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PREFACE 
 
The Faculty of Mechanical Engineering Kraljevo has been traditionally organizing the international 
scientific conference devoted to heavy machinery every three years. The VIII International Scientific 
Conference HM 2014 is considering modern methods and new technologies in the fields of transport 
design in machinery, control energy, production technologies, urban engineering and civili 
engineering through thematic sessions for the purpose of sustainable competitiveness of economic 
systems. Modern technologies are exposed to fast changes at the global world level so that their timely 
application both in large industrial systems and in medium and small enterprises is of considerable 
importance for the entire development and technological progress of economy as a whole.  
 
The VIII International Scientific Conference Heavy Machinery HM 2014 is a place for exchange of 
experiences and results accomplished in domestic and foreign science and practice, with the goal to 
indicate directions of further development of our industry on its way toward integration in european 
and world economic trends. Exchange of experiences between our and foreign scientific workers 
should contribute to extension of international scientific-technical collaboration, initiation of new 
international scientific-research projects and broader international collaboration among universities. 
 
The papers which will be presented at this Conference have been classified into seven thematic fields: 
 

A. EARTH-MOVING AND TRANSPORTATION MACHINERY 
B. PRODUCTION TECHNOLOGIES 
C. CIVIL ENGINEERING AND MATERIALS 
D. AUTOMATIC CONTROL, ROBOTICS AND FLUID TECHNIQUE 
E. MACHINE DESIGN AND MECHANICS 
F. RAILWAY ENGINEERING 
G. URBAN ENGINEERING, THERMAL TECHNIQUE AND ENVIRONMENT 

PROTECTION 
 
Within this Conference, the First International Students Symposium will be held. The aim is to open 
a scientific discussion on this actual problem in industry among young students. 
 
The sponsorship by the Ministry of Science of the Republic of Serbia is the proper way to promote 
science and technology in the area of mechanical engineering in Serbia. 
 
On behalf of the organizer, I would like to express our thanks to all organizations and institutions that 
have supported this Conference. I would also like to extend our thanks to all authors and participants 
from abroad and from our country for their contribution to the Conference. And last but not the least, 
dear guests and participants in the Conference, I wish you a good time in Kraljevo – Vrnjačka Banja 
and see you again at the Eight Conference, in three years. 
 
 
 
 Kraljevo – Zlatibor, June 2014 Conference Chairman,  
   
  Prof. Dr Milomir Gašić, mech eng. 
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Highway safety and stopping power are always at the forefront of discussions within the commercial vehicle 

industry. Air disc brake (ADB) systems have been available for commercial vehicles since the 1970s. The technology 
initially suffered teething problems, but brake manufacturers say today’s air disc brakes are highly dependable and 
reliable with superior stopping characteristics that make them an obvious candidate for fleets wanting to make certain they 
are in compliance with the new stricter regulations. One of vehicle components that occasionally generate unwanted 
vibration and unpleasant noise is the brake system. As a result, carmakers, brake and friction material suppliers face 
challenging tasks to reduce high warranty payouts. 

This study takes into consideration three major aspects of modelling of a real disc brake so that the model can be 
built in a more realistic way. There are the structural model, the friction model and the contact model. A fully numerical 
method is used where all the disc brake components are modelled and analysed using finite element software packages. 
Having developed the disc brake components, modal analysis is carried out at the brake components and assembly levels. 
Friction and contact model are included when all the brake components are brought together. 

Keywords: CAD, disc brakes, FEM, modeling, noise
1. INTRODUCTION 

Highway safety and stopping power are always at 
the forefront of discussions within the commercial vehicle 
industry. Air disc brake (ADB) systems have been 
available for commercial vehicles since the 1970s. The 
technology initially suffered teething problems, but brake 
manufacturers say today’s air disc brakes are highly 
dependable and reliable with superior stopping 
characteristics that make them an obvious candidate for 
fleets wanting to make certain they are in compliance with 
the new stricter regulations.  

ADBs are now accepted as the primary foundation 
brake in Europe. Drum brakes are still used on off-road 
vehicles (mining, construction, military, etc.) and on 
vehicles for export to other continents - 18 percent of total 
European Union (EU) brake demand. 

 Among the reasons for introduction of ADBs in 
EU are: 

− With ADBs, brake fade is virtually eliminated, 
proven from Alpine testing. 

− Inherent high-efficiency (greater than 95 percent) 
and low hysteresis ensure a negligible pull (different brake 
performance left and right) to deliver controlled vehicle 
steering and braking stability 

− This same high-efficiency and stability enable the 
highest-quality of control functions for electronic control 
systems like ABS, electronic braking systems (EBS) and 
electronic stability systems. (ADBs were introduced in 
parallel with EBS in the EU during 1996) 

− ADBs support intelligent functions, such as 
continuous wear sensors, brake pad wear monitor and, in 
the future, electronic clearance control 

− New ADBs designs reduced stopping distance up 
to 30 percent at the time of introduction in the EU, 
compared with then-current drum brakes 

− ADBs enable simpler, quicker pad change vs. 
drum shoes and have an integrated automatic wear adjuster 
function. 

