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Abstract

This paper describes a three-dimensional compressible Navier-
Stokes code, which has been developed for analysis of turbocom-
pressor blade rows and other internal flows. Despite numerous
numerical techniques and statement that Computational Fluid
Dynamics has reached state of the art, issues related to successful
simulations represent valuable database of how particular tech-
nique behave for a specific problem. This paper deals with rapid
numerical method accurate enough to be used as a design tool.
The mathematical model is based on system of Favre averaged
Navier-Stokes equations that are written in relative frame of ref-
erence, which rotates with constant angular velocity around axis
of rotation. The governing equations are solved using finite vol-
ume method applied on structured grids. The numerical proce-
dure is based on the explicit multistage Runge-Kutta scheme that
is coupled with modern numerical procedures for convergence ac-
celeration. To demonstrate the accuracy of the described numer-
ical method developed software is applied to numerical analysis
of flow through impeller of axial turbocompressor, and obtained
results are compared with available experimental data.
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1 Introduction

Effective progress in turbocompressors design requires understanding of
flows through their passages, which are very complex. The main chal-
lenges that stand before the turbocompressor designers or analysts are:
to increase loading - that is to increase the pressure ratio for a given
amount of hardware, to increase efficiency - that is to reduce the power
required to achieve the pressure rise, and to increase the regions of high
efficiency. Improvements in each of the above are extremely demanding.
For successfully solving all these tasks understanding of flow conditions
within turbocompressors plays very important role. In recent years,
thanks to advantages in relation to experimental research, the computa-
tional fluid dynamics (CFD), has been used much more widely, resulting
in shorter development cycle. In many instances, CFD simulations pro-
vide the only detailed flow field information, as experimental testing
of turbocompressors with detailed measurement in rotating passages is
very expensive, and in many cases, impossible.

Turbulent flow through impeller of turbocompressor is probably one
of the most difficult problem in CFD. Numerical simulations of high
Re number turbulent flows, occurring in complex geometry from inlet
to outlet of turbocompressor impeller, require a very large number of
grid points and extremely small grid spacing to resolve phenomena in
near-wall region.

For engineering applications, at this stage, numerical solving of the
averaged Navier-Stokes equations [13] represents an optimal choice for
simulation of turbulent flows through complex domains. In order to
improve performance of flow computations, it is necessary to apply ef-
fective acceleration techniques. The multistage Runge-Kutta scheme,
developed by Jameson [8], in conjunction with local time stepping, im-
plicit residual smoothing and the multigrid method is a powerful numer-
ical tool and with much success has been applied in CFD applications
for solving turbomachinery flow problems [1], [5].

Objective of this paper is to present a numerical method for simu-
lation of three-dimensional compressible viscous flows through rotating
impellers. The application of the three-dimensional compressible turbu-
lent flow computation through isolated rotor of axial turbocompressor
is described and compared with experimental data [2].
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2 Introductory studies, starting equations

The three-dimensional, unsteady Navier-Stokes equations, which de-
scribe the compressible, viscous flow, can be written in Cartesian ro-
tating frame of reference as:

∂Q

∂t
+

∂(F − Fν)

∂x
+

∂(G − Gν)

∂y
+

∂(H − Hν)

∂z
= S, (1)

where vector S on the right hand side represents the source term, which
takes into consideration influence of Coriolis and centrifugal forces on
fluid flow. If impeller rotates with constant angular velocity Ω around
x axis, then the source term is given as:

S =













0
0

ρΩ(Ωy + 2w)
ρΩ(Ωz − 2v)

0













. (2)

The Cartesian frame of reference is not the most suitable for sim-
ulation in complex geometrical domains. Therefore it is desirable to
transform system of equations (1) into boundary fitted coordinate sys-
tem (Fig. 1).

physical domain

computational domain

Figure 1: Coordinate transformation

After general three-dimensional transformation between the Carte-
sian variables (x, y, z) and the generalized coordinates (ξ, η, ζ), which is
defined by Jacobian of transformation:

J =

[

∂(ξ, η, ζ)

∂(x, y, z)

]

=





ξx ξy ξz

ηx ηy ηz

ζx ζy ζz



 , J = det J, (3)
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equation (1) can be written as:

∂Q̂

∂t
+

∂(F̂ − F̂ν)

∂ξ
+

∂(Ĝ − Ĝν)

∂η
+

∂(Ĥ − Ĥν)

∂ζ
= Ŝ, (4)

where,

Q̂ =
1

J













ρ
ρu
ρv
ρw
ρe













, Ŝ =
1

J













0
0

ρω(ωy + 2w)
ρω(ωz − 2v)

0













. (5)

