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Abstract: 
  
The paper presents development and numerical implementation of elastic-plastic constitutive 

model for cohesionless granular materials. This constitutive model based on the hyperbolic failure 
envelope was developed using theory of incremental plasticity. Developed constitutive model 
contains three material parameters which can be obtained using results of direct shear test or 
triaxial test of material sample. In stress integration procedure, for system of nonlinear equations 
solving, governing parameter method was used. Constitutive relations for implicit stress 
integration are summarized in form of numerical algorithm. Presented algorithm was 
implemented in the general-purpose finite element program PAK and verified through numerical 
simulation of the material tests.  
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1. Introduction 

Numerical analyses of engineering problems are closely related to the choice of appropriate 
constitutive model used to describe mechanical behavior of analyzed material. Material 
parameters are determined after adopting the appropriate model. In solving real physical 
problems, it is convenient to use constitutive models whose parameters are be determined using 
conventional tests of material. It is also necessary for the constitutive model to be sufficiently 
robust and numerically efficient. In order to satisfy proposed criteria, a constitutive model for 
cohesionless granular material based on hyperbolic failure surface based on Mohr-Coulomb 
criteria [1] was developed.  

There are numerous suggestions for failure surface description as the function of effective 
stresses which is divided into parabolic, logarithmic, and hyperbolic shape [2, 3]. However, most 
of these expressions have disadvantages such as limited stress range, parameter dependence on 
the stress unit, model parameters without a clear physical meaning, etc. Therefore, the failure 
surface is important to be defined throughout the range of possible stresses, to be applicable to 
several types of materials, to have parameters with clear physical meaning, to be consistent with 
the basic concepts of the accepted theory. On other hand, stress integration is performed for any 
integration point, so it is essential to have an efficient computational algorithm. Suggested 
constitutive model is overcoming the problems of the most commonly used constitutive models 
for cohesionless granular materials. 
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In the case of implicit stress integration, return mapping algorithm and governing parameter 
method [4, 5, 6, 7] were used. The methods represent generalization of the radial return method 
used in general plasticity [8] based on the calculation of the unknown stresses and internal 
material variables being reduced to the solving one (governing) parameter [9, 10]. Implicit 
integration method provides that the failure condition is satisfied at the end of each time step. 
Additionally, the implicit integration methods allow significantly greater time step than explicit 
integration, leading to faster solution of equation system [11]. Implicit methods are also 
widespread in solving geotechnical problems [12], as well as in other elastic-plastic and 
viscoplastic problems [13]. 

2. Theoretical bases of the model 

Constitutive models based on a linear failure envelope are commonly used in numerical 
simulation of mechanical behavior of granular materials especially for higher stress values. 
However, linear failure envelope does not describe real mechanical behavior of granular 
cohesionless material for lower values of normal stress. In order to appropriately describe 
mechanical behavior for all the possible stress states, Hyperbolic elastic-plastic model was 
developed. Failure surface of this model resulted from the model with non-linear deformable saw-
teeth [14] as presented in Figure 1. 

 
Figure 1 Model with nonlinear deformable saw-teeth 

Failure surface of developed model quite realistically describes mechanical behavior of 
granular materials without cohesion, especially for low stress level. The constitutive model 
represents the modification of the Mohr-Coulomb model with internal friction angle defined as 
the function of the stress state. Hyperbolic failure envelope of the model was defined using three 
material parameters. 

Constitutive relations of soil material, as a porous media, describe the laws referring to solid 
skeleton (effective stress). Effective values of internal variables are usually labelled with the sign 
prim (‘), but this sign will be omitted in this paper.  

Assuming that there is no cohesion in granular unbounded materials [15, 16], according to 
[1], shear strength of the material is 

 tanf n n     (2.1) 

Internal friction angle is defined as the function of normal effective stress, so shear strength of the 
material is 

tan
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 (2.2) 
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and represents the failure shear stress envelope [17]. Equations (2.1) and (2.2), use the following 
model parameters: B -basic fraction angle,  -maximal angle difference O B   and Np -
normal stress of secant angle. Failure stress envelope defined with (2.2) are presented in Figure 2.  

Material parameter Np  represents the stress at which the internal friction angle has middle 

value ( M ) between the angles B  and O . For the stress state at the failure, tangent to the Mohr's 
circle from the origin can be defined 

 
 

1 3

1 3

sin f
s

f
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



 (2.3) 

while the corresponding normal stress is  

 3 1 sinff s     (2.4) 

Obviously, due to the curvature of the failure envelope, point K where the tangent touches 
Mohr’s circle and forms the angle s  with axis   does not match point F, where the tangent is 
cutting the failure envelope.  