 
Figure 1: Comparsion of FMVSS Stopping Distance 

Requirements from 60 MPH 
More than 90 percent of trucks in the United States 

still spec s-cam drum brakes. However, ADBs are widely 
used on refuse trucks and transit vehicles. There are 
several reasons contributing to the slow adoption of ADBs 
in North America (NA). Firstly, in Europe, the truck 
OEMs decide the vehicle specs, whereas NA is 
predominately a customer spec market. Next, there is a 
different service infrastructure. Trucks are serviced at 
OEM dealers in Europe by factory-trained and equipped 
technicians, so technology changes can be more easily 
managed and facilitated. In NA, vehicles are serviced at a 
wide variety of service locations, so conversion to new 
parts and training is more complex. Another factor is that 
trucks in North America are dynamically different so the 
impact of ADBs is less. Plus, the upfront costs for ADBs 
are more than drum brakes. Further, in general, technology 
application lags in North America compared to Europe. 

Some of the brakes trends in the North American 
market are: 
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− CSA (Compliance, Safety, Accountability) is 
putting more emphasis on brakes for service and 
reliability. 

− Weight is becoming a factor as larger drum 
brakes, emissions equipment and pending GHG 
(Greenhouse Gas) regulations all shift the focus. 

− Air disc brakes are widely available - a factor that 
influences choice. 

− An array of safety innovations, such as collision 
mitigation and lane departure warning, compete for ADB 
dollars 

− Data sophistication is growing with real-time 
telematics-based systems. 

 Among the major differentiators of ADB vs. 
drum brakes are feel and safety. As for feel, the ADB's 
linear output and stability drive the preference. With 
regard to safety, the difference is multi-faceted. With 
better brake feel there is less driver fatigue. Because there 
is less brake fade, less skill is required, making for safer 
drivers. In addition, stopping distance is slightly better. 
ADBs cost more than drum brakes but this has to be 
factored against future truck residual value, maintenance 
and service savings (pad changes are up to 75 percent 
faster than drum shoe changes and no periodic lubrication 
is required) and uptime improvement (adjuster mechanism 
and pistons are environmentally sealed for life and there 
are no current "out-of-adjustment" conditions). Greater 
adoption of ADBs in North America will continue to 
progress as vehicle owners and operators become more 
educated on their benefits and advantages compared to 
drum brakes [1]. 

In the testing sequence, two tractor-trailers were 
driven side-by-side on a closed test track with 
simultaneously applied full brake pressure to stop the 
vehicles at 75 mph. The stopping distance for air disc 
brake-equipped truck was within the range of 305 to 325 
feet. The drum brake-equipped truck stopped in the range 
of 450 to 518 feet initially when cold, but as the drums 
heated up, the stopping distances became progressively 
longer. Stopping distance for the hot drum brake-equipped 
vehicle exceeded 750 feet, while the air disc brakes 
consistently stopped at around 320 feet. 

The performance advantages for air disc brakes at 
higher speeds are particularly noteworthy when 
considering that during night-time driving, low-beam 
headlights only provide 350 feet of visibility. This is 
within the range of the air disc brakes' ability to stop a 
vehicle, but is not the case for drum brakes. 

At 60 mph, the air disc brake-equipped truck 
stopped in the range of 185 to 210 feet in both the hot and 
cold brake temperature conditions. The drum brake-
equipped truck stopped in the range of 255 to 292 feet 
with cold brakes and more than 425 feet with hot brakes 
[2]. 

The disadvantage of disc brakes is the high 
sensitivity (susceptibility) to self-excited vibrations.  Most 
of the kinetic energy of a moving vehicle is converted into 
heat through friction. However, a small part of the kinetic 
energy is converted into acoustic energy and creates noise. 
The squealing brake is difficult and expensive to fix. It is 
better to solve the noise problem in the design phase [3].  
Modern disc brakes with floating caliper are highly 
developed mechanical engineering device. They have to 

work reliably over a long lifetime, tolerating huge 
mechanical and thermal loads. 

On the other hand, in recent decades, there has been 
a significant increase of engine power, but also the 
expectations in terms of comfort. This means that the noise 
levels, and especially brake noises, which are to be 
acceptable 20 or 30 years ago, are no longer tolerated by 
the modern user. Noise and vibration have become an 
important issue in the design of braking systems for motor 
vehicles. Efforts to improve today's braking systems must 
take into account the problems of noise and vibration. 
Good understanding of the generation mechanism of brake 
noise in this manner has become an important factor in the 
competition to design successful braking systems. It 
should be noted that, according to the manufacturers of 
brakes, brake noise is generally only a problem of comfort, 
and that according to them, does not affect the operation of 
the brakes. Although there are some new solutions in the 
field of braking systems ("brake by wire"), it did not affect 
the problem of brake noise until the brakes are working 
with the energy dissipation due to dry friction. 