The inviscid flux terms F̂ , Ĝ and Ĥ have the form of the following
expression:

F̂ =
1

J













ρU
ρuU + ξxp
ρvU + ξyp
ρwU + ξzp
(ρe + p)U













, Ĝ =
1

J













ρV
ρuV + ηxp
ρvV + ηyp
ρwV + ηzp
(ρe + p)V













, Ĥ =
1

J













ρW
ρuW + ζxp
ρvW + ζyp
ρwW + ζzp
(ρe + p)W













,

(6)
where U, V,W are the contravariant velocities, given by

U = ξxu + ξyv + ξzw,
V = ηxu + ηyv + ηzw,
W = ζxu + ζyv + ζzw.

(7)

The viscous flux terms F̂ν , Ĝν and Ĥν have the following form:
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F̂ν =
1

J













0
ξxτxx + ξyτxy + ξzτxz

ξxτxy + ξyτyy + ξzτyz

ξxτxz + ξyτyz + ξzτzz

ξxbx + ξyby + ξzbz













, Ĝν =
1

J













0
ηxτxx + ηyτxy + ηzτxz

ηxτxy + ηyτyy + ηzτyz

ηxτxz + ηyτyz + ηzτzz

ηxbx + ηyby + ηzbz













,

Ĥν =
1

J













0
ζxτxx + ζyτxy + ζzτxz

ζxτxy + ζyτyy + ζzτyz

ζxτxz + ζyτyz + ζzτzz

ζxbx + ζyby + ζzbz













,

where the shear stress and heat flux terms are defined in tensor notation
as:

τxixj
=

1

Re∞

[

µ

(

∂ui

∂xj

+
∂uj

∂xi

+ λ
∂uk

∂xk

δij

)]

,

bxi
= ujτxixj

− q̇xi
,

q̇xi
= −

µ

Re∞Pr(γ − 1)M2
∞

Txi
.

(8)

3 The closure problem

For closing system of averaged Navier-Stokes equations (4) the two equa-
tion k − ω turbulence model of Wilcox [13] is used, which is given in
tensor notation as:

∂

∂t
(ρk) +

∂

∂xj

[

ρujk − (µ + σ∗µt)
∂k

∂xj

]

= P − ckfkρωk ,

∂

∂t
(ρω) +

∂

∂xj

[

ρujω − (µ + σµt)
∂ω

∂xj

]

= cω1fω
ω

k
P − cω2ρω2 .

(9)

Coefficients and dumping functions, which close the system of tur-
bulence model equations are given as follows: ck = 9/100, cµ = 1,
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cω1 = 5/9, cω2 = 3/40, σ = σ∗ = 0.5, fµ =
cω2

3
+Rt/6

1+Rt/6
, fk =

5

18
+(Rt/8)4

1+(Rt/8)4
, and

fω = 0.1+Rt/2.7
(1+Rt/2.7)fµ

, where Rt is turbulent Reynolds number.

The molecular viscosity µ, which is computed according to Suther-
land law, and molecular thermal conductivity k are replaced with:

µ = µl + µt , (10)

k = cp

[( µ

Pr

)

l
+

( µ

Pr

)

t

]

, (11)

where cp is the specific heat at constant pressure, Pr is the Prandtl
number, and the subscripts l and t refer to laminar and turbulent, re-
spectively.

The turbulence energy production P on the right hand side of closing
equations is given in tensor notation as:

P =

[

1

Re∞
µt(

∂ui

∂xj

+
∂uj

∂xi

−
2

3
δij

∂uk

∂xk

) −
2

3
δijρk

]

∂ui

∂xj

. (12)

4 Numerical algorithm

4.1 Spatial discretization

The governing equations are spatially discretized using vertex-centered
finite volume method on H type structured grids. By means of Gauss’
divergence theorem the integral form of eq. (4) can be easily rewritten
following the standard finite -volume formulation:

Vj
∂

∂t
Q̄ +

∮

Sj

F̂(Q̂) · ndSj = VjS̄, (13)

where Q̄ and S̄ denote averaged values of conserved variables and source
terms over control volume Vj:

Q̄ =
1

Vj

∫

Vj

Q̂dVj, S̄ =
1

Vj

∫

Vj

ŜdVj, (14)

and n is the vector normal to surface Sj, which envelops control volume.
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F̂(Q̂) in eq. (13) represents set of vectors and tensors that define
convective and diffusive terms of governing equations and is given as:

F̂(Q̂) = F̂ (Q̂) − F̂ν(Q̂) + Ĝ(Q̂) − Ĝν(Q̂) + Ĥ(Q̂) − Ĥν(Q̂). (15)

