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ABSTRACT

The objective of this research is to propose a novel framework for assessing the consequences of hazardous events on a water resources

system using dynamic resilience. Two types of hazardous events were considered: a severe flood event and an earthquake. Given that one or

both hazards have occurred and considering the intensity of those events, the main characteristics of flood dynamic resilience were eval-

uated. The framework utilizes an artificial neural network (ANN) to estimate dynamic resilience. The ANN was trained using a large,

generated dataset that included a wide range of situations, from relatively mild hazards to severe ones. A case study was performed on

the Pirot water system (Serbia). Dynamic resilience was derived from the developed system dynamics model alongside the hazardous

models implemented. The most extreme hazard combination results in the robustness of 0.04, indicating a combination of an earthquake

with a significant magnitude and a flood hydrograph with a low frequency of occurrence. In the case of moderate hazards, the system robust-

ness has a median value of 0.2 and a rapidity median value of 162 h. The ANN’s efficacy was quantified using the average relative error metric

which equals 2.14% and 1.77% for robustness and rapidity, respectively.

Key words: flood dynamic resilience, flood risk assessment, machine learning, Pirot water resources system, system dynamics modeling

approach

HIGHLIGHTS

• Proposition of a generalized methodological framework to quantify flood dynamic resilience of water systems using a significant amount of

generated data related to multiple hazards.

• Implementation of the results derived from the dam safety model for accurate estimation of the earthquakes’ impacts.

• Application of ANN to predict the main characteristics of the flood-risk related matrices.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and

redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

© 2023 The Authors Journal of Hydroinformatics Vol 00 No 0, 1 doi: 10.2166/hydro.2023.069

corrected Proof

Downloaded from http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2023.069/1171701/jh2023069.pdf
by guest
on 01 March 2023

https://orcid.org/0000-0002-7817-9341
mailto:milan.stojkovic@ivi.ac.rs
http://orcid.org/
http://orcid.org/0000-0002-7817-9341
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.2166/hydro.2023.069&domain=pdf&date_stamp=2023-01-21


GRAPHICAL ABSTRACT

INTRODUCTION

Water resources systems are designed to withstand demands imposed by their service requirements (Simonovic 2021). How-
ever, their flood protection facilities are designed by existing standards and under the present climate. Considering the aging
process and rapid changes in the environment (e.g., climate variability, climate change, natural hazards), they do not necess-

arily guarantee an adequate level of service and safety. Hence, major investment is required to renew and upgrade these aging
water systems to adapt to the rapidly growing population, whose future is affected by changing climate and natural disasters
(e.g., floods, earthquakes).

Climate change leads to flood events characterized by greater frequency and more severity (Liang et al. 2019), and therefore
greatly impacts the probabilistic behavior of extreme annual streamflows (Xu et al. 2020). Given that, one of the main roles of
water systems is responding to natural disasters, such as floods, by controlling the outflow from the water system (Men et al.
2019; Yang et al. 2022). To cope with such hazards under present and future climate, water resources systems have to be
revitalized for several reasons, such as poor initial design of the water system, rapid changes in the downstream river sections
(e.g., urbanization), and safety requirements by increasingly risk-averse societies (Bocchiola & Rosso 2014).

Alongside climate-related risks, earthquakes also present a significant hazard that can reduce the safety of the water
resources system (ICOLD 2018). Earthquakes commonly trigger landslides producing consequences ranging from small
soil cover failures to devastating rock avalanches (Fan et al. 2019). As a part of a water system, a large dam can fail under
severe seismic conditions leading to uncontrolled release from the system, and require optimal operational rules for gated

spillways (Haktanir et al. 2013). Moreover, a water resources system located within a high seismic area possesses a substantial
risk for the downstream river sections since active faults may cause damaging deformation of the embankment leading to
uncontrolled water system behavior (Tosun 2015).

Risk analysis of the water resource systems needs to consider a variety of hazardous events (e.g., floods, earthquakes), or a
combination of events that could lead to the failure of the system (Bowles et al. 2013). It can be performed through the quali-
tative or quantitative description of potential hazardous scenarios including external threats (e.g., earthquakes, floods),

Journal of Hydroinformatics Vol 00 No 0, 2

corrected Proof

Downloaded from http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2023.069/1171701/jh2023069.pdf
by guest
on 01 March 2023



internal threats (e.g., failure of the system elements), dam failures, etc. The identification of potentially hazardous events is

commonly quantified using expert opinions regarding the occurrence probability of hazards, their severity as well as detect-
ability (Ardeshirtanha & Sharafati 2020). Generally, the four-step procedure shown in Table 1 is usually applied to identify
core hazardous scenarios leading to loss of strength and water tightness, or even a breach of the dam (Bowles et al. 2013).

As an essential treatment of the water resources system functionality, a procedure for the identification of potentially hazar-
dous events highlights a combination of hazards that can jeopardize the water system services and safety. In contrast to a
single hazard risk assessment, quantification of multiple hazards represents a challenging issue within risk analysis, including
hazard assessment, vulnerability characterization, and risk assessment (De Angeli et al. 2022). Multiple hazards arise from

the spatial and temporal coincidence of potentially interconnected hazards affecting the water system elements and level
of safety (Kappes et al. 2012). Their relationships primarily consider a situation where the first hazard triggers or increases
the probability of secondary hazards occurring (Gill & Malamud 2014). This can be achieved by using visualization tech-

niques based on the large amounts of the recorded hazards (Kappes et al. 2012).
Furthermore, a multi-hazard modeling approach can be implemented within the mathematical framework, consisting of

risk analysis, analytic hierarchy processing, and fuzzy logic to examine multi-hazard interactions and to provide a compre-

hensive risk assessment of the water resources systems (Jiang & Zhang 2008; Greco et al. 2012; Hwang et al. 2015;
Assumma et al. 2019; Nozari et al. 2021; Datola et al. 2022; De Angeli et al. 2022). A general framework for multi-hazard
modeling is based on the use of component operating states database of the water resources system, where the failure scen-

arios are simulated via the application of the deterministic Monte-Carlo (MC) approach to determine a wide range of water
system behaviors for each scenario (King & Simonovic 2020). The generated scenarios vary the timing and severity of hazar-
dous events as well as the inflows in the water resources system capturing the system’s response to the full range of potential
operating conditions (King et al. 2019).