Vibrations in the braking process are a major 
problem of today's engineers, as can be seen by the 
existence of the NVH Department (Noise, Vibration and 
Harshness) in a number of companies. Frequently, these 
NVH teams focus on the problem of braking systems in 
terms of brake noise caused by high frequencies vibration 
with low amplitude. These oscillations are produced in the 
process of friction when the brake linings come into 
contact with the rotating elements. Created sound is much 
like that produced when writing or scraping on a 
chalkboard, an energy-dissipating frictional vibration 
occurs.  Because frictional or self-excited vibrations are so 
different from resonant and forced vibrations, different 
methods of study need to be implemented when trying to 
understand, measure, and remedy these situations [3]. 

2. COMPUTER AIDED DESIGN (CAD) OF DISC 
BRAKE FOR ELIMINATING NOISE PROBLEMS 

Computer aided design has evolved from the 
simple replacement of traditional drafting equipment to a 
very sophisticated, highly visual design tool. The earlier 
CAD programs used the computer to generate lines for 2D 
drawings. As the software and hardware advanced, these 
2D drawings could be converted into 3D objects. Modern 
software used for solid modelling often functions in the 
reverse order; the three-dimensional object is drawn and 
then two-dimensional, orthographic drawings are 
generated from that model.  

Modern software provides all the necessary tools 
for advanced designers and specialists involved in 
structural analysis. The processes covered include stress, 
frequency, thermo-mechanical, buckling and contact 
analysis with multiple load, restraint and mass complex 
configurations. Analysis can be performed on single parts 
as well as on hybrid models mixing solid, shell and beam 
elements. This allows for a wider number of mechanical 
behaviour and sizing assessments of parts and assemblies 
earlier in the product development process.  

Analytical methods have proven to be inadequate to 
achieve complete understanding of squeal phenomena, as 
well as providing tools for the prediction and suppression 
of squeal. Besides, the analytical approaches are often 
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limited to the study of a certain influential parameter. 
However, analytical methods are, despite its limitations, 
very useful for a concise explanation of the instability of 
the system. These disadvantages can be overcome by 
numerical methods, using the finite element method, 
which allows the development of models with a large 
number of degrees of freedom.  Numerical methods take 
into account the deformability of elements during 
modelling, while the analytical approach is often treated 
them as rigid. Experimental methods are essential not only 
to quantify the nature of squeal noise and impact of 
different working conditions on this phenomenon, but also 
to ensure the validation of the results of the numerical 
approach and quality of brakes in terms of brake noise 
before going to market. 

In recent years, the finite element method has 
become most commonly used tool for studying disc brakes 
squeal among researchers of this problem.  The reason for 
this lies in the fact that this method offers a much faster 
and more economically cost effective solutions with 
regard to the experimental methods and can predict the 
performance of squealing noise in the early stage of the 
structural development of the product [4]. It also can 
achieve more realistic representation of disc brakes, 
including non-linearity and elasticity of disc brake's 
components. The previously listed great advantages 
suggest to the high promising future of finite element 
method with respect to the other methods. However, much 
research remains to be done to make the method reliable in 
predicting the occurrence of squeal. During development 
of the disc brake’s model using the finite element method, 
it is important to validate it, in order to get the model that 
correctly represents the actual structure in terms of 
geometry and material characteristics.  Validated model 
should be able to sufficiently accurately predict the 
occurrence of squeal [5, 6]. 

There are generally two major categories among 
simulation and analysis methods in the prediction of 
squealing brakes: the complex eigenvalues analysis in the 
frequency domain and the dynamic transient analysis in 
the time domain.  Both analyzes have their advantages and 
disadvantages. The complex eigenvalue analysis can 
reveal which system modes of vibration are unstable but a 
shortcoming of this technique is that they do not allow 
time-dependent material properties and could not take into 
account full effect of nonlinearity away from steady 
sliding [7].  Meanwhile, divergence of a transient solution 
indicates that instability is present in the system and this 
technique could overcome the shortcomings in complex 
eigenvalue analysis. But the drawback of such technique is 
its long computing time and slow turnaround time for 
design iterations. A comparison between the two analyses 
is also made.  

Dynamic analysis of transient processes 
(sometimes called the time-history analysis) is a technique 
used to determine the dynamic response of the structure 
under the effect of any time-dependent load. This type of 
analysis can be used to determine the time-varying 
displacements, deformations, stresses, and forces in the 
structure, because it is suitable for any combination of 
static, transient and harmonic loads. The load range during 
time is such that the effects of inertia and damping are 

considered important. If the effects of inertia and damping 
are not important, you may be able to use static analysis. 

In recent years, the complex eigenvalue becomes 
the most preferred method in the brake research 
community to study brake squeal than the transient 
analysis. The positive real parts of the complex eigenvalue 
indicate the degree of instability of the linear model of a 
disc brake and are thought to show the likelihood of squeal 
occurrence or the noise intensity [8].  On the other hand, 
instability in the disc brake can be associated with an 
initially divergent vibration response using transient 
analysis. Liles [8] was the early researcher who 
incorporated complex eigenvalue analysis with the finite 
element method whilst Nagy et al. [9] pioneered dynamic 
transient analysis with the finite element method.  
Complex eigenvalue analysis allows all unstable 
frequencies to be found in one run for one set of operating 
conditions and hence is very efficient. However, not all 
unstable frequencies thus obtained can be observed in 
experiments. Transient analysis is able to predict true 
unstable frequencies (those found in experiments) in 
principle if the system model is correct. However it is very 
time-consuming. Moreover it does not provide any 
information on unstable modes. 

