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SIZING OPTIMIZATION OF PARAMETRICALLY DESIGNED TRUSSES
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Summary: In this paper parametric modeling of sizing optimization truss models is
developed. Sizing optimization of trusses views element cross-sections as variables with
the goal of minimizing overall mass while maintaining equivalent stresses within
acceptable ranges, as well as limiting displacement. In order to conduct such a process,
models needs to be created with parameters, and outputs which can be used to create
an objective function. Furthermore the models in each iteration of the optimization are
subjected to finite element analyses to determine stress. Parametric models of standard
10 bar, 17 bar, and 25 bar trusses are created to facilitate optimization. The heuristic
optimization method used is genetic algorithm. Optimization results obtained from these
models are compared to those from literature and the initial model.
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1. INTRODUCTION

Structural truss optimization is an interesting topic of research in the fields of
mechanical, civil, and structural engineering. The structural optimization problem
determines the best design for a specified problem subjected to certain restrictions. This
complex process is very beneficial, as it can lead to lighter and more inexpensive
structures, while maintaining structural integrity, through optimizing various construction
parameters. The most frequently used optimization types are sizing, shape, topography,
topometry, and topology. Sizing optimization views cross section geometries as
variables. Most papers published in recent years on the subject of truss sizing
optimization use new methods or their variations and use standard test examples of 10,
15, 17, 25, 47, 52, 72, 117, etc. bar trusses. The most commonly used are heuristic
optimization methods for their favorable characteristics.

Hasancebi and Azad [1] created and tested a new meta-heuristic method called
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adaptive dimensional search which updates search dimensional parameters in every
iteration. They investigated the capabilities and potentials of ADS in structural
optimization, and tested their method on various standard test examples of trusses.
Cheng et al. [2] tested their new hybrid harmony search algorithm on six test problems
achieving very competitive results. Degertekin et al. [3] applied TLBO algorithm to
optimize truss structure sizing and compared their results to other meta-heuristic method
results. Kaveh et al. [4] used a combination of swarm intelligence and chaos theory to
find optimal truss structure cross sections. Kazemzadeh et al. [5] approached the
discrete sizing optimization of steel trusses problem using guided stochastic search
(GSS) as a design-driven heuristic approach and tested it on 10, 117, 130, 392, and 354
member truss structures. Sizing optimization done by Mortazavi and Togan [6] showed
the method of hyperspheres and showed promising results in using this method for truss
optimization. Farshi and Alinia-ziazi [7] included an analysis step in the optimization
cycle excluding the need for separate structural analyses and showed the improvement
on 10, 22, 25, 72, 60, 132 and 200 bar trusses. Asl et al. [8] gave a detailed description
of the sizing optimization problem and an extensive comparison to various other results
from literature for the same test problems. Soek et al. [9] showed the importance of the
selection of starting values for sizing optimization using harmony search method.

In this paper sizing optimization of standard 10 bar, 17 bar, and 25 bar trusses
is conducted on parametric models created for these purpouses. Genetic algorithm
optimization results are compared to those from literature. The parametric models can
be adapted for any truss design sizing optimization due to their parametric nature. The
goal is to have a single parametric model which can be used for any design and loading
case by simple parametric input changes.

2. PROBLEM FORMULATION

Sizing optimization views cross section parameters as variables and requires an
initial model of the truss. These parameters can be cross section geometry (shape)
and/or dimensions. Standard test examples optimized in this paper all have circular
cross section profiles, and only vary the diameters of each truss element cross section.
As cross section diameters are variables the models need to be created with this in mind.
The parametric models and optimization in this research are all done in Rhinoceros 5.0
using Grasshopper, Galapagos optimization, and Karamba plugins.

2.1 OPTIMIZATION

For the purposes of this research the heuristic optimization method, genetic
algorithm was used due to its favorable characteristics. Genetic algorithm (GA) is a
heuristic method for optimizing whose operation is based on mimicking
natural/evolutionary processes [10]. The algorithm contains three basic operators:
selection, crossover, and mutation. The process of transferring genetic information
through generations is called selection. Crossover represents the process/operations
between two parents, where an exchange of genetic information and new generations
are made. A random change in the genetic structure of some individuals for overcoming
early convergence is created by the mutation operator. Algorithm operation is based on
survival of the fittest individuals through evolution which exchange genetic material.
Selection ranks individuals in the population using values from the fitness function, which
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defines the ability/quality of the individual.

Genetic algorithm, due to its convergence characteristics has a widespread
application. Researchers are inspired to use this algorithm for scientific purposes,
industrial application, business applications and to further increase its use.

In order to properly constrain the complex mathematical model, so that the result
of the optimization gives a realistic model, many design factors need to be considered.
As the examples tested in this paper are of standard examples taken from literature
which have been determined to give applicable resulting models by only considering
node displacement and/or stress depending on the example.