However, the flood risk assessment frameworks do not research in detail the coincidence of hazardous events with low
joint frequencies and their impacts on the water system behavior, mainly because a wide range of potential hazardous
events and the system’s responses require machine learning techniques to deduce the knowledge from a significant

amount of data. Additionally, the system response to hazards, like earthquakes, imposes the use of a numerical dam safety
model to precisely extract the relationship between the system element functionality and earthquake magnitude (Rakić
et al. 2022). To examine the impacts of natural hazards with a high magnitude and low joint frequencies on the water

resources system functionality, the presented research proposes the usage of a system dynamics modeling approach under-
pinned by artificial neural networks (ANNs) for flood-related risk prediction. It incorporates the developed water
resources system and hazardous models, as well as outputs from the dam safety model. The outputs from system dynamics
models are used for flood dynamic resilience evaluation since it is selected as a time-dependent flood risk metric (Ignjatovic ́
et al. 2021). Implemented within the system dynamics modeling approach, hazardous events include the spatial and temporal
coincidence of flood and earthquake under stochastically generated inputs, followed by the variable initial state in the water
resources system. An ANN is then trained over the generated inputs and outputs from the system response to quantify the

flood-related risks in real-time and to support the decision-making process within the river basin under hazardous events.
Therefore, the goals of the presented research are given as follows: (1) proposition of a generalized methodological frame-

work to quantify flood dynamic resilience of water system using a significant amount of generated data related to multiple

Table 1 | Identification of hazardous events of the water resources system: a four-step procedure

Step 1 Step 2 Step 3 Step 4

Description of water system
elements, their mutual
interdependence, and their roles
in preventing water systems
failures (Bowles et al. 2013).

Identify potential hazardous
events leading to the
failure of a water system.
Providing a list of
significant external
hazards with the potential
to initiate water system
failure (Bowles et al.
2013).

Consider the potential sets of
hazards, as a substantial and
physically possible failure
event, alongside their impacts
on the system functionality,
that can lead to the water
system failure (Environment
Agency 2011; Bowles et al.
2013).

Segregate hazardous events in
terms of water system
functionality as significant or
not significant. Choose the
most realistic significant
combinations of hazards to
estimate the water system risk
(Bowles et al. 2013).
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hazards (e.g. floods, earthquakes, variable state of the system), (2) implementation of the results derived from the dam safety

model for accurate estimation of the earthquakes’ impacts on the water resources system functionality, and (3) application of
ANN to predict the main characteristics of the flood-risk related matrices (flood dynamic resilience) based on the water
system response.

The paper is structured in the following way: the first section envelopes the methodological approaches for developing the
system dynamic model, hazardous models, and dynamic resilience assessment of the water resource system. Next, the case
study illustrates the selected water resource system located in Serbia (southeast Europe). Afterwards, the results of the pro-
posed methodology are depicted to illustrate model development and simulations performed. The next section discusses

the results and links them to relevant research from the literature. In the final section, the implications of the presented
research are discussed and directions for future research are proposed.

METHODS

General approach

The main objective of this research is to devise a generalized risk-based methodology for the evaluation of flood dynamic
resilience of water resources systems using machine learning. To achieve this objective, a system dynamics (SD) model is
developed to mimic the non-linear behavior of the water resource system. It provides information required for flood dynamic

resilience assessment as a wide range of possible outcomes depending on the initial reservoir levels, inflows, and timing of
events (King & Simonovic 2020). The SD model is supported by hazardous models which introduce the time coincidence
of several unexpected hazardous events (earthquakes, floods, and changeable water content in a reservoir). Specifically,

the earthquake hazardous model simulates the impact of earthquakes on the element of the system reservoir (e.g., the
impact of the decreased capacity of the gated spillway). A flood dynamic over the simulation period is represented by the
flood hydrograph model, as a part of hazardous modeling. Moreover, the changeable initial water content in the reservoir

at the time of system failure is generated since the gate’s operation depends on inflows and the initial state in a system.
The hazardous models introduce the randomized model parameters enabling the generation of hazardous events with differ-
ent magnitudes, especially in terms of low-frequency hazardous events. Alongside the SD model, hazardous models support
the assessment of flood dynamic resilience for a variety of possible scenarios. Then, a number of the generated hazardous

events and estimated dynamic resilience are used as a solid basis for the extraction of the knowledge from the generated
data via ANN. The ANN captures the important characteristics of dynamic resilience and enables its application for real-
time decision-making in a water resources system.

The proposed ANN framework for the evaluation of dynamic resilience of water resources systems under hazardous events
is illustrated in Figure 1. Individual parts of a general flood risk assessment framework are described in more detail further in
the paper.