It can be seen from the previous works [8,10] that 
the complex eigenvalue analysis required using a number 
of linear spring elements at the friction interface disc/pad 
in order to create the friction connected members 
(asymmetric stiffness matrix), which leads to complex 
eigenvalues, or unstable behavior where positive real parts 
indicate the likely occurrence of squeal. Fortunately, with 
the contribution of some researchers [11,12] and the 
initiative of a finite element software companies [13,9], 
linear spring elements are no longer required as friction 
coupling terms can now directly implemented into the 
stiffness matrix. As a result, the effect of non-uniform 
contact pressure and the influence of residual stresses can 
be included in the complex eigenvalue analysis [13].  
Another advantage of this approach is that the surfaces in 
contact do not need to have the matching meshes, and in 
fact it can reduce data preparation time.  Some former 
used approaches required nodes on two contacting 
surfaces to coincide and similar meshes. In some previous 
studies the authors have assumed full contact at the pads 
and disc interface [8, 7]. However, previous works related 
to the break contact pressure analysis [15, 16] has shown 
that the contact pressure distributions at the 
disc/pads interface are not uniform and that there exists 
partial contact over the disc surface.  

In the past, simulation of disc brake squeal using 
the complex eigenvalue analysis, together with the finite 
element method was time consuming compared to the 
normal mode analysis. It is already known that the contact 
geometry between disc and friction material interface has a 
significant contribution to squeal generation [10, 17]. 
These researchers believed that squealing can generate at 
particular conditions of pads topography. This is true, 
because the material properties of friction materials are 
much lower compared to the disc as a result the friction 
materials are more prone to wear. Furthermore, the friction 
material has a much irregular/corrugated surface compare 
to disc. From the literature review, it was determined that 
none of the finite element models considered the friction 
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material surface’s topography. All the models assumed 
that the friction material had the smooth and flat interface, 
while, in reality, it is a rough surface. As previously 
mentioned, most of the FEM models are validated only at 
the component level or a combination of the components 
and assembly levels. In the literature, it was shown that the 
complex eigenvalue analysis was the most common 
method and most adopted by the industry to study their 
problems with squealing noise. This method depends 
largely on the results of contact analysis, which can 
determine the instability in the disc brake assembly. 
Determination of the dynamic contact pressure through the 
experimental methods still remains impossible.  However, 
there are methods to obtain the static contact pressure, 
when the disc is stationary. The reference [14] shows that 
the static contact pressure distribution and its magnitude 
can be used as a validation tool where the 
correlation between the calculated and the measured 
results can be established. Therefore, this level of 
validation can enhance one's confidence in the developed 
model, as well as to provide better prediction of squeal. 

It must be understood that the disc/pads contact is 
not complete.  There are gaps in the contact interface, and 
the contact area varies during brake’s vibration. There are 
several methods for modeling the contact in the literature, 
such as the gap element, the spring element, etc. The 
surface element for disc/pad interface was used for the 
contact model, while the spring element is used to 
represent the contact interaction between the other 
components of the disc brakes that are in contact.  The real 
contact surface of the friction material can be used instead 
of the assumed ideal contact surface. This can lead to new 
insights how to get better predictable results. Due to wear, 
the contact between the disc and the pads can be changed 
over time. Perhaps this may explain the elusive nature of 
the squeal phenomena [14]. Another important aspect is 
the friction model. It is believed that the friction is the 
primary cause of squeal.  The basic Coulomb friction 
model is used in this paper. It can be assumed that the 
friction coefficient is constant or depends on the speed. 
Previous studies of squeal occurrence were based on the 
hypothesis that the negative slope of μ-ν function greatly 
contributes to the occurrence of squeal. However, this 
hypothesis was subsequently replaced by other 
mechanisms called sprag-slip and modal joining that did 
not require this friction characteristic. Instead, it is also 
shown that the constant coefficient of friction generates a 
squealing. The effects of both friction characteristics on 
the squeal occurrence are simulated in this study.  In 
addition to these most important characteristics, the impact 
of heat on the contact pressure distribution and the 
occurrence of squeal can also be an important influential 
parameter [14, 18]. Research of the complex combined 
effects of thermal expansion and the contact loads between 
pads and disc at a moment when they are exposed to 
temperature changes during the braking process is 
presented in [18]. 