In the case of sizing optimization the minimum weight design problem for the
truss structures can be defined as:

( minW (A) = YiZ% p; A;l; with A = (44, ..., Ay)

Apin < A; < Apaxe fori=1,..,n (1)
subjected to { Omin < 0; < Omayx fori=1,..,n
Umin S Uj S Upax fOrj=1,..,k

where n is the number of truss elements, k is the number of nodes, Ii is the length of the
ith element, A; is the area of the it" element cross section, o; is the stress of the it element,
yj is displacement of the jt" node.

As cross section area is a variable parameter in the optimization of the trusses,
adequate parametric models need to be created to accommodate the optimization
method needs. Galapagos optimization for Grasshopper does not have a penalty
function input. This has been overcome by having the constraints set to multiply all
separate masses of elements with a large number in each generation where any or all
of the constraints are not met to ensure that such a result does not end up being a local
minimum. The optimization parameters for Galapagos are a maximum stagnant of 50,
population of 50, initial boost of 2x, maintaining 5% and +75% inbreeding for the
evolutionary solver.

2.2 PARAMETRIC MODELS

For each of the three test examples parametric models were created in
Rhinoceros 5. The only variable parameters connected to the optimization operator are
the cross sections of elements. The initial model beams are created by parametric input
of points and the selection of which points connect to each other. Circular cross sections
for all models are initially set to 200mm diameter. Forces and supports are then tied to
created points and set as needed by inputting values.

For the 10 bar truss the initial model bar and node layout is given in figure 1.
This cantilever truss has 10 independent variables. The material of the truss elements
is Aluminum 6063-T5 whose characteristics are: Young modulus 6894.7kN/cm? and
specific weight 27.1447kN/cm?3. Point loads P+ are 444.82kN, P>=0kN in the first load
case, and P+ are 667.233kN, P2=222.411kN in the second load case as shown in figure
1. The model is limited to a maximal displacement of £0.0508m of all nodes in all
directions, axial stress of £172.3689MPa for all bars, and minimum cross-sectional area
of all members is limited to 9.045mm diameter.

95



Nenad Petrovi¢, Nenad Marjanovic, Nenad Kostic, Mirko Blagojevic, Milo§ Mateji¢

P2 P2
9.144m 9.144m
(5) (3)|~ |(1)

1 2 ¥
7 9
=
v 5 6 §
T 10 &
3 4 L 4
(6)—>x 4) 2)
¥ Pi Y Pi

Fig. 1 Initial 10 bar truss model

For the 17 bar truss the initial model bar and node layout is given in figure 2. For
this example the material characteristics are: Young modulus 20684.2719kN/cm?, shear
modulus 8076kN/cm?, and specific weight 72.6985kN/cm3. A single point load of
444 82kN is applied in node 9, as shown in figure 2. Each bar cross section is an
independent variable limited to a minimal cross-sectional area of all members is limited
to 64.516mm? (9.045mm diameter) as a lower limit to all boundaries. The only constraint
is a displacement limitation for all nodes of +0.0508m of all nodes in both x and y
directions.
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Fig. 2 Initial 17 bar truss model

For the 25 bar truss the initial model bar and node layout is given in figure 3. The
material of the truss elements is Aluminum 6063-T5, the same as for the 10 bar truss.
This example has two load cases which are given in table 1. This space truss has
members cross sections grouped as follows: 1 (A1), 2 (A2— As), 3 (As— Ag), 4 (A10— A11),
5 (A12— A13), 6 (A1a— A17), 7 (A1s— A21), 8 (A22— A2s). The model is limited to a maximal
displacement of +0.00889m of all nodes in all directions, member stress limitations for
bar groups are given in table 2, and minimum cross-sectional area of all members is
limited to 64.516mm? (9.045mm diameter).
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Table 1 25 bar truss example load conditions

Node Load condition 1 components Load condition 2 components
Px, Py, Pz [kN] Py, Py, Pz [kN]
1 0, 20, -5 1,10,-5
2 0,-20,-5 0, 10, -5
3 0,0,0 0.5,0,0
6 0,0,0 0.5,0,0

Table 2 Member stress limitation for the 25 bar truss

Member groups Compressive stress limitation [kN] Tensile stress limit [kN]
1(A1) 241.951 40
2 (A2—As) 79.9102 40
3 (As— Ag) 119.314 40
4 (A1o— A11) 241.951 40
5 (A12— A1s) 241.951 40
6 (A14— A7) 46.6017 40
7 (A1g— Az) 47.9806 40
8 (Az2— Azs) 76.4077 40

Fig. 3 Initial 25 bar truss model

Models are created in Rhino initially as curves which are collected in
Grasshopper and converted to beam elements. Ass these elements to not vary in length
the only variable input in their assembly is the cross section diameter for each element
individually. Individual weights of elements are calculated from individual cross section
areas and multiplied by their length, and specific weight. Once the model is analysed
using first order theory of small deflections the model deformation resulting bar
compressive and tensile forces are calculated via further operators. Stress is calculated
for each of the elements for all load case and compared to stress limits giving either a
true or false readout discarding any combination without all elements meeting required
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constraints. At the same time displacement is also compared to the limit value. If either
of the two conditions are not met each elements weight is multiplied by a large number
to ensure that such a combination is not considered a global or local minimum before
entering the objective function.

