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Abstract: Appearance of vibrations has a negative influence on planetary reducer operation. Vibrations which appear
at the start have the worst effect, Determination of the mechanism of vibration and their reduction to an acceptable
level, are issues for a lot of modern research related to planetary reducers.

Presented in this paper is a new design solution of a planetary C concept reducer. According to known dynaniic
models, for this periccndar reducer, an original dynamic model is developed. The original dynamie model describes
dynamic parameters of the presented reducer. At the end of the paper, a discussion is given, and guidelines for firther

research possibilities
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1. INTRODUCTION

Planetary gearben en with their compact design are largely
represented in vperating systems of mobile machinery.
Operating conditions for transmissions in mobile
machinery vary within a wide range. Research of the
gearbox dynamics in this case is of great importance.
Examining the dynainics of planetary gearboxes leads to
conclusions thut could greatly assist the development of
planetary rediicers with regard to: improving their
compact design, increasing reliability, increasing the
lifetime of the drive, reducing vibration and reducing
nolse in working conditions, etc.

Due to the aforementioned reasons, a lot of research is
done in the field of gearbox dynamics. Analysis of the
dynamic behavior of planetary reducers is possible with
various computer software, which perform simulations
[1], [2], [3]. Computer simulation could be verified by
experimental methods [4], [5]. An even greater impact on
planetary rive research is given by the possibility of
performing physical experiments to verify the computer
simulated dynamic analyses.

In this paper a new concept of planetary drive has been
developed. Its dynamic model has been made, which has
been solved in MATLAB - SIMULINK, [6]. The results of
the simulation are also presented in the paper. The paper
also presents the conclusions drawn from the simulation,
and possible directions for future research.

2. DYNAMIC MODEL OF NEW CONCEPT
PLANETARY GEARBOX

Planetary gearbox of C conception has been developed in
this paper It consists of a pinion carrier (h), a stationary
central ring gear (e), dual pinion (f - g) and the movable
central 1ing gears (b), (Figure 1).The planetary gearbox in
Figure 1 is designed for the parameters given in Table 1.

Table 1. Parameters for the design of planetary gearf v

Power P | 5 [kW] |
Input rot. per min. nin | 1200 [min]
Transmission ratio | /g 1:20
Hanel ] o Pl
i b
{-tog? E g
‘‘‘‘‘‘‘ s /‘fﬁ_
r = =l
e i)
he i il
| — ST P [ —
— | A
i

Fig. |. Schematics of the developed planetary gearbox
2.1 Dynamic model setup

The dynamic model of the planetary reducer is set in such
a way as to present the planetary reducer in two planes
(Figure 1). Common elements to both planes are the
pinion carrier (h), dual pinion (f - g) and the shaft that
connects the dual pinion to the pinion carrier. The
dynainic model has four degrees of freedom which
defines the dynamic system of the planetary reducer: y,
radial movement, the movement of the pinion carrier (h)
aroun its axis ©,, moving dual pinion around its own
axis Or (it is equivalent to O,, since it is a dual pinion
setup) and moving of the portable central ring gear (b)
around its axis O, The chojce of the number of degrees of
freedom best describes the operation of this planetary
reducer. Contacts between gears which are coupled arc
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modeled as springs and dampers. Contact between the
gear (e) and gear (f) is modeled as spring with stiffhess ¢
and dumper with damping coefficient k). while the
contact between the gear g and gear b is modeled as a
spring with stiffness ¢2, dumper with damping coefficient
k>. The dynamic model does not take into consideration
the reduced mass of the system elements, however, in
favor of more accurate calculations; the total mass of the
system elements has been used here. The values of mass
and moments of inertia were obtained from the CAD
model of the design of planetary gearbox. The dynamic
model of the planetary gearbox is shown in Figure 2.

a)

Fig. 2. The dynamic model of the planetary gearbox a)
plane 1; b) plane 2

Degrees of freedom, accordin to which the dynumic
model has ben made, are shown at Figure 3, Degrees of
freedom are marked at three-dimensional figure of
planetary reducer.

Fig. 3. Degrees of fredoom vn planetary reducer

1

2.2 Dynamic model definition

Defining the dynamic equations of planetary gearboxes is
performed using Lagrange equations of the second kind.
It has been ndopted, because given the choice between it
and Dalamber's principle or cven Hamilton's principle,
Lagrange equations give the best tlepiction of u dynamic
system. When setting up the dynamic equations via
Lagrange equations of the second kind, the kinetic energy
of the system is {irst calculated.

I

B =3l +a )+ il b 2+ 0262)4, 6, +éf)ii+%[mx(;>f +2)+7, 16,40,V 62 )

2

Following the kinetic energy, the potential energy cof the system is calculated:

E, :% o {y,z + [rf(ﬂ,, +6 J,] + a(),‘]z }-— o ["f (1'5',r + Df)+a6,,]+ ‘]2 c {yf +[rg (G,r + Bf] +al, ~1 ;,:'9,,]] ]—-cz_v, l;:q (9,, +6 ,-)i-.crt?,l - r;ﬁ,,] (2)

Finally, the function of system dissipation is calculated:

‘f’:j.lz ki {y12 +[" " (‘9ﬂ "'g,.r]“"“ql]z }_kijﬁ [" f(éh "'Qf]"'ﬂgh]Jf_;]‘% {}.’12 "“["},— (‘9!: +9f )+‘76:. _’i-‘f‘?ﬁ]z }‘ kb [%r{oﬂl +6.! )+‘" ):- s ?rga] (3)

After calculating these functions the next step is the Lagrange equations of the second kind for the dynamic system

according to the formula:

ok il iog
2q, dgq, 9q,

d O, _

+ 0.
dt oq, 2

“)