3. MODAL ANALYSIS OF FEM MODEL OF DISC 
BRAKES ASSEMBLY 

A detailed three-dimensional finite element model 
(FEM) of disc brake assembly is developed.  Figure 2a) 
and 2b) show a real disc brake assembly with floating 

caliper, and its FE model. The FE model consists of a disc, 
a piston, a caliper, a mounting bracket, interior and 
exterior pads, two bolts and two guide pins. The rubber 
seal (attached to the piston), and the two rubber washers 
(attached to the guide pins) are not included in the FE 
model. Damping shims are also not present in the model 
since they have been removed in the squeal experiments. 
The FE model uses 35169 solid finite elements and 
approximately 37,100 degrees of freedom (DOFs). This 
figure excludes the spring elements that have been used to 
connect the disc brake components. 

        
a)                                          b)                           

Figure 2: Disc brake assembly a) the real disc brake b) 
FE model [19] 

The disc, brake pads, piston, guide pins and bolts 
are developed using a combination of 8-node (C3D8) and 
6-node (C3D6) linear solid elements, while the other 
components developed using a combination of 8-node 
(C3D8), 6-node (C3D6) and 4-node (C3D4) linear solid 
elements. Details for each of the components are given in 
Table 1. Since the contact between the disc and friction 
material surface is crucial, realistic representation of these 
interfaces should be made. Friction material has a rougher 
surface and is softer in terms of properties than the disc, 
which has quite smoother and flat surface, and is less 
prone to wear. 
Table 1: Finite element models of disc brake’s components 

Disc brake’s components  
Type of 
finite 

element 

Number 
of 

elements

Number 
of nodes

Disc C3D8 
C3D6 8177 7866 

Friction 
Material C3D8 

2735 1804 The back 
plate C3D4 
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Caliper 
C3D8 
C3D6 
C3D4 

8138 5135 

 

Mounting 
Bracket 

C3D8 
C3D6 
C3D4 

7204 3803 

 

Piston C3D8 
C3D6 383 678 

 

Guide Pin C3D8 
C3D4 802 662 

 

Bolt C3D8 112 186 

3.1. Components Interfaces 
Many different methods can be used in the FEA 

modeling of a contact between the components. These 
methods are (in order of simplest to most complex): 
• Merged nodes  
• Multi-point constraints  
• Linear spring elements  
• Contact elements. 

Merged nodes are shared between neighboring 
elements so that the components are effectively connected 
together. Although this is simple, it does not allow the 
application of any type of interfacial property such as 
contact stiffness or damping. Contact surfaces are by far 
the most advanced methods of coupling components 
together. There are sophisticated contact surface models 
that allow some level of motion between the components, 
which include the specifying normal and tangential contact 
stiffness. Here a more realistic representation of what is a 
highly non-linear feature can be applied. Unfortunately, it 
requires a considerable computational process compared to 
the other three methods.  

Upon completion of the modeling, all the disc 
brake’s components must be integrated into the assembly 
model. Contact interaction between the disc brake 
components is represented by the linear spring elements 
(SPRING 2 in ABAQUS nomenclature), with the exception 
of the disc/pad interface where surface-to-surface contact 
are introduced (see Table 2). This selection was made due 
to the fact that the contact pressure distributions at the 
disc/pads interface are more significant than other 
component contact interface. This type of spring element 
has three degrees of freedom in the translational direction 

and the relative displacement across the spring element is 
the difference of the i-th component at the spring’s first 
node and j-th component of the spring’s second node: 

 21
ji uuu −=Δ ,       (1) 

 
where i and j are the degrees of freedom in the 
translational direction. This spring element allows the 
users to specify different spring stiffness for different 
directions. 

Figure 3 shows a schematic diagram of the contact 
interaction that has been used in a model of the disc brake 
assembly. A rigid boundary condition is imposed at the 
bolt holes of the disc and of the mounting bracket, where 
all six degrees of freedom are rigidly constrained. 

 
Figure 3: Schematic diagram of contact interaction in a 

disc brake assembly [14] 
Some of the components need to be fixed-should be 

tied, for example, bolt and caliper. 
Table 2: The contact interaction between components 

Components Interaction 
Disc-Brake Pads Surface-to-surface 

Caliper- Brake pads Node-to-surface 
Piston-Brake pads Node-to-surface 
Clip-Brake pads Node-to-surface 

Guide Pin-Mounting Bracket Node-to-surface 
Piston- Caliper Node-to-surface 

 
The model used for analysis of this braking system 

has the three-dimensional elements that are used from the 
library of elements: 
− C3D6 - first order 3D continuous wedge element with 

6 nodes,  
− C3D8 - first order 3D continuous hexahedral element 

with 8 nodes,  
− C3D4 - first order 3D continuous tetrahedral elements 

with 4 nodes.  
Contact surface elements are used in areas where 

the contact is occurred. 
It is not necessary to apply the final sliding of 

contact pairs in any contact location within the model of 
the brake system. Most of these locations show negligible 
relative slip when the brake is loaded.  The only exception 
is the disc/pads interface, where obviously the rotation of 
the disc leads to the high sliding speed in a physical brake 
system. However, in the contact analysis used in the 
ABAQUS, it is simply a case of defining the boundary 
conditions of the disc’s speed. Table 3 shows an overview 
of the parameters used for each contact interface within 
the brake assembly. 
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Table 3: Contact interface in the ABAQUS model of disc 
brake assembly 