Hazardous models

Flood hydrograph model

A deterministic, distributed-parameter, physical process-based hydrologic model (Precipitation-Runoff Modeling System) is

used to generate the long-term flow sequences (Ignjatović et al. 2021). It enables the evaluation of the hydrological response
based on various climate combinations including the generated long-term sequences of climate data. As the inputs for the
hydrological model, the stochastically generated climate data by weather generator is utilized (Ignjatović et al. 2021). The
non-parametric K-nearest neighbor (K-NN) weather generator is employed by reshuffling the recorded value of precipitation
as well as minimal and maximal air temperature as a basis for daily streamflow assessment (King et al. 2015). Additionally,
the reshuffled climate records are perturbed with the aim of generating climate data beyond the historically observed values.
Such generated data are used to force a hydrological model to produce daily streamflows over long-term periods.

In this study, the annual maximum series approach is applied to estimate low flood frequencies from the generated annual
streamflows (Karim et al. 2017). The general extreme value (GEV) distribution is fitted to annual maximum streamflows since
it provides the best fit for extreme flow as well as precipitation data within the region analyzed (Stojković et al. 2017; Gocić

et al. 2021). By application to the hydrological data, the flood magnitudes with different return periods (T) are estimated. In
addition, the shape of a theoretical flood hydrograph is approximated by the Gumbel distribution (Manfreda et al. 2021).
Using the flood magnitude and shape of the flood hydrograph, flood hydrographsQ(t) are defined for the set of return periods.
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Next, flood hydrographs are generated using MC simulations founded upon uniform distribution defined as lower and

upper bounds:

Q ¼ MCS
Lower bound ¼ T100 years

Upper bound ¼ T10,000 years

� �
(1)

Earthquake model

The varying earthquake events are generated as a stress test of the water resources system addressing the adverse impacts on

the water resources system elements considering the fact that earthquakes have frequently occurred within the analyzed area
and wider (Maršanić et al. 2021).

A numerical analysis of the water resources system elements is performed using the finite element method (Rakic ́ et al.
2022). The result of the numerical analysis identifies key structural elements with potential influence on water system per-
formance. For the purpose of this study, a simplified analytical form of the effective spillway capacity (ESWC) of the
water resources system is utilized (Rakic ́ et al. 2022):

ESWC ¼ 1þ 0:0529aþ 0:0843a2 � 0:7087a3 (2)

where a represents the standardized magnitude of earthquake simulated by MC simulation in the range from 0 to 1.
Hence, the earthquake model is explicitly used in this dependence resulting in a functionality indicator of the system

element to describe a physical drop of the ESWC and corresponding effects in the system operation (Ignjatović et al.
2021). The functionality indicator (a) depending on simulation time t [ [tstart, tend] also incorporates the earthquake start
time (t0) and recovery time (t1) needed to retrieve the full system element performance:

a ¼
1, for t , t0
0 , ESWC , 1, for t [ [t0, t1]
0, for t . t1

8<
:

9=
; (3)

Figure 1 | A general approach for evaluation of flood dynamic resilience for the water resources system under hazardous events.
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where the start time (t0) coincides with the flood hygrograph occurrence (Gill & Malamud 2014). On the contrary, recovery

time (t1) strictly depends on the earthquake magnitude.

Initial water state model

The modeling of the water resources system involves an initial water state (Vstart) in the reservoir at the first stage of decision

making at tstart (Kistenmacher & Georgakakos 2015). The state in the reservoir at the next simulation stage (Vstartþ1)
is estimated by applying the first stage decisions (e.g., gates opening and hydropower release at tstart) and first stage inflow
(Qstart at tstart).

Fluctuations of the water state in the system, expectedly, range from the states at minimal operation level to the correspond-
ing state at maximal operation level. It is more likely that stage decisions keep the water level in the reservoir around the
normal water level which enables the water resource system to mitigate and attenuate flood hydrograph.

Therefore, an initial state (Vstart) in the water resources system is simulated using the triangular distribution as an input for
MC simulations (Major 2019). The triangular distribution is a continuous three parameter distribution with the most likely
distribution value limited by extreme values, particularly with lower and upper bounds. Following this, the initial water
states are simulated using the aforementioned parameters and referent operational levels (minimal, normal, and maximal):

Vstart ¼ MCS
Lower bound ¼ water state at minimal operational level

Most likely value ¼ water state at normal operational level
Upper bound ¼ water state at maximal operational level

8<
:

9=
; (4)

Water resources system model

The SD simulation model with a causal loop is developed to mimic the behavior of the water resources system. It is charac-
terized by the following blocks (Ahmad & Simonovic 2000; Stojkovic & Simonovic 2019; Ignjatović et al. 2021): stocks,
flows, and connectors. Stocks represent the level of variable balancing among flows, for instance, the inflows and outflows

from the water resources system. Variables are used to analytically define the functions needed for system reservoir oper-
ations connectors, while connectors direct the variables, inflows, and levels enabling the SD model for real operational usage.

The SD model incorporates causal loops providing a link between the system characteristics, inputs, and operational

rules separately defined for flood protection facilities (spillway and bottom outflow) and hydropower plants (Stojkovic &
Simonovic 2019). System characteristic describes the main parameters of the water system such as water storage curve, spill-
way, bottom outflow hydraulic characteristics, and hydropower plant parameters. The SD model incorporates an additional
model structure defined as functional indicators since they implicitly describe the reduced capacity of the water system

elements caused by natural or man-made hazardous events (Ignjatović et al. 2021).
The SD model is developed in this research to mimic a multipurpose water resources system highlighting the flood manage-

ment reservoir roles. It releases outflows from the spillway (QSW) and the bottom outflow facility (QBO). Additional water

management roles are also incorporated within the SD model allowing for the control of the discharge to suit the demand
for hydropower generation (QHPP) and ecological flow improvements during low-flow periods (QENV). In addition, the
losses from the water resources system are taken into account as leakage from the dam (QL).