Since in the present paper the vertex-centered finite volume method
is concerned, the control volume in computational domain is shown in
Fig. 2.

x

z h

i,j,k i+1,j ,k

i,j+1 ,k

i,j ,k+1

i,j ,k-1

i-1,j ,k

i,j-1 ,k

Figure 2: Control volume in computational domain

Introducing indexes of nodes of computational grid the unknown
variables can be expressed as:

Q̂i,j,k = Q̂(ξ, η, ζ) = Q̂(i∆ξ, j∆η, k∆ζ). (16)

Setting ∆ξ = ∆η = ∆ζ = 1, we get the vector of conserved variables
as a function of indexes of computational grid:

Q̂i,j,k = Q̂(i, j, k). (17)

With adopted notation the convective F̂ c and diffusive F̂d part of
eq. (15) get the form of following expressions:
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F̂ c
i,j,k(Q̂) = (δξF̂ )i,j,k + (δηĜ)i,j,k + (δζĤ)i,j,k

= F̂i+ 1

2
,j,k − F̂i− 1

2
,j,k + Ĝi,j+ 1

2
,k − Ĝi,j− 1

2
,k + Ĥi,j,k+ 1

2

− Ĥi,j,k− 1

2

,
(18)

F̂d
i,j,k(Q̂) = [δξ(F̂ν)]i,j,k + [δη(Ĝν)]i,j,k + [δζ(Ĥν)]i,j,k

= (F̂ν)i+ 1

2
,j,k − (F̂ν)i− 1

2
,j,k + (Ĝν)i,j+ 1

2
,k−

(Ĝν)i,j− 1

2
,k + (Ĥν)i,j,k+ 1

2

− (Ĥν)i,j,k− 1

2

.

(19)

The viscous fluxes at the cell faces are approximated with central
differencing, and convective fluxes are discretized using flux difference
splitting scheme of Roe [10]. Thus the flux difference in ξ direction could
be written as:

(δξF̂ )i,j,k =
1

2

[

F̂ (QL) + F̂ (QR) − |Ã|(QR − QL)
]

i+ 1

2
,j,k

−
1

2

[

F̂ (QL) + F̂ (QR) − |Ã|(QR − QL)
]

i− 1

2
,j,k

,
(20)

where Â represents flux Jacobian matrix, which is known as Roe’s ma-
trix, and QL and QR are interpolated values of variables from left and
right sides of control volumes, which are defined by monotone MUSCL
scheme.

After calculating, the corresponding dissipation term of Roe’s scheme
can be written in following form, which is suitable for programming [5]:

|Ã|(QR − QL) ≡ |Ã|∆Q =

































α4

ũα4 + ξ̂xα5 + α6

ṽα4 + ξ̂yα5 + α7

w̃α4 + ξ̂zα5 + α8

H̃α4 + ũα6 + ṽα7 + w̃α8 −
ã2α1

γ − 1

































, (21)
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where:

α1 =

∣

∣

∣

∣

∇ξ

J

∣

∣

∣

∣

∣

∣

∣

˜̄U
∣

∣

∣

(

∆ρ −
∆p

ã2

)

,

α2 =
1

2ã2

∣

∣

∣

∣

∇ξ

J

∣

∣

∣

∣

∣

∣

∣

˜̄U + ã
∣

∣

∣
(∆p + ρ̃ã∆Ū),

α3 =
1

2ã2

∣

∣

∣

∣

∇ξ

J

∣

∣

∣

∣

∣

∣

∣

˜̄U − ã
∣

∣

∣
(∆p − ρ̃ã∆Ū),

α4 = α1 + α2 + α3

α5 = ã(α2 − α3)

α6 =

∣

∣

∣

∣

∇ξ

J

∣

∣

∣

∣

∣

∣

∣

˜̄U
∣

∣

∣
(ρ̃∆u − ξ̂xρ̃∆Ū),

α7 =

∣

∣

∣

∣

∇ξ

J

∣

∣

∣

∣

∣

∣

∣

˜̄U
∣

∣

∣
(ρ̃∆v − ξ̂yρ̃∆Ū),

α8 =

∣

∣

∣

∣

∇ξ

J

∣

∣

∣

∣

∣

∣

∣

˜̄U
∣

∣

∣
(ρ̃∆w − ξ̂zρ̃∆Ū).

(22)

Variables ξ̂x, ξ̂y, ξ̂z, and ˜̄U are defined with following expressions:

ξ̂x =
ξx

|∇ξ|
, ξ̂y =

ξy

|∇ξ|
, ξ̂z =

ξz

|∇ξ|
. (23)

˜̄U =
1

|∇ξ|
(ξxũ + ξyṽ + ξzw̃). (24)

4.2 Iterative procedure

The system of governing equations can be rewritten in semi-discrete
form by following expression:

∂Q̂

∂t
= RHS, (25)
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where RHS denotes right hand side, which takes into account convec-
tive, diffusive and source terms.

