 
a large scale vehicle investigation of interaction between the steering and the suspension system of a passenger 
car [5] were used. Results from a test of a straight line drive with constant speed of 70 [kmh-1] along the highway 
were observed. 
 
Attention will be given to the following measured quantities:  

• vertical acceleration at the centre of a front left wheel, , at the input, Figure 2, )(1 tz&&

• vertical acceleration at the connection point between the front left damper and a car body,  at the 
output, Figure 3. 
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Figure 2 Time series of vertical acceleration   )(1 tz&&
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The results of the processing of these two quantities may be used in investigations of the front left wheel 
suspension system's behaviour under the influence of vertical excitation coming from the road roughness. 
 
Measurement data were subjected to spectral analysis and estimates of all important spectral quantities were 
obtained. The main consideration here is to calculate the amount of errors made during data processing or to 
determine how reliable calculated estimates really are. 
 
Data were sampled for a period of  with the sample frequency][30 sTtotal = ]][100 Hzfs =  , giving the sum of 3000 
samples in a record. Time resolution interval between the samples was ][01.0 st =∆ . Analog anti-aliasing filters 
with a cut-off frequency of 50 [Hz] were used. To execute the analysis in practice, a subdivision of data from the 
record into  sub-records (for the same number of averages) was obtained. It should be noted here, that overlap 
averaging reduces the accuracy of acquired data and must be used with caution. The number of samples for Fast 
Fourier Transform was

dn

][2048 −=fftn . Thus, the frequency resolution for all observed estimates 

was ][05.0][
01.02048

1 HzHzBe ≈
⋅

= . 

 
By analysis of expression (1), it may be concluded that, in order to obtain small values of normalized random error 
of auto-spectral density estimate (less than 5%), the whole record must be divided into a minimum of ][400 −=dn  
sub-records. Three different numbers of averages were used: ][10 −=dn ( ][32.0)( 11 −≈Srε ), ][100 −=dn  
( ][1.0)( 11 −=Srε ) and  (][400 −=dn ][05.0)( 11 −=Srε ), in order to investigate the influence of number if 
averages to the final results of analysis. 
 
Figure 4 shows the results for estimates of: cross-spectral density, auto-spectral density, frequency response 
function and ordinary coherence function for the three different numbers of averages. In the names of the 
estimates, index 1 denotes the vertical acceleration at the centre of the front left wheel and index 2 denotes the 
vertical acceleration at the connection point between the front left damper and a car body. 
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Figure 4 Estimates of: a) cross-spectral density, b) auto-spectral density, 
c) frequency response function, d) ordinary coherence function 
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The resulting random error of the frequency response function estimate )(12 fH  (gain factor – magnitude) directly 

depends on the values of the coherence function estimate, , and the number of averages, , used in 
calculations. In the frequency range , where the frequency response function is not near its minimum 
value, while the auto-spectral density estimate is relatively small, input noise should be suspected. It may be the 
consequence of a smaller sensitivity of the used sensors in a low frequency range. Beside enhanced random error, 
this will also lead to bias error. The decrease of the frequency response function in the frequency range 

 where the magnitude of frequency response function is relatively small usually implies output 
noise due to “measurement noise” and/or due to the contribution of other uncorrelated inputs. 

)(2
12 fγ dn
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The coherence function estimate usually has sharp peaks at frequencies at which the frequency function estimate 
also has peaks. This phenomenon is related to the fact that signal-to-noise ratio is the largest at these frequencies. 
From Figure 4c, it is obvious that frequency response function has peaks at approximately 2 [Hz] and 11 [Hz] which 
are clearly the system resonances. At other frequencies, coherence function does not have peaks or even has 
“notches” which points to bias errors due to resolution problems or to some non-linearity in the system (more 
rarely). 
 
Figure 4 also clearly shows the influence of the averaging procedure on the results of analysis. Small number of 
averages ( ) gives results with considerable amount of variance, but there are clear peaks at resonance 
frequencies. Larger number of averages produces smoother estimates, but eventually, clear peaks are lost (e.g. 
for ). This could lead to difficulties in data analysis and making conclusions about the measurements. 
Increase in number of averages has obviously lead to smaller overall values of the coherence function. The 
coherence function is extremely sensitive to relatively minor resolution errors, so the improved frequency resolution 
should be considered. 

][10 −=dn
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Figures 5 and 6 present the calculated values of normalized random error of the cross-spectral density estimate 
and ordinary coherence function, respectively, while Figure 7 shows the values of normalized bias error for auto-
spectral density estimate. 
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Figure 5 Normalized random error of 

cross-spectral density  estimate 
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Figure 6 Normalized random error of 
ordinary coherence function estimate 
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Figure 7 Normalized bias error of auto-spectral density estimate 
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Larger number of averages brings smaller random errors into data analysis. Values of random errors are 
considered “not too large” [1] if they are smaller than 0.2. They are obtained with higher number of averages. 
Extremely large values of normalized error are obtained for extremely small values of the coherence function 
estimates (e.g. in the frequency range ), Figures 5 and 6. ][2015 Hzf ÷=
 
For this measurement, bias errors are very small (portions of one percent) and for larger number of averages even 
negligible, Figure 7. A conclusion may be reached that this measurement had no significant systematic errors. 

CONCLUSIONS 

Errors are always part of any measurement. They arise from many sources and may be random or systematic. 
Researchers should determine as early as possible what are likely to be the dominant sources of error in the 
measurement task and to devote sufficient time to find ways of reducing these errors. Random errors are more 
difficult to detect and they can not be completely or partially removed or corrected. Systematic (bias) measurement 
errors may be completely or partially eliminated with appropriate corrections. 
 
Some of the ways to reduce measurement errors are: 

• pilot testing of the instruments, to make an appropriate choice from the equipment available (or to design a 
more appropriate instrument), 

• careful study of the acquired data, because all data entry for computer analysis should be verified, 
• the use of statistical procedures (from rather simple formulas to very complex modelling procedures for 

modelling the error and its effects), 
• the use multiple measures of the same quantities. 

 
With the use of digital signal processing on the computers, it is often possible to improve the accuracy of a poor 
quality measurement through the use of estimation techniques. These methods range from simple averaging or 
low-pass filtering to cancel out random errors, to more sophisticated techniques such as Wiener or Kalman filtering 
and model-based estimation techniques. The increasing capability and lowering cost of computation makes it 
increasingly attractive to use lower performance sensors with more sophisticated estimation techniques in many 
applications. 
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