The inputs in the SD models are the initial water state, flood hydrographs Q(t), total releases from water systems
(QSW, QBO, QHPP, QENV), functionality indicator of the spillway (a), and losses (QL). Considering the input for the SD
model, its output is defined as the water state (V) in the system over simulation time t (Stojkovic & Simonovic 2019):

V(t) ¼ Vstart þ
ðtend
tstart

[Q(t)� (a(t) �Q(t)SW þQ(t)BO þQ(t)HPP þQ(t)ENV þQ(t)L)]dt (5)

Dynamic resilience assessment

Over a disruptive event that poses a serious threat to the water resources system and belonging elements, a dynamic resilience
model captures several numerical characteristics. The most important of these are robustness and rapidity, illustrated in

Figure 2. Robustness represents the ability of the system to resist disturbance, while rapidity is the capacity to return the
system to a predisturbance level of functioning (Simonovic & Arunkumar 2016). Once the water system does not provide
the required services under an unexpected hazardous event, dynamic resilience starts to decrease to the lowest resilience
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level expressed as robustness (Figure 2). Then, the adaptive capacity of a system called rapidity leads to increasing a system’s
resilience at the highest possible level.

A simulated earthquake coinciding with high-flow river conditions and variable initial state in the water resources system
influences the system elements by reducing the system’s capacity to respond and withstand during the hazardous event. The
loss of reservoir capacity is defined as the loss of the volume in the water system needed to receive the flood hydrograph. On

the contrary, the degree of flood peak attenuation is the reservoir’s capacity to respond to the flood event.
The loss of water resources system capacity leads to a decrease in flood dynamic resilience because the system cannot pro-

vide the designated system services. Therefore, the flood dynamic resilience (r) depicted in Figure 2 is defined in an analytical
form (Simonovic & Arunkumar 2016):

r(t) ¼ 1�
P0(t� t0)�

Pt
t0
P(t)

P0(t� t0)

0
BBB@

1
CCCA (6)

where P denotes the system performance level at the current time step t, while P0 describes the initial system performance
level at the time of the hazardous event t0.

In our study, the system performance level respects the current water level in the water system alongside referent water

levels for flood management operation:

P ¼ 1, water level � maximal operational level
0, water level . maximal operational level

� �
(7)

Flood dynamic resilience represents a time-dependent risk metric (Equation (7)) controlled by the capacity of the spillway

to evacuate an excess water volume from the water system maintaining the system below acceptable water levels, for instance,
maximal operational level. However, the transformation of flood hydrographs within the system is demanded since it
coincides with a reduced capacity of the spillway gates caused by the earthquake. Moreover, the variable initial water

state can increase the flood-related risk as the initial water level exceeds the expected water level in the reservoir.
Taking into account the fact that the flood dynamic reliance depends on hazards with variable magnitude, time of occur-

rence, and duration, there is a need to generalize the assessment of dynamic resilience using an ANN. Application of the

Figure 2 | Schematic representation of the dynamic resilience function: robustness and rapidity.
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ANN provides information on the dynamic resilience in a timely manner and enables the prediction needed to perform ade-

quate strategies aimed at reducing the adverse effect on the environment caused by external hazardous inputs. The previously
developed ANN algorithm (Beale et al. 2020) is adopted to extract the information from the flood dynamic resilience of the
system (Equation (7)) expressed as the robustness and rapidity, using randomly generated hazardous events with different

impacts on the system elements (Equations (1), (3), and (4)).
For each simulation, the SD model generates a random hazardous model and, in a general sense, a functional dependence

in the ANN model can be written as:

(Robustness, Rapidity) ¼ f[Qmax, amin, Vstart] (8)

where Qmax is a peak of the simulated flood hydrograph (Equation (1)), amin represents a total reduction of spillway capacity
representing a functionality indicator of the spillway (Equation (3)), and Vstart is the volume in the water resources system at

the moment of failure (Equation (4)), thus a function in Equation (8) is formed from the SD model inputs and outputs. A
feedforward ANN is trained using Levenberg–Marquardt (LM) learning algorithm and sigmoid activation function to
model the function presented in Equation (8) (Beale et al. 2020).

CASE STUDY

The Pirot water resources system is located in southeast Serbia (Figure 3(a) extending over a flood-prone area (the upper basin

of the Nišava river) of around 571 km2. It represents a complex water resources system including the Zavoj reservoir at the
Visočica river, hydraulically connected by a pressure tunnel with the hydropower plant (HPP) Pirot. The HPP Pirot conveys
the HPP outflows from the Visočica river to the Nišava river. The scheme of the Pirot water system is given in Figure 3(b).

The primary purpose of the Pirot water system is the mitigation of floods at the Nišava river, hydropower generation, and
downstream water quality control by regulation of the outflows from the reservoir over the low-flow seasons. The manage-
ment of the Pirot water system depends on the actual volume of water stored in the reservoirs, inflows, and energy

demand (Ignjatovic ́ et al. 2021). The active storage of the Zavoj reservoir is 140� 106 m3 (Table 2). Three gated spillways
are located at the left part of the dam with a capacity of 1,820 m3/s. The power plant has two turbines (40 MW) for power
generation, with an installed capacity of 45 m3/s (Table 2). The Zavoj reservoir is hydraulically connected with diversion-

type turbines at the HPP Pirot by the 9 km pressure tunnel with a 4.5 m radius. The pressure tunnel conveys the water
from the Visočica river to the Nišava river providing a significant contribution to the total annual flow of the downstream
river.