Since control volumes do not vary during the time eq. (25) can be
written as:

1

J

∂Q

∂t
= RHS. (26)

The system of differential equations (26) is advanced in time using an
explicit four-stage Runge-Kutta scheme, which has the form of following
expression:

Q(0) = Q(n),

Q(1) = Q(0) + α1R
(

Q(0)
)

,

Q(2) = Q(0) + α2R
(

Q(1)
)

,

Q(3) = Q(0) + α3R
(

Q(2)
)

,

Q(4) = Q(0) + α4R
(

Q(3)
)

,

Q(n+1) = Q(4),

(27)

where the residual R(Q) according to eq. (26) is:

R(Q) = ∆t · J · RHS(Q). (28)

The coefficients αi in eq. (27) have following values:

α1 =
1

4
, α2 =

1

3
, α3 =

1

2
, α4 = 1. (29)

∆t in eq. (28) denotes time step of iterative scheme. Since the property
of time-stepping schemes is that solutions do not depend on chosen
time step, the last should be as large as possible, but without disturbing
stability of numerical method.



Numerical simulation of complex 3D viscous flows ... 65

4.3 Acceleration techniques

4.3.1 Local time stepping

In order to improve convergence acceleration local time stepping is ap-
plied. The local time step limit is obtained as maximum permissible
time step at each grid point computed as function of spectral radii of
flux Jacobian matrices of convective terms. In the present work, the
local time step limit ∆t is computed accounting for both the convective
(∆tc) and diffusive (∆td) contributions [1]:

∆t = CFL

(

∆tc∆td
∆tc + ∆td

)

. (30)

Specifically, for the inviscid and viscous time steps, the following
expressions have been adopted:

∆tc =
1

λξ + λη + λζ

, (31)

∆td =
1

Kt
γµ
ρPr

J2
(

S2
ηS

2
ζ + S2

ξ S
2
ζ + S2

ξ S
2
η

) , (32)

where

S2
ξ = x2

ξ + y2
ξ + z2

ξ , S2
η = x2

η + y2
η + z2

η , S2
ζ = x2

ζ + y2
ζ + z2

ζ . (33)

Kt in expression (32) is a constant whose value is set equal to 2.5,
based on numerical experiments [1].

4.3.2 Implicit residual smoothing

Further improvements in robustness and stability limit are obtained by
implicit residual smoothing with variable coefficients, which are function
of spectral radii of flux Jacobian matrices and CFL numbers of smoothed
and unsmoothed schemes. Numerical investigations [5] have shown that
this technique with variable coefficients saves CPU time 2-3 times. For
the case of three-dimensional flow, the implicit residual smoothing has
the form:
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(1 − βξ∇ξ∆ξ)(1 − βη∇η∆η)(1 − βζ∇ζ∆ζ)R̃i,j,k = Ri,j,k , (34)

where R̃ represents residual vector after smoothing in ξ, η and ζ direc-
tions with coefficients βξ, βη and βζ . For viscous simulation on highly
stretched meshes Swanson and Turkel [11] proposed variable coefficients
formulations, which have been used in the present paper and which are
as follows:

βξ = MAX

{

0,
1

4

[

(

CFL

CFL∗

λξ

λξ + λη + λζ

Φξ

)2

− 1

]}

,

βη = MAX

{

0,
1

4

[

(

CFL

CFL∗

λη

λξ + λη + λζ

Φη

)2

− 1

]}

,

βζ = MAX

{

0,
1

4

[

(

CFL

CFL∗

λζ

λξ + λη + λζ

Φζ

)2

− 1

]}

.

(35)

CFL and CFL∗ in the previous expression are the Courant number
of the smoothed and unsmoothed schemes respectively. Coefficients Φξ,
Φη, and Φζ in expression (35) are defined as follows:

Φξ = 1 +

(

λη

λξ

)σ

+

(

λζ

λξ

)σ

,

Φη = 1 +

(

λξ

λη

)σ

+

(

λζ

λη

)σ

,

Φζ = 1 +

(

λξ

λζ

)σ

+

(

λζ

λζ

)σ

,

(36)

where λξ, λη, and λζ are the spectral radii of the flux Jacobian matrices
for the convective terms:
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λξ = |U | + a
√

ξ2
x + ξ2

y + ξ2
z ,

λη = |V | + a
√

η2
x + η2

y + η2
z ,

λζ = |W | + a
√

ζ2
x + ζ2

y + ζ2
z ,

(37)

and a is the speed of sound.
The equation (34) is solved by parsing into three items according to

each coordinate direction, the result of which set of three tridiagonal
system of algebraic equations are obtained.