Interface Type 
The initial 
clearance, 

mm 
μ 

Disc / Friction lining Small 
sliding .005 0.336 

Inner plate/Piston Small 
sliding .005 0.12 

The outer plate/Housing Small 
sliding .005 0.12 

Plate/Mounting Bracket Small 
sliding .005 0.12 

Piston/Caliper Housing Small 
sliding .001 0.05 

Guide pin/Mounting Bracket Small 
sliding .001 0.05 

Guide pin/Caliper Housing Tied .01 - 
 
The chosen values of initial contact clearance are 

0.005 mm for all the pad’s surfaces, because they all 
should have surfaces that lie on each other at the beginning 
of the analysis, and 0.005 mm represents the geometric 
resolution of the geometry. Clearance between pad and 
caliper’s surfaces is 0.001 mm because these surfaces are 
not designed to be in the initial contact and are modeled 
with a finite clearance. The value of 0.001 mm ensures 
there is no adjustment of nodes on these contact surfaces 
prior to analysis. The value of clearance between caliper 
housing and guide pin is 0.01 mm, and this ensures that all 
contact surfaces are completely adjusted and connected 
even if some nodes are separated even 0.005 mm for 
tolerance modeling.  

Static analysis establishes the basic state of the 
system with typical load of the brake, then perform 
complex eigenvalue analysis to determine the stability of 
the system around this basic state:  

1. Static preload, nonlinear static analysis. 
The pressure is applied to the back of the piston and inside 
the cylinder in the caliper housing. No rotation is applied 
to the rotor for this step and the system reflects a 
stationary brake with pressure applied. This allows non-
linear solver to more easily determine the contact 
conditions at the disc/pad, guide pin and piston interfaces 
without the complication introduced by rotation. 
Stabilization of solutions, which involves applying 
artificial damping to control rigid body motions, is applied 
to the bodies that are not constrained prior to contact being 
established. The damping is small enough not to affect the 
final static solution when all the contact conditions have 
been properly established. 

2. Adding rotation, non-linear static 
analysis. Velocity boundary condition was added to the 
disc from the static loaded state from step 1. The pads 
react to frictional forces at the disc/pad interface and begin 
to translate until they are fully captured by the pad 
abutment regions on the mounting bracket. The system 
converged into its basic state during a brake application. 
This provided the basic state for the analysis steps that 
followed. 

3. Normal modes. The normal modes 
solution provides a subspace of modes to be used for 
complex eigenvalue solution in the step 4. Number of 
modes extracted was 107 and covers a frequency range 

from 1 to 10 kHz. The number of modes in this step 
needed to be greater than the number of complex modes 
requested for step 4 adequately to allow the complex 
modes to be represented. 

4. Complex modes. Complex eigenvalue 
solution to provide the stability response of the base 
statically loaded state. Complex modes were extracted 
taking into account the effect of friction interface [5, 6]. 

4. RESULTS 
The second phase of the methodology is to 

determine the dynamic characteristics of the disc brake 
assembly’s model. The previous separated components of 
the disc brake must be now coupled together to form the 
assembly model. Modal analysis was carried out to obtain 
the natural frequency of the assembly (Table 4). The 
resulting out-of-plane modes of disc brake assembly are 
shown in Figure 4. 

a) 2ND at 1369 Hz b) 3ND at 2656 Hz 

c) 4ND at 4709 Hz d) 5ND at 5801 Hz 

e) 6ND at 7782 Hz f) 7ND at 9055 Hz 
Figure 4: Mods of disc brake assembly [19] 

Table 4: Modes of disc brake assembly in a free-free 
boundary conditions 

Mode Nº Frequency, 
Hz

Mode Nº Frequency, Hz 

2ND 1369 5ND 5801 
3ND 2656 6ND 7782 
4ND 4709 7ND 9055 

4.1. Nonlinear contact analysis 
ABAQUS defines the contact pressure between the 

surfaces at a point, p, as a function of the over-closure, h, 
of the surfaces. A hard contact model is considered where 
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the disc and pad surfaces will separate (or contact 
constraint is removed), when the contact pressure between 
them becomes zero or negative and on the other hand, the 
disc and pad surface will interact (or contact constraint is 
applied) when the contact pressure between them is larger 
than zero. Two regimes for p=f(h) are given in the 
formulations below [13]: 

 




>=
<= )(00 )(00

closedpзаh
openhзаp

 (2) 

 
When surfaces are in contact, they usually generate 

shear (friction) and the normal forces across the sliding 
interface. A relation between these two components of 
force is described in terms of friction between the bodies 
in contact. Typically, when deriving friction in a 
theoretical context, the critical value of the tangential force 
is defined as: 
 Ncrit FF ⋅= μ , (3) 
 
where Fcrit is the critical shear force, μ is the friction 
coefficient, and FN is the normal force. Due to the 
discretization process used by the finite element method, the 
critical value is not defined in terms of a critical load 
(Fcrit), but as a critical shear stress (τcrit) that is a function 
of the pressure (p), as given below: 
 pcrit ⋅= μτ . (4) 
 

The value of the shear stress that compares with the 
critical value, defined above, is the magnitude of the 
resultant shear stress in the x and y-directions: 

 22
yxeq τττ += . (5) 

If the value of the equivalent shear stress is greater 
than value of the critical shear stress, sliding contact will 
be initiated, and the restoring shear stress will be 
equivalent to τcrit. In the case of sticking condition, the 
shear stress will balance that applies to the contact 
interface. 