Figure 3 | Location of Serbia at the European regional scale (a) and schematic representation of the Pirot water system (b).
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RESULTS

Hazardous models

The variability of flood events was simulated by applying a random selection of return periods. Next, the generated earth-
quake magnitudes were introduced as additional pressure on the system functionalities by reducing the spillway capacity.
Depending on the earthquake magnitudes, the decreased capacity of the spillway was simulated by employing the empirical

law (Equation (2)). Moreover, a variable initial state (volume) in the Zavoj reservoir was also randomly generated respecting
the physical limitations of the reservoir (referent operation levels).

Flood hydrograph model

The deterministic hydrological model provided the long-term daily flows for a 1,000-year time frame at the site of the Zavoj

reservoir. For the sake of the hydrological simulations, the generated precipitation and air temperature from the K-NN water
generator were used. The annual maximum series approach had chosen the most extreme annual flows, and then the GEV
distribution was applied to estimate the design annual flows with different return periods (from 100- to 10,000-year return

periods). To define the flood hydrographs, the Gumbel distribution was used to shape the flood hydrographs and respect
the design of annual flows.

The empirical and theoretical (GEV) cumulative distributions of the maximal annual flows at the Zavoj reservoir are

depicted in Figure 4(a), while the flood hydrographs for different return periods are provided in Figure 4(b). As can be
seen from Figure 4, a flood hydrograph with a 10,000-year return period exceeds the total capacity of the spillway
(Table 3), while the lower flood frequencies (from 100- to 1,000-year return periods) remain below the maximal spillway
capacity.

Once the flood hydrographs had been estimated, a generation of flood hydrographs was performed via the MC simulations
as the input for the SD model simulations. For the purpose of hydrograph generation, a uniform distribution was applied to
form a dataset of 1,000 members (Table 3).

Table 2 | The characteristics of the Zavoj reservoir in the Pirot water resources system

Reservoir
Year
built

Drainage area
(km2)

Annual inflows
(m3/s)

Active volume
(106 m3)

Flood storage volume
(106 m3)

Minimal operational level
(m a.s.l.)

Spillway capacity
(m3/s)

Zavoj 1990 571 6.2 140 5.5 568 1,820

Figure 4 | Annual maximum flows (a) and flood hydrographs for different return periods (b) at the Zavoj reservoir (Pirot water resources
system).
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Earthquake model

The impact analysis of the earthquake magnitudes on the spillway capacity reduction was carried out considering the range of
possible seismic acceleration within the analyzed region (Rakic ́ et al. 2022). Given that, the dependence between the spillway

capacity and earthquake magnitude was deduced from the numerical stability model of the Zavoj dam resulting in empirical
values of ESWC (Equation (2)).

To generate the dataset of 1,000 values, the MC approach (Table 3) was performed using a uniform distribution of the stan-

dardized magnitude of the earthquake (a). Furthermore, the spatial and temporal coincidence of natural hazards within the
upper Nišava river basin was taken into account with respect to flood hydrograph occurrence. Having obtained the ESWC
values, start time (t0) and recovery time (t1), the functionality indicators of the spillway were determined for each generated
earthquake following Equation (3).

Initial state model

Initialization of the SD model of the Pirot water resources system was performed using the same number of MC simu-

lations. Namely, each simulation has a statically generated initial water state in the Zavoj reservoir varying between
maximal and minimal operational levels (Table 3). Moreover, the most probable initial state in the reservoir corresponds
to the normal operating level. For these reasons, the simulation was performed following the triangular distribution whose
median matches the normal operational level, while the distribution is limited by two extreme operational levels (maximal

and minimal).

Water resources system model

System dynamics simulation was used to model interactions between the water resources system inputs, system elements, and

outputs. In this research, the SD model of the multipurpose Pirot water resources system represents the following system
elements: spillway and bottom outflow facilities, hydropower plant, and leakage from the Zavoj Dam. Spillway (QSW) and
bottom outflow releases (QBO) serve to control and reduce the devastating impact of the flood events at the downstream

river sections of the Visočica and Nišava rivers. Moreover, bottom outflow releases improve the water quality of the Visočica
river during the low-water periods, usually during the summer and autumn months. Depending on the energy market’s
demands, the operator of the Pirot water system controls the hydropower generation releases (QHPP) considering the physical

and environmental limitations to supply the energy market over peak demand hours.
The SD model of the Pirot water resources system was implemented on an hourly basis, within the system dynamics soft-

ware (Vensim Reference Manual 2021; VenPy 2022), to provide an adequate system response to dynamical hazardous events

(e.g., rapid flood genesis). The differential equation of the water resources system (Equation (5)) was solved by the Euler inte-
gration method. This explicit integration method takes into account the state of the system at a later time (t� 1) to calculate
the state at the current simulation time (t). A schematic representation of the SD model of the Pirot water resources system is
depicted in Figure 5(a) together with the inputs for the SD model calculations (hazardous models: flood hydrograph, earth-

quake, and initial state) provided in Figure 5(b).
The inputs and outputs from the SD model for five simulations are provided in Figure 6 and Table 4 only for illustrative

purposes and present the several water system management solutions that the SD model could exercise. The inputs were ran-

domly selected in order to respond to the water resources system under different severity of hazardous events. Considering
the goals of this research, the illustrated outputs from the SD model highlight the variables related to flood protection facilities
(e.g., water levels in the reservoir, spillway, and bottom outflows) required for the flood dynamic resilience quantification.