3. RESULTS

The initial weight of the 10 bar truss when all elements have 20 mm thick
elements is 9089.765 kg with a maximum displacement of 21.239 mm. Table 3
compares element diameters and total weight of trusses according to loading case.
Figure 4 shows the resulting deformed models for both load cases.

Table 3 10 bar truss optimal design comparison by load case

Element GA [7] [8]

number: LC1 @[mm] LC2 [mm] | LC1 @[mm] | LC2 @[mm] LC1 @[mm] | LC2 ¢[mm]
1 163.23 143.23 158.014 138.731 157.9815 138.1159
2 9.04 9.05 9.045 9.045 9.04465 9.04465
3 149.96 142.64 137.764 143.847 137.7651 144.655
4 119.28 122.485 111.594 108.445 111.4828 109.5262
5 9.045 9.05 9.045 9.045 9.04465 9.04465
6 9.045 40.432 21.239 40.142 21.32505 40.13928
7 76.28 103.063 78.1051 100.734 78.12607 100.1688
8 126.83 106.554 131.183 102.426 131.292 101.7163
9 130.3 126.247 132.708 128.963 132.5376 129.0003
10 09.045 9.05 9.045 9.045 2.86017 9.04465

Weight: 2314.1636kg | 2171.615kg | 2295.81kg 2121.81kg 2294.568 2120.738

The initial weight of the 17 bar truss when all elements have 20mm thick
elements is 10044.4355kg with a maximum displacement of 8.887mm. Table 4
compares element diameters and total weight of trusses. Figure 5 shows the resulting
deformed model with compressed elements shown in red, and stretched elements in
blue.

Table 4 17 bar truss optimal design comparison

Element number: GA @[mm] [9] @[mm] [8] @[mm]
1 109.419 113.765 113.757
2 43.878 9.399 9.272
3 102.403 99.063 99.181
4 9.045 9.045 9.045
5 94.131 81.653 81.468
6 57.046 67.120 67.271
7 83.253 98.371 98.429
8 13.546 9.045 9.045
9 68.956 80.563 80.675
10 9.047 9.045 9.045
11 65.848 57.865 57.710
12 34.799 09.045 9.045
13 68.977 68.046 68.190
14 57.794 57.638 57.266
15 61.124 68.022 67.593
16 49.697 09.045 9.045
17 61.903 67.575 67.565
Weight: 1207.407kg 1170.63477kg 1169.705kg
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Fig. 5 Deformed optimal model of 10 bar truss

The initial weight of the 25 bar truss when all elements have 20mm thick
elements is 7389.295kg with a maximum displacement of 0.402mm. Table 5 compares
element diameters and total weight of trusses. Figure 6 shows the resulting deformed
model with compressed elements shown in red, and stretched elements in blue.

Table 5 25 bar truss optimal design comparison

Element group: GA ¢[mm] [7]1 P[mm] [8] $[mm]
1(A) 2.86 40.4297 2.860
2 (A= As) 32.02 49.397 40.311
3 (As— Ag) 56.36 2.860 49.519
4 (A1o— A1) 2.86 2.860 2.860
5 (Az—Az) 2.86 23.650 2.860
6 (Au— A7) 25.97 37.017 23.596
7 (Ag—Ax) 43.3 46.708 36.999
8 (Azz— Ass) 41.85 40.430 46.681
Weight: 261.296kg 247.375kg 247.1532kg
7
'% \ _\’\.\. 4 N

Fig. 6 Deformed optimal model of 25 bar truss
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4. CONCLUSION

As most heuristic optimization methods show drastic decreases in weight of
standard test models, the benefits of their use in designing practically applicable trusses
is obvious. The quickest way to create truss models is through parametric input. By
combining parametric modeling with optimization the time needed to achieve a minimal
weight design concept is decreased. In this paper through the use of Rhino, a program
with integrated modeling, parameterization, finite element analyses, and optimization
this process is further integrated to not require additional steps. The parametric models
optimization capabilities are proven in this paper by testing the created model on 10, 17,
and 25 bar truss models showing a 74.25% (76.11% for Load case 2), 86.72%, and
96.46% decrease in weight respectively. While the weight results vary from those in
literature, due to the model using basic genetic algorithm without penalty functions, they
are still competitive. The next step in this research will be creating a parametric model
with dynamic input of nodes and their connections to optimize shape and topology as
well.
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