Writing the dynamic equations presents the final step before its putting in matrix forn. System of dynamic equations

has been putted in matrix form because of its easier solving:

M {G}+Big}+ Clg}=1D}

()

First member in expresion (5) is mass and moment of inertia matrix:
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1+, 0 0 0

M{]_- 0 m}az-i—.fc,‘+n§ra2+4f+n%a’?+.};x Sy, 0
0 i JCJ" +J:-'S Jn;f' +'};g
0 0 0

Second member in expresion (5), is dumping matrix:

It 0 0 0

0 kly+af +hlr+af kil el va) kel +a)

0 Mltdtknlitd  kiee?
| 0 k) ks, kot

Third member in expresion (5) is stiffneess matrix:

la+e, 0 0 0

(FEEe (:J,', -+an + c'?(r:g Al-a)z Cl",‘r("} +a)+@;,[r; -1—:3) —clrg,[m jl-a)

Blj}=

dg}=

0 cl.*}-[}} +a -I--czr}[; > +a) [ +klrﬁ —cr,
0 ~erlr, +a) G e
Last matrix in expresion (5), is impulse matrix;
0
M,
(o}=
0
0

By defining all of matrixes and equations it can be procedeed to solving dynamic system.

(6)

(N

8)

)

2.3 Dynamic model solving Moment of inertia of

i Jer 3x10-3[kgm2]
Solving equation systems of the dynamic model, is ——
performed with a simulation in MATLAB-SIMULINK.. In Munent R nadiot . 0 ke
order to solve the system of equations a solving scheme gearg —
has been made (Figure 4), in the SIMULINK environment, Moment ofinertia of Jov | 306x10-3[kgm2]
Before solving the system dynamic equations, parnmeters gear b
of the system must be taken from CAD model (Table 2): Axes dma{_] £e & 69x10-3[m]
Gear T radius e 52,5x10-3[m]
Table 2. Dynamic model parameters Gear g radius 7y 48x10-3[m]
' e e Gear b radius b 117x10-3[m]
e o Pair f — e stiffness c; | 1,67x1010[N/m]
Sattch:azzmer A iy, 11,152[kg] Pair g — b stiffness ¢ | 1,56x1010[N/m]
EE=rER e e 3,376[kg] Pa‘ir f—-e dumpj.ng ki 3200[Ns/m]
Gear g mass g 8,536[kg] ] Pair g — b dumping ka 2400[Ns/m]
Moment of inertia of Dumping and stiffness coefficient values has been taken
sattelite carrier h Jen | 116x10-3[kgm2] from literature, [3], [8].
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Fig.4. Schematics of dynamic system solver in SIMULI NK

3. RESULTS OF SIMULINK DYNAMIC
SIMULATION

Simulation of the dynamic model has been performed in
two periods of oscillation of the dynamic system. Impulse
of the oscillating dynamic system was performed with the
moment My, as an input impulse parameter. Moment My
was developed as an absolute sine function (Figure 5),
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Fig. 5. Impulse moment, My

With the introduction of an impulse moment the
simulation is started (Figure 5), which simulates the
dynamic oscillation of the planetary gearbox system. As
the output of diagrams are obtained: acceleration, velocity
(Figure 6), displacement (Figure 7) and total displacement
of all four degrees of freedom in the dynamic system.
Acceleration along the directions of degrees of freedom,
at the beginning of the first period of oscillation, is with
large variations, while at the end of the second period of
the oscillations is in calm variations. Final product of
MATLAB-SIMULINK simulation are the dynamic forces
(Figure8).
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Fig. 6. Velocities of reducer elements at
e1=1,67x (01 0[N/m]; c2=1,56x1010[N/m];
ki=300{Ns/m]; k> =2400[Ns/m]
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Fig. 7. Movements of reducer elements at
ci=1,67cl010fN/m]; ¢2=1,56x1010{N/m];
k) =3200{Ns/m]; ks =2400[Ns/m]
Calculation of dynamic forces has been performed
according to formula:

F;f_\-‘u:c.g‘{_k'f} (10)

Dynamic force, which is calculated according to formula
(9), presents complete dynamic force which is acting at
particular moment at element of reducer. F'rom figure 8 it
can be seen that oscillations of dynamic force its far less
than oscilations on velocities.
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Fig. 8. Dynamic forces of reducer elements atc;=1,67x1010{N/m]: ¢;=1,56x1010[N/m]; ki =3200{Ns/m];
k:=2400[Ns/m], a) shaft of double satellite f-g; b) satelite carrier h; c) double satellite f-g and d) mov. central gear b

From figure 8 it can be seen that the bigest dynamic
force acts at double satellite f-g. Double satellite only
has the negative dynamic, because the direction of
force depends of the direction of movement and
velocity. The smallest dynamic force acts on movable
centra gear b, but that dynamic force has the greatest
oscillations (Figure 8d).

4. CONCLUSION

When the simulation has been completed, it can be
concluded that the most critical is the first period of
oscillation. After the first period of oscillation, the
dynamic oscillations of the dynamical system are
calming. This rule applies to the dynamic force, and
acceleration, and velocity, and displacement. Research
of the dynamics of planetary gear from this point of
view can greatly help to reduce vibration at startup of
planetary reducer. Further research on this issue are
available on a theoretical and analytical and
experimental design. At the level of theoretical
screening can be done at: improving the model, the
dynamic force that involves measuring of the dynamic
force in real planetary gear unit, the determination of
stiffness through simulation and many other parameters
and their causes. On the experimental design can be
made and measured values in order of confirmation of
results obtained by simulation.
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