Table 3 | Used distribution and its parameters within the hazardous models of the Pirot water resources system

Hazardous models Distribution type Distribution parameters

Flood hydrograph model – Return period (T) Uniform
distribution

(10,0000–100 years)

Earthquake hazardous model – Standardized magnitude of the
earthquake (a)

Uniform
distribution

(0,1)

Initial water state model (Vstart) Triangular
distribution

(1.3362� 10þ08 m3, 1.572� 10þ08 m3, 1.8078�
10þ08 m3)
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It can be seen from Figure 6 and Table 4 that the most severe flood event was generated in simulation 1. The hydrograph
peak reached the value of 6,183 m3/s (Table 4), while the generated earthquake magnitude caused a relatively moderate

decrease in the spillway functionality indicator (Figure 6(b)). The initial state in the reservoir, at the beginning of simulation
1, corresponds to the lowest water level respecting the result from all simulations (Figure 6(d) and 6(c)). Considering the gen-
erated inputs for simulation 1, especially in the terms of the extremely high flood hydrographs, the water levels in the Zavoj

reservoir and spillway outflows reached the highest possible values (Figure 6(d) and 6(e)). Within this simulation, the bottom
outflow had an important role since it assists in the discharging of the reservoir, alongside the spillway. Note that the total
capacity of the bottom outflow (80 m3/s) is substantially lower than the spillway capacity (1,820 m3/s). Over the highest

reached water level in the Zavoj reservoir, the bottom outflow facility released outflows up to its total capacity (Figure 6(e)).
For the case of simulation 4, the water levels in the Zavoj reservoir also achieved a maximal possible level. Such behavior of

the Pirot corresponded to the highest value of the generated earthquake magnitude equal to 0.948 (Table 4), and consequently

a hugely decreased capacity of the spillway (Figure 6(b)). However, a moderate peak of the generated hydrograph (Table 4)
did not significantly affect the changes in the water reservoir levels.

The rest of the simulations (simulations 2, 3, and 5) produced a conservative system behavior since the increase of the water
levels in the Zavoj reservoir was moderate (Figure 6(d)). This response of the Pirot water resources system is mainly attributed

to the high capacity of the spillway (up to 1,820 m3/s) and corresponding values of spillway functionality indicators to dis-
charge the reservoir during the flood events with the peaks in the range from 706 to 1,201 m3/s (Table 4). The most
indicative are simulations 2 and 5 where the generated earthquake magnitudes did not cause any reduction of the spillway

capacity, considering Equation (2). Therefore, the functionality indicators over the whole simulation time kept maximal
values enabling the efficient transformation of flood hydrographs to downstream river sections (Figure 6(b)).

Flood dynamic resilience assessment

Flood dynamic resilience captures the Pirot water resources system capacity over simulation time to respond to and withstand

hazardous events. The main properties of dynamic resilience are robustness and rapidity. Robustness is defined as the mini-
mal value of dynamic resilience reached at the t1 time step (Figure 2). The difference between the recovery time (t1) and the
time when a hazardous event occurs (t0) is the system’s rapidity.

A system performance level of the Pirot water resources system is defined by using Equation (8). When the water levels in

the Zavoj reservoir are below the maximal operation levels, the system performance is equal to 1. By exceeding the predefined
level, the performance level decreases to zero value. Following this, the flood dynamic resilience (Equation (7)) is quantified
for each simulation time step with respect to the hazardous start time (t0).

Examples of flood dynamic resilience quantification are shown in Figure 7. Using the outputs from the SD model (water
levels) and predefined system performance level related to flood protection, the flood dynamic resilience was estimated for
five simulations.

Figure 5 | System dynamics model of the Pirot water resources system (a) alongside hazardous models (b).
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Figure 6 | Simulations of the SD model of the Pirot water resources system: inputs (a, b, c) and outputs (d, f, g).

Table 4 | Numerical values of the SD model simulations: T – return period, Qmax – maximal flood hydrograph value, a – standardized earth-
quake magnitude, QSW,max – maximal spillway outflow, QBO,max – bottom outflow, Zmin and Zmax – minimal and maximal water
levels in the reservoir

Simulation T Qmax a Zmin Zmax QSW,max QBO,max

1 6,183 3,233 0.706 600.4 619.4 1,820 80

2 106 706 0.173 597.4 617.8 1,820 80

3 485 1,201 0.908 598.2 616.1 1,107 0

4 1,252 1,672 0.948 598.8 619.4 950 0

5 166 827 0.319 597.6 616.4 1,820 80
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The results from Figure 7 suggest that the Pirot water system was less resilient (�0.04) in the case of simulations 1 and
4. The former is attributed to the extraordinary values of the flood hydrograph resulting in the prolonged high water levels

in the Zavoj reservoir. Although the latter is not characterized by the extremely high peak of the flood hydrograph, the
reduced spillway capacity produced a low flood dynamic resilience. The important difference between these simulations
lies in the fact that the dynamic resilience rapidly increased for simulation 4 since the duration of high-water levels was
less when compared to simulation 1 (Figure 6(d)). Moreover, the Pirot water resources system implied a low resistance

level for simulation 3 (0.143). For this simulation, the low flood resilience level is attributed to a substantial decrease in
the spillway capacity (Table 4).

On the contrary, the most resilient system behavior was exhibited in simulation 5, maintaining the resilience value at the

maximal level (Figure 7). Despite relatively high water levels at the beginning of the simulation (Figure 6(c)), the Pirot water
resources system was not disturbed by significant hazardous events.