I STEP

(1 − βξ∇ξ∆ξ)R̃
∗∗

i,j,k = Ri,j,k, (38)

R̃∗∗

i,j,k − βξ

(

R̃∗∗

i+1,j,k − 2R̃∗∗

i,j,k + R̃∗∗

i−1,j,k

)

= Ri,j,k, (39)

−βξR̃
∗∗

i−1,j,k + (1 + 2βξ)R̃
∗∗

i,j,k − βξR̃
∗∗

i+1,j,k = Ri,j,k. (40)

do j = 2, jm − 1
do k = 2, km − 1

i = 2 : −βξ1,j,k
R̃∗∗

1,j,k
+ (1 + 2βξ2,j,k

)R̃∗∗

2,j,k
− βξ3,j,k

R̃∗∗

3,j,k
= R2,j,k

i = 3 : −βξ2,j,k
R̃∗∗

2,j,k
+ (1 + 2βξ3,j,k

)R̃∗∗

3,j,k
− βξ4,j,k

R̃∗∗

4,j,k
= R3,j,k

.

.

.

i = im − 1 : −βξim−2,j,k
R̃∗∗

im−2,j,k
+ (1 + 2βξim−1,j,k

)R̃∗∗

im−1,j,k
− βξim,j,k

R̃∗∗

im,j,k
= Rim−1,j,k

enddo
enddo

II STEP

(1 − βη∇η∆η)R̃
∗

i,j,k = R̃∗∗

i,j,k, (41)

R̃∗

i,j,k − βη

(

R̃∗

i,j+1,k − 2R̃∗

i,j,k + R̃∗

i,j−1,k

)

= R̃∗∗

i,j,k, (42)
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−βηR̃
∗

i,j−1,k + (1 + 2βη)R̃
∗

i,j,k − βηR̃
∗

i,j+1,k = R̃∗∗

i,j,k. (43)

do i = 2, im − 1
do k = 2, km − 1

j = 2 : −βηi,1,k
R̃∗

i,1,k
+ (1 + 2βηi,2,k

)R̃∗

i,2,k
− βηi,3,k

R̃∗

i,3,k
= R̃∗∗

i,2,k

j = 3 : −βηi,2,k
R̃∗

i,2,k
+ (1 + 2βηi,3,k

)R̃∗

i,3,k
− βηi,4,k

R̃∗

i,4,k
= R̃∗∗

i,3,k

..

.

j = jm − 1 : −βηi,jm−2,k
R̃∗

i,jm−2,k
+ (1 + 2βηi,jm−1,k

)R̃∗

i,jm−1,k
− βηi,jm,k

R̃∗

i,jm,k
= R̃∗∗

i,jm−1,k

enddo
enddo

III STEP

(1 − βζ∇ζ∆ζ)R̃i,j,k = R̃∗

i,j,k, (44)

R̃i,j,k − βζ

(

R̃i,j,k+1 − 2R̃i,j,k + R̃i,j,k−1

)

= R̃∗

i,j,k, (45)

−βζR̃i,j,k−1 + (1 + 2βζ)R̃i,j,k − βζR̃i,j,k+1 = R̃∗

i,j,k. (46)

do i = 2, im − 1
do j = 2, jm − 1

k = 2 : −βζi,j,1
R̃i,j,1 + (1 + 2βζi,j,2

)R̃i,j,2 − βζi,j,3
R̃i,j,3 = R̃∗

i,j,2

k = 3 : −βζi,j,2
R̃i,j,2 + (1 + 2βζi,j,3

)R̃i,j,3 − βζi,j,4
R̃i,j,4 = R̃∗

i,j,3

..

.

k = km − 1 : −βζi,j,km−2
R̃i,j,km−2 + (1 + 2βζi,j,km−1

)R̃i,j,km−1 − βζi,j,km
R̃i,j,km = R̃∗

i,j,km−1

enddo
enddo

For solving previous set of equations very fancy Thomas algorithm
is used.
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4.3.3 Multigrid

One of the most successful and widely used methods of convergence ac-
celeration is multigrid by means of which convergence can be accelerated
several hundred times [6]. The basic idea of multigrid method is to apply
sequence of grids to solve a discrete problem. The low-frequency error
components on the fine grid are precisely the error components that
dramatically slow the convergence. With suitable coarse grid approxi-
mations of the fine grid problem, the low-frequency error components on
the fine grid appear as high-frequency error components on the coarser
grids. Because the coarse grids require less computational work, the
objective of multigrid method is to spend much more time on the coarse
grids than on the fine grid. The other advantage of working with coarse
grids is that coarse grids allow bigger time steps.