ABAQUS provides various friction models to 
describe the relative tangential motion of the contact 
surfaces. A basic Coulomb friction model is used, where, 
by default, friction coefficient can be defined as a function 
of sliding speed, contact pressure and average temperature 
at the contact point. The users can also define different 
coefficients of friction, ie. static friction and kinetic 
friction coefficients (Figure 5).  In this model, it is 
assumed that the friction coefficient exponentially 
decreasing from the static value to kinetic value based on 
 the following equation:  
 ( ) vd

ksk
ce−−+= μμμμ , (6) 

 
where µk is the kinetic friction coefficient, µs is the 

static coefficient, dc is a decay coefficient and v is the  
sliding speed. During the specifying static and kinetic 
friction coefficient, ABAQUS allows the users to change 
the friction coefficient during the analysis. This is adopted 
in the entire study where the static friction coefficient is 
used during the first step, and the kinetic friction 
coefficient in the following steps.  ABAQUS also provides 
an anisotropic friction model that allows the users to 
specify different friction coefficients in the two orthogonal 
directions on the contact surface. The users can also 

develop their own friction model using user-defined 
subroutine [13]. 

 
Figure 5: The relationship between static and kinetic 

friction coefficient 
There are three types of contact schemes available 

in ABAQUS namely, small, finite and infinitesimal sliding. 
By default, ABAQUS treats finite sliding by which contact 
surfaces may allow for arbitrarily separation, sliding and 
rotation. Using finite sliding, the slave nodes may come in 
contact anywhere along the master surface and the load 
transfers are updated throughout the analysis. Whilst for 
small sliding the contact formulation assumes that the 
contact surfaces may undergo arbitrarily large rotations, 
but that a slave node will interact with the same local area 
of the master surface during analysis. Therefore the slave 
nodes are not monitored that in contact along the entire 
master surface. With the final and small sliding consider 
geometric nonlinearity, infinitesimal sliding ignores this 
effect and assume both relative motions and the absolute 
motions of the contacting bodies are small. Accordingly, 
infinitesimal sliding is unsuitable for the disc brake 
analysis.  

Further, comparison between the two sliding 
schemes is made in terms of the contact pressure 
distribution, the contact area and simulation time. The 
previously developed model will be used in analysis. The 
experimental data were used for the maximum braking 
performance regime, and the corresponding maximum 
friction coefficient. The pressure in braking installation of 
1.84 MPa and the rotation speed of 44.52 rad/s were 
introduced in the model. For the contact interface between 
the pads and the disc, the kinetic coefficient of friction of 
μ=0.336 is applied. A penalty friction constraint is chosen 
for comparison. The obtained results will suggest which 
sliding scheme should be adopted throughout this research. 

From figures 6a) and 6b), it can be seen that contact 
pressure distributions are almost the same for both the 
piston and finger brake pads. Maximum contact pressures 
are also nearly identical for both sliding schemes. 
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a) Small sliding  

b) Final sliding 
Figure 6: Contact pressure distribution between small 

(a)and the finite sliding (2)schemes at the piston (left) and 
finger (right) pads.Left of the diagrams is the leading edge 

Comparisons between small and finite sliding in 
terms of the contact area, maximum pressure and 
simulation time are described in Table 5. As previously 
mentioned, the finite sliding scheme is more demanding in 
terms of computation time that the small sliding scheme. 
This is proved to be true as indicated in Table 5, in which 
the finite sliding takes about 2893 s to complete the 
simulation, while small sliding only takes about 2000 s, 
which is a reduction of 30.87%. It appears that the two 
schemes have little difference in the contact analysis in 
particular for the disc brake contact analysis. Based on the 
results, small sliding scheme will be adopted for 
subsequent analysis due to its computational advantages 
over the finite sliding, while a similar contact pressure 
distribution, contact area and maximum pressure can be 
obtained for both schemes. Furthermore, using finite 
sliding should be paid more attention in smoothing the 
master contact surfaces and nothing need to be done for a 
small sliding. 
Table 5: Comparison between the small and finite sliding 

Parameter Small slip Final slip
Piston Finger Piston Finger 

Contact 
area, m2 2.209⋅10-3 1.475⋅10-3 2.565⋅10-3 1.459⋅10-3 

The highest 
contact 
pressure, 
MPa 

3.6 5.8 3.5 5.3 

Time 
simulation, s 2000 2893 

 
In this study, it is assumed that the pads will come 

in interaction with the same profile of the rotating disc 
surface. Therefore, small sliding scheme is chosen. The 
convergence could also be easily obtained, compared with 
the finite and infinitesimal sliding formulation. 
Furthermore, small sliding scheme provides considerably 
computation time savings in comparison with the finite 
sliding model. 