In the case of simulation 2, the high water levels in the Zavoj reservoir led to a rapid decrease of the flood dynamic resi-

lience equal to 0.50 (Figure 7). Fortunately, the Pirot water resources system coped with the unfavorable starting conditions
and promptly reached the full system performance (Figure 6(c)).

However, hazardous events from previous simulations may not provide a precise insight regarding the flood-related risks
under hazardous events. To examine the system behavior in more detail, the total set of the generated data (1,000 simulations)

were used to envelop hazardous events with low joint probability distributions. Such events are expected to lead to the water
system operating out of the design envelopes and substantially increased flood-related risks. For the sake of a precise view of
flood-related risk under hazardous events, flood dynamic resilience was researched in terms of robustness and rapidity by the

use of a number of simulations (Figure 8). Please bear in mind that the simulations where potential hazards do not cause
significant flood-related risks were singled out from the examined dataset and that only 1,000 simulations with flood dynamic
resilience lower than 1 were considered.

For the most extreme hazard combination, the flood dynamic resilience decreased roughly to zero value. A decrease in
robustness (with a minimum value of 0.03 given in Figure 8(a)) is brought about by combinations of earthquakes with signifi-
cant magnitude and flood hydrographs with a low frequency of occurrence. To retrieve the system functionality under such

severe hazards, the rapidity of the Pirot water resources system reached 1,000 h (Figure 8(c)). In the case of the moderate
hazards, the system robustness had a median of 0.2 (Figure 8(a)) while rapidity was equal to 162 h (Figure 8(b)).

To examine the flood dynamic resilience in more detail, ANN was employed to model dependencies between hazardous
events with different impacts on the system elements and flood-risk metrics (robustness and rapidity). For this purpose, a feed-

forward neural network was used, with three input nodes, three hidden layers of four nodes each, and two output nodes. The
network was fully connected, and the hidden, as well as the output layer activation functions, were all sigmoid. The network
was trained using the LM algorithm (with 1,000 epochs). The ANN’s inputs were: (1) the set of maximal values of generated

flood hydrographs (Qmax); (2) the reduction of the functional indicators (amin), and (3) the initial state (Vstart) in the Zavoj
reservoir. The dataset was split into three subsets: the training set, validation set, and test set using a 70%–15%–15% split,
respectively. Additionally, the data for these subsets were selected randomly to preserve generality. The network was trained

Figure 7 | Flood dynamic resilience quantification of the Pirot water resources system (from simulation 1 to simulation 5).
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200 times and the best of those networks was selected to avoid the problem of local minimum which can adversely affect the

network’s further application. The selection of the best network was based on the Root Mean Square Error (RMSE) metric.
Note that when selecting the best network, robustness and rapidity were valued with equal importance.

The results imply that the ANN accurately reproduces key dynamic resilience parameters (Figure 8(b) and 8(d)) compared

to their simulated values via the SD model (Figure 8(a) and 8(c)). For instance, the first and third quartiles on the boxplot
diagrams expose similar values for both modeling approaches (SD and ANN models). However, slight discrepancies are indi-
cated in the case of the second quartile (median) equal to þ3.3% and �8.1% for robustness and rapidity, respectively

(Figure 8). Maximal values of those parameters indicate that the ANN model slightly underestimates the extreme values
derived by the SD approach (Figure 8).

The metric used to quantify the efficacy of the ANN approximation was the relative error; the average relative error was
equal to 2.14% for robustness and 1.77% for rapidity. Moreover, the RMSE values for robustness and rapidity were equal to

0.004 (–) and 12.7 h, respectively. Considering the timespan of rapidity, such an error is not substantial.
The modeling errors for robustness and rapidity are shown in Figure 9 using the cumulative general extreme distributions

since they fit the prolonged right distribution tails well.

Robustness and rapidity diverge from the corresponding observed parameters for higher values of cumulative distribution
function (e.g., higher than 0.95), where robustness diverges more, the quantiles of the approximation distribution are more
aligned with the observed parameters in the case of rapidity (Figure 9).

Figure 8 | Boxplots of flood dynamic resilience (Pirot water resources system) using the generated dataset: SD model – robustness (a); ANN
model – robustness (b), SD model – rapidity (c), and SD model – rapidity (d).
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However, the results (Figures 8 and 9) indicate that ANNs are capable of adequately approximating the wide range of the
robustness and rapidity values needed for real-time operations of the Pirot water resources system. In addition, results indi-

cate several accessible improvements: (1) simulations of the models are performed with the generated hydrographs instead of
using a limited number of the observed flood events, (2) hazardous models envelop the most important system disturbances
(floods and earthquakes) while other hazards and are not considered (e.g. failures of monitoring, electrical, or mechanical

equipment), (3) sigmoid activation function may not catch the extremely high values of dynamic resilience-related par-
ameters, and application of the ReLU activation function can improve prediction of the flood-related parameters (Bui
et al. 2020).

DISCUSSION

Natural hazards encompass several physical phenomena such as floods, severe storms, earthquakes, landslides, and torna-

does (Gill & Malamud 2014). The southwest European region is sensitive to natural hazards since floods and earthquakes
considerably exceeded the largest foreseen events and caused billions in damage (Stojković et al. 2017; Maršanic ́ et al. 2021).