In the present paper the full multigrid algorithm is applied. The aux-
iliary coarser meshes are obtained by eliminating every other mesh line
in each coordinate direction. Both the solution vector and the residual
vector are transferred to coarse mesh using rule which conserves mass,
momentum and energy. Restriction of solution vector has the following
form:

Q2h = I2h
h Qh, (47)

where I2h
h denotes restriction operator from fine (h) to coarse (2h) grid,

Q2h is restricted solution vector on coarse grid, and Qh is current solution
of discretized equations, obtained after implementation of one or more
Runge-Kutta cycles.

Since the grid points and locations where the variables are stored for
the case of vertex-centered finite volume method overlap, restriction of
solutions is simple injection of solution values from the fine grid points:

Q2h(IC,JC,KC) = Qh(i,j,k). (48)

IC, JC, KC in expression (48) are indexes of grid points on coarse
grids defined as:

IC =
1

2
(i + 1), JC =

1

2
(j + 1), KC =

1

2
(k + 1). (49)
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The restriction of residuals is according following expression [5], [9],
[11]:

I2h
h Rh(i,j,k) = 8µ2

ξµ
2
ηµ

2
ζRh(i,j,k), (50)

where µξ, µη and µζ denote standard averaging operators along ξ, η and
ζ direction, which are as follows:

µξRh(i,j,k) =
1

2
(Rh(i+1/2,j,k) + Rh(i−1/2,j,k)),

µηRh(i,j,k) =
1

2
(Rh(i,j+1/2,k) + Rh(i,j−1/2,k)),

µζRh(i,j,k) =
1

2
(Rh(i,j,k+1/2) + Rh(i,j,k−1/2)).

(51)

For the sake of simplicity the derived form of equation (50) is given
with following expression:

µ2
ξµ

2
ηµ

2
ζRh(i,j,k) =

1

64

(

Rh(i−1,j+1,k+1) + 2Rh(i,j+1,k+1) + Rh(i+1,j+1,k+1)+

2Rh(i−1,j,k+1) + 4Rh(i,j,k+1) + 2Rh(i+1,j,k+1)+

Rh(i−1,j−1,k+1) + 2Rh(i,j−1,k+1) + Rh(i+1,j−1,k+1)+

2Rh(i−1,j+1,k) + 4Rh(i,j+1,k) + 2Rh(i+1,j+1,k)+

4Rh(i−1,j,k) + 8Rh(i,j,k) + 4Rh(i+1,j,k)+

2Rh(i−1,j−1,k) + 4Rh(i,j−1,k) + 2Rh(i+1,j−1,k)+

Rh(i−1,j+1,k−1) + 2Rh(i,j+1,k−1) + Rh(i+1,j+1,k−1)+

2Rh(i−1,j,k−1) + 4Rh(i,j,k−1) + 2Rh(i+1,j,k−1)+

Rh(i−1,j−1,k−1) + 2Rh(i,j−1,k−1) + Rh(i+1,j−1,k−1)

)

.

After the residuals are transferred to coarse grid, in order to respect
the fine grid approximation, forcing function P2h is defined on the coarse
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grid and added to the governing equations. This forcing function is
defined as:

P2h = I2h
h Rh(Qh) − R2h(Q2h). (52)

Now, the equations on coarse grid have the form:

1

J2h

∂Q2h

∂t
= R2h + P2h. (53)

When the hybrid fourth order Runge-Kutta scheme is applied on
equation (53), the solution on coarse grid can be written as:

Q
(p)
2h = Q

(p−1)
2h + αp∆tJ2h

(

R
(p−1)
2h + P2h

)

, (54)

where (p=1,2,3,4).
It is obvious from equation (54) that during the first numerical up-

date on the coarse grid (for p = 1):

Q
(1)
2h = Q

(0)
2h + αp∆tJ2h

(

I2h
h Rh(Qh)

)

, (55)

the coarse grid residual drops out. This ensures zero corrections from
the coarse grid if the restricted residual from the fine grid vanishes.