There are two stiffness methods for friction 
constraints that are available in ABAQUS, namely, a 
penalty method and the Lagrange multipliers method. The 
penalty method (default by ABAQUS) permits some 
relative motion of the surfaces when the surfaces should 
be sticking whilst the Lagrange method should be used 
when no slip is allowed in sticking condition. Using the 
Lagrange method can increase the computational cost of 
the analysis because it adds more degrees of freedom to 
the model and quite often increases the number of 
iterations needed to obtain a converged solution. In 
addition, the Lagrange formulation may prevent 
convergence of a solution. In the case of the finite sliding, 
the considered model of disc brake, there was no 
convergence of solution. Therefore, in this study the 
penalty method is employed to ease convergence 
restriction, as well as to obtain minimum computational 
cost [13]. 

The results obtained using the method of Lagrange 
multipliers are presented in Table 6. The results obtained 
using the small sliding scheme are used. By looking at 
Table 5 and 6, particularly with respect to the contact area 
and the maximum pressure can be seen that there are no 
differences between the two schemes. Similarly, the 
contact pressure distributions as shown in Figures 7a) and 
7b) in both schemes are identical. However, in terms of the 
computational cost, Lagrange multipliers scheme requires 
more time for completing the simulation compared to the 
penalty scheme. Lagrange multipliers scheme requires 
about 2819 s for a single analysis, whereas the penalty 
method only takes about 2000 s, which is an increase of 
29% in the computational time. Results indicate that for 
disc brake squeal problem exact sticking condition is not 
necessary. It has been observed that one of the main 
characteristic of squeal is that no obvious sticking state is 
present at the disc/pad contact interface. Even though one 
can argues that this (no apparent sticking) may be applied 
at the macroscopic level, but not in the microscopic state. 
Since this paper only considers squeal occurrence at the 
macroscopic level, any conditions or behavior that is 
present at the microscopic level is not considered. 
Therefore, it is considered that the penalty scheme is most 
suitable for this study due to its advantages in terms of 
computational cost over Lagrange multipliers and will be 
used in subsequent analyses. 

   a) 
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b) 

Figure 7: Contact pressure distribution using Lagrange 
multipliers formulation at the piston (up) and finger 

(down) pads. The left side of the diagram is the leading 
edge [19] 

Table 6: Simulation results of contact analysis 

Parameter Lagrange Multipliers 
Piston Finger 

Contact area, m2 2.3⋅10-3 1.457⋅10-3 

The highest contact 
pressure, MPa 3.2 5.7 

Time simulation, s 2819 
 

5. CONCLUSION 
This paper describes the development and 

validation of the FE model of disc brake. The proposed 
methodology has two stages as follow: 
− Validation of the disc brake mechanism’s components 

using modal analysis,  
− Validation of the disc brake assembly using modal 

analysis. 
Using modal analysis has shown that a good 

agreement is reached at the component’s level and brake 
disc assembly's level. This can only be achieved after the 
adjusting process or an update in which the material 
characteristics’ values of the components and the 
spring stiffness is adjusted at each level. It was also 
established that there are a number of natural frequencies 
of the brake components are close to each other.  

Previous studies using the FE method assume a 
perfectly flat surface on the disc/pad interface. Improved 
FE model should include the actual topography of a pad’s 
friction material surface, which can be measured by using 
the linear micrometers. It is also shown that current mesh 
of individual FE model, particularly of the brake pads, are 
sufficiently dense to give a realistic prediction of the 
contact pressure distribution, and also to capture mode 
shapes of natural frequencies up to 9 kHz. However, the 
current predicted results can be improved by using a better 
mesh quality. Due to the accurate representation of 
components and brake assembly, the later simulation can 
achieve much better prediction.  

Next part of paper was focused on the non-linear 
contact analysis of the disc brake model with the main 
objective of determining of contact pressure distribution, 
the contact area and maximum contact pressure. These 
three parameters are useful for subsequent work, 
especially in comparing predicted results from one model 
to another. Several potential contact interaction schemes 
that are available in ABAQUS were described. The first 
comparison is made between small sliding and finite 

sliding schemes. It was found that, although 
the small sliding scheme assumes the slave node could 
slide relatively a small amount at the master surface 
compared to the finite sliding scheme, predicted results 
between the two schemes are almost identical.  The main 
advantage of the small sliding scheme over the finite 
sliding scheme is that it saves about 30.87% of 
computational time. 

The second comparison is made to examine two 
friction stiffness constraints, namely the penalty method 
and Lagrange multipliers method. The penalty method 
allows some relative motion of the surfaces during 
sticking, while Lagrange multipliers do not allow at all the 
relative motion during sticking state. In addition, Lagrange 
multipliers can enforce more precisely the sticking and 
sliding constraints than the penalty method. However, 
computational cost is an issue as Lagrange method takes 
more time for a single analysis. This is proved to be true 
because Lagrange method requires 2819 s compared to 
2000 s using the penalty method, which is an increase of 
29% in computational time. On the other side, the 
predicted results for both methods are identical.  By 
looking at those results, the penalty method is more 
suitable and will be used together with small sliding 
scheme for further research. 
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