Therefore, this research is focused on the impacts of floods and earthquakes on the functionalities of the Pirot water system
(located in Serbia, Southeast Europe) that prevent and reduce loss and damage due to extreme events. To examine the com-

bination of a wide range of less and more severe hazards, we proposed a hazards modeling approach founded upon MC
simulations that enable the simulation of hazardous events with low joint probability. Hazardous modeling reduces the uncer-
tainty caused by short recording periods (Koutsoyiannis & Montanari 2007) using the stochastic weather generator creating

long climate data (1,000 years span) needed for hydrological modeling (King et al. 2015). Hazardous modeling also encom-
passes the outputs from the Zavoj dam safety model to precisely deduce the dependence between the earthquake magnitude
and functionality of the spillway (Rakic ́ et al. 2022). In addition, MC simulations are used to derive variable water content in

the water system since its initial condition significantly impacts on prevention of uncontrolled and rapid release from the
system (Kistenmacher & Georgakakos 2015).

The behavior of the Pirot water resources system is simulated under a system dynamics approach enabling the system to

respond to the generated hazardous events. A system approach deals with the difficulties introduced by the complexity of
the water resources solutions and environmental issues (Simonovic 2020). It is especially highlighted when the system
fails to execute the service requirements because of the reduced capacity of the flood-defense facilities under hazardous
events. To measure the flood-related risk of the water system, dynamic resilience is used as a time-dependent parameter

since it overperforms the static risks measures such as system reliability or vulnerability (Ignjatović et al. 2021). Based on
the output from system dynamics simulations of the Pirot water system, the dynamic resilience captures the most important
characteristics (Simonovic & Arunkumar 2016), specifically system robustness and rapidity (Figure 2). Rapidity describes the

recovery time of the water resources system forced by an external or internal hazard (e.g., floods, failure of electrical or mech-
anical system facilities) (Bowles et al. 2013). A maximal reduced capacity of the water system in terms of delivering the service
requirements is explained by robustness.

Figure 9 | Cumulative extreme value distribution function of the ANN modeling errors: (a) robustness and (b) rapidity.
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Considering an increase in available hydroclimatic data, alongside more computing power, machine learning algorithms

become a useful method for flood risk and impact assessments (Wagenaar et al. 2020). In the presented research, flood-
related risk characteristics (robustness and rapidity) were captured by postprocessing a huge amount of data generated via
the system dynamics model. Then, the generated data, including the robustness and rapidity, was utilized for the supervised

training of the ANN (Beale et al. 2020).
ANN was used to make a model for predicting robustness and rapidity based on characteristic values related to floods and

earthquakes, and in the network training procedure, large data obtained from simulations of system dynamics models are
used.

As mentioned before, the ANN was used to approximate flood-related risk characteristics, through the system modeling
simulations. The results suggest that it is possible to train a network to approximate the rapidity and robustness of a
system. Note that rapidity highly matches the target values since it continuously accumulates the flood-related risk character-

istics over the simulation time. While the real system is more susceptible to measurement errors (e.g., measured water levels in
reservoirs), the rapidity timescale allows for such errors to occur without significantly affecting resilience predictions. In con-
trast, the network cannot capture robustness with the same efficiency as rapidity because it changes rapidly after a

disturbance is introduced.
There is an interest to consider the application of ANNs on a real system using actual data (Kostic ́ et al. 2016; Allawi et al.

2018; Allawi et al. 2019; Jenny et al. 2020; Osman et al. 2020). However, its application is possible for the observed period

with available records (inflows and water levels in the reservoir), while the usage of the developed system dynamics model
cannot be avoided for predicational purposes where the inputs to the system and its behavior are unknown. Moreover, such
an approximation is useful for managing water resources systems, as it can give an idea of when the system will return to a
predisturbance level of functionality, helping operators to adequately allocate or reallocate resources to other systems, and

improving overall functionality.

CONCLUSION

This paper proposes a novel framework for the evaluation of flood dynamic resilience for a water resources system under
hazardous events, where the link between the hazardous events and the parameters used to evaluate flood dynamic resilience

is defined by trained ANNs.
The proposed framework is tested on the Pirot water resources system located in Serbia. The framework is based on an SD

modeling approach to mimic the non-linear behavior of the water resources system. The first of the hazardous models is a
flood hydrograph model that is used to generate data sets using MC simulations based on uniform distribution. The

second hazardous model is the earthquake model, which utilizes a functionality indicator (α) that is simulated using MC simu-
lation in the range 0 to 1; this functionality indicator is derived from a simplified analytical form of ESWC values of the water
resources system. The third hazardous model is the initial state model which uses a triangular distribution as input for MC

simulations. Using the outputs from the SP modeling approach, flood dynamic resilience is estimated to capture several sig-
nificant numerical characteristics (rapidity and robustness).

The framework relies on ANN which uses characteristic values of the hazardous models’ outputs as inputs into the net-

work to approximate flood dynamic resilience, exactly rapidity, and robustness. Quantifying the efficacy of the ANN
approximation using the relative error metric shows an average relative error of 2.14% for robustness and 1.77% for rapidity.
This is indicative of the fact that the ANN is properly trained. It is important to note that the robustness and rapidity diverge

from the corresponding observed parameters for higher values of the cumulative distribution function; the robustness
diverges more, while the quantiles of the approximated cumulative distribution are more aligned with the observed par-
ameters in the case of rapidity. These diverging extreme values are to be expected given the sigmoid activation function,
which may not catch the extreme values of flood dynamic resilience-related parameters. These results indicate that the

ANNs are capable of adequately approximating the robustness and rapidity values caused by the hazards in the Pirot
water resources system.

Future research may include several possible directions. For instance, the sigmoid activation function is used as an impor-

tant part of the ANNs for flood dynamic resilience prediction. An improvement in the resilience prediction could be achieved
by using the Rectified Linear Unit (ReLU) activation function instead of the sigmoid function. It helps to avoid the vanishing
gradient phenomenon which can significantly hamper the learning progress (Goodfellow et al. 2016).
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