Execution of one or several time steps on the coarse grid yields cor-
rections of the form:

∆Q2h = Qk
2h − Q0

2h. (56)

These corrections are defined in the grid points of coarse grid, and
it is necessary somehow to redistribute them to locations where the
variables on the fine grid are stored, in order to correct solutions on
the fine grid, which is called prolongation. This is done by three-linear
interpolation, so the corrected solutions on fine grid have the form of
following expression:

Qcor
h = Qh + Ih

2h∆Q2h, (57)

where Ih
2h denotes operator of prolongation corrections from coarse to

fine grid.
In order to improve stability of numerical algorithm the implicit

residual smoothing procedure is applied on interpolated corrections:
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(1 − βξ∇ξ∆ξ)(1 − βη∇η∆η)(1 − βζ∇ζ∆ζ)∆Q̃2h(i,j,k) =
(

Ih
2h∆Q

)

(i,j,k)
,

(58)
where βξ, βη, and βζ constants which have value 0.6-0.8.

Finally, after smoothing corrections, the solution have the form:

Qcor
h = Qh + ∆Q̃2h. (59)

4.4 Boundary conditions

The very important segment of numerical computation is specifying the
boundary conditions because they ensure the unique solution of gov-
erning equations. Since blade passages are considered, four types of
boundary conditions are used: inlet, outlet, solid walls and periodic
boundary conditions.

Specifying the boundary conditions at the inlet is based on theory
of characteristics. Number of boundary conditions needed depends on
the way information prolong along characteristics, in other words, on
eigenvalues of flux Jacobian matrices:

λ1 = λ2 = λ3 = U,

λ4 = U + a
√

ξ2
x + ξ2

y + ξ2
z ,

λ5 = U − a
√

ξ2
x + ξ2

y + ξ2
z .

(60)

For subsonic inflow four eigenvalues are positive and one is nega-
tive. Accordingly, four boundary conditions should be specified and one
value should be extrapolated from interior of domain. At the inlet total
pressure, total temperature, turbulent kinetic energy, specific dissipa-
tion rate, and two flow angles in perpendicular planes are prescribed,
whereas the Riemann invariant R− is extrapolated from interior of the
domain at each iteration. The total velocity at inlet is then found as
follows:

Vin =
(γ − 1)R− +

√

2(1 − γ)(R−)2 + 4(γ + 1)cpT0

γ + 1
. (61)
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With known values for flow angles, now is possible to calculate ve-
locity components, and static pressure and density are found from isen-
tropic relations. Knowing the value of velocity at inlet in each iteration
and having in mind the prescribed value for total temperature, the tem-
perature at the inlet could be found from following expression:

T0 = T +
V 2

2 · cp

, (62)

and pressure follows from:

p =
p0

(

T0

T

)

κ

κ − 1

. (63)

Instead of extrapolating Riemann invariant it is possible to extrapo-
late pressure at the inlet and then by virtue of total pressure and total
temperature to obtain velocity at the inlet. For the sake of investigation
which one of these two approaches is more eligible both approaches have
been used in this paper and no significant difference has been noticed
with respect to number of iterations toward steady solutions.

The way of specifying boundary conditions at outlet is very similar,
i.e. boundary conditions are specified according to theory of charac-
teristics. A value for pressure at the hub is prescribed and pressure
distribution is found from radial equilibrium equation:

∂p

∂r
=

ρv2
θ

r
. (64)

Concerning the other variables they are found by extrapolating mass
fluxes from interior with conservation of continuity equation. In the case
that the last two grid planes defined by indexes im and im− 1 are iden-
tical resulting that the Jacobians in these cells are equal, extrapolation
comes to extrapolation of density and velocity components:
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uim = uim−1,

vim = vim−1,

wim = wim−1,

ρim = ρim−1.

(65)

Boundary conditions that are used on solid walls are no-slip bound-
ary conditions for velocity components, while pressure, temperature and
density are found assuming adiabatic walls: ∂T

∂n

∣

∣

wall
= 0, ∂p

∂n

∣

∣

wall
= 0,

∂ρ
∂n

∣

∣

wall
= 0. In this paper simulation was carried out assuming that

there is no tip clearance between shroud and blades. Since the rotat-
ing frame of reference is employed, the stationary walls are treated as
moving walls with the rotation velocity of the frame in reverse direction.
Turbulent kinetic energy is set to zero at solid walls, and the specific
dissipation rate following Menter asymptotically approach [7].

Upwind and downwind from the blades periodic boundary conditions
are applied for radial and tangential velocity components and all scalar
values.

5 Application

The method described above has been implemented in three-dimensional
solver and applied to numerical simulation of flow through rotating im-
peller of axial turbocompressor designated as NASA Stage 37. That
compressor was designed in NASA-Lewis Research Center as an inlet
stage of an aircraft engine. The whole stage consists of inlet guide
vanes, rotor and downstream stator blades.

The numerical predictions as well as experimental measurements
were performed only on rotor part, in order to avoid any interactions
from the upstream inlet guide vanes or downstream stator blades. The
number of rotor blades is 36, and design pressure ratio is 2.106 at mass
flow of 20.19 kg/s and rotational speed of 17188.72 min−1. The mesh
model of rotor is shown in Fig. 3 (not all grid lines are shown), and
computational domain, which has 250000 grid points is shown in Fig.
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4. The meridional plane of rotor is shown in Fig. 5, whereby value for
axial direction x=0 corresponds to intersection of hub and leading edge.

Figure 3: The mesh model of the rotor.

X

Y

Z

Figure 4: The computational grid.

The measurement data [2] to which computation is compared, were
obtained at the NASA Lewis Research Center using aerodynamic probes
and laser anemometry. The measurement locations from which the data
were picked correspond to axial coordinate of x=-41.9, -5% chord, 20%
chord, 45.7, 101.6 and 106.7 in five different spanwise sections (30%,
50%, 70%, 75% and 95%).

After numerical simulation at different boundary conditions, which
correspond to mass flow rates that could be seen in Fig. 6 - Fig. 8, the
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Figure 5: The meridional plane.

performance maps for isolated rotor are obtained. The total pressure
ratio πk is compared to experimental data and shown in Fig. 6. In Fig.
7 the isentropic efficiency is compared to measured data, and predicted
polytropic efficiency at different mass flow rates is shown in Fig. 8. The
efficiencies are calculated using averaged values from inlet and outlet of
computational domain according the following expressions:

ηis =
π

κ − 1
κ

k − 1

π
n − 1

n
k − 1

, (66)

ηpol =
n

n − 1
·
κ − 1

κ
, (67)

where

n =
ln

pII
pI

ln
pII · TI

pI · TII

. (68)

The contours of relative Mach numbers at 90% span are shown in
Fig. 9, and isodensity contours at 90% span are shown in Fig. 10.
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Figure 6: The total pressure ratio.
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Figure 7: The isentropic efficiency.
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Figure 8: The polytropic efficiency.
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Figure 9: Contours of relative Mach numbers at 90% span
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Figure 10: Isodensity contours at 90% span
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6 Conclusion

The developed numerical model has been applied to numerical simula-
tion of flow through rotating impeller of axial turbocompressor. The
obtained results are compared with experimental data and it can be
concluded that global features of flow field are very well resolved. De-
scribed procedure has been extended to prediction of performance maps
of turbocompressors. For that purpose the calculations were carried out
for different mass flow rates and obtained results were compared with
experimental data. Both, the performance curve (total pressure ratio
versus mass flow), and the isentropic efficiency are very well predicted
with respect to experimental data. These results show that the devel-
oped methodology enables that numerical simulation on virtual model of
compressors could be very useful and powerful tool for flow field predic-
tion, compared to very expensive measurements. In addition, the general
conclusion is that the presented numerical method could be very useful
and powerful tool for compressor’s performance maps prediction that
could be used with confidence by designers, in the phase of preliminary
design.
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Numerička simulacija složenih trodimenzijskih
strujanja viskoznog stǐsljivog fluida kroz

medjulopatične kanale radnog kola

UDK 519.6, 532.517.4, 533.6

U ovom radu se opisuje kompjuterski program koji je razvijen za
analizu i simulaciju trodimenzijskog strujanja viskoznog fluida kroz kom-
presorske profilne rešetke. Uprkos brojnim numeričkim tehnikama i
tvrdnji da je Proračunska dinamika fluida dostigla ”state of the art”
fazu, izveštaji o uspešnim simulacijama predstavljaju dragocenu bazu
podataka o svojstvima pojedinih numeričkih tehnika primenjenih na
odredjene probleme. U ovom radu se razmatra rapidan numerički al-
goritam koji je dovoljno brz da bi se mogao koristiti u projektovanju.
Matematički model je zasnovan na sistemu Favre-ovo osrednjenih Navije-
Stoksovih jednačina, koje su napisane u relativnom koordinatnom sis-
temu, koji rotira konstantnom ugaonom brzinom oko ose rotacije. Mod-
elske jednačine su rešavane metodom konačnih zapremina na struk-
turnim mrežama. Numerička procedura je zasnovana na eksplicitnoj
vǐsestepenoj Runge-Kutta šemi, spregnutoj sa modernim numeričkim
procedurama za ubrzavanje procesa konvergencije. Da bi se pokazala
tvcnost opisanog numeričkog metoda, razvijeni softver primenjen je na
numeričku analizu strujanja kroz radno kolo aksijalnog turbokompre-
sora, a dobijeni rezultati su uporedjeni sa raspoloživim eksperimental-
nim podacima.