 

Figure 2. Failure surface of the model and the conversion of material parameters 

However, according to [17], this can be neglected due to irrelevant deviation, so it is adopted 
that N Fp p . The change of the Mohr’s circle tangent angle is formulated as the function of 

normal stress ff . Generalizing, hyperbolic failure surface defined in stress space    is 

transformed into elastic-plastic constitutive model in principal stress space, so instead of ff  

stress, mean stress is used, thus internal friction angle is calculated as 

1
s B

m

AVp

  
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 (2.5) 

where, parameter AVp  is calculated using the equation 

2

3 sin1

3 1 sin
M

AV F
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p p
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 (2.6) 

According to [12], difference of friction angle defined by two equations is of the range ±0.2° 
and is reduced with the decrease of angle difference  . Therefore, introduced approximation is 
used in numerical analyses with satisfying accuracy.  



D. Rakić, M. Živković, M. Bojović, Elastic-plastic constitutive model for cohesionless granular materials 

4 

2.1 Failure surface of the model 

Mohr-Coulomb and Hyperbolic model failure surface are the same in case when there is no 
cohesion. Cohesion in Mohr-Coulomb model is the result of failure envelope linearization and is 
not the representation of real soil behavior. In case of Hyperbolic elastic-plastic model, internal 
friction angle is the function of the stress state. Accordingly, failure surface of Hyperbolic elastic-
plastic model is defined using Mohr-Coulomb failure surface omitting material cohesion and 
introducing internal friction angle as the function of the stress state 

   1
2

1
sin cos sin sin

3 3
n D n

I
f J      
   

 
 (2.7) 

Having no hardening feature, failure surface of this constitutive model represents the yield 
surface at the same time. In the equation (2.7), 1I  represents the first stress invariant, 2DJ  is the 

second deviatoric stress invariant,   is Lode’s angle, whereas  n   represents the internal 

friction angle defined by the equation (2.5). 

3. Implicit stress integration 

The equation of failure surface (2.7) represents a composite stress function whose derivative 
is calculated using the chain rules [18] as 
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        σ σ σ σ σ
 (2.8) 

where σ  represents stress tensor for Cartesian components which in case of isotropic material 
contain six components. 

Individual parts of the equation (2.8) represent derivatives of yield function (2.7) with respect 
to stress invariants, Lode’s angle and internal friction angle as well as individual derivatives are 
calculated as  
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Derivatives of the first stress invariant and second deviatoric stress invariant are  
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derivative of internal friction angle with respect to stress is 

     2 2 2
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whereas derivative of Lode’s angle can be calculated using the chain rule as previously presented. 
Algorithm presented in the following section summarizes the steps for stress integration using 

this model. In order to perform implicit stress integration of Hyperbolic elastic-plastic model, 
return mapping algorithm was developed [8, 9] and it is presented in Table 1.  

Known: t t e , t e , t σ , t pe  
A. Trial solution: 

 E E E t t td d   σ C e C e e , t t t d  σ σ σ  

Stress invariants: 1I , 2DJ ,   

Failure and plastic potential function: 
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B. Yield condition check: 
IF ( 0f  ) elastic strain (go to E) 

IF ( 0f  ) elastic-plastic strain (CONTINUE) 
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C. dλ correction (local iterations): 
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New invariants: 

1I , 2DJ ,   
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D. IF (  ABS f TOL ) go back to C with new d : 
t t P t P Pd  e e e  

E. End: t t σ , t t P e  

Table 1 Implicit stress integration algorithm of Hyperbolic elastic-plastic model 

In case there are plastic strains in the current time step, yield condition is not fulfilled 
indicating that total strains are to be corrected by calculating the plastic corrector. Plastic 
corrector represents the part of plastic strains in total strain. One of the complications in some 
constitutive model cases can be the complex calculation of yield function and plastic potential 
derivatives. However, the use of yield function derivatives instead of analytical derivatives 
overcomes this shortcoming. Presented algorithm is implemented in the program PAK [19] and 
verified through examples. 

4. Verification examples 

Two test examples were performed as verification of the developed algorithm for implicit 
stress integration using Hyperbolic elastic-plastic model. First verification example is numerical 
simulation of triaxial test with the aim to verify if the developed model accurately describes the 
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strength of the material sample for given material parameters. Second example represents 
numerical simulation of direct shear test in order to verify if the developed model accurately 
describes the mechanical behavior of real samples during shear load. Identification of material 
parameters was performed using back analysis [20]. Results of numerical simulation were 
compared with both the analytical and experimental results. 

4.1 Triaxial test simulation 

Numerical modelling of triaxial test simply verifies whether the developed constitutive model 
describes the strength of the material in accordance with the theoretical failure criterion for given 
model parameters. Generally, stress path is classified according to the type and direction of 
loading. Therefore, the performance of the developed elastic-plastic model for granular material 
based on hyperbolic failure surface was checked for compression and extension. Four different 
confining stresses were used. In compression test, the sample was loaded using hydrostatic stress 
state which was subsequently increased in one direction, whereas it remained constant in the other 
two directions. In the tension test, to the contrary, the stress was reduced in one direction after set 
the hydrostatic stress state, while it remained constant in the other two directions. 

Used FE model consists of one solid hexagonal finite element with unit dimensions. Figure 3 
presents model geometry, boundary conditions and loads. The analyzed model has three planes of 
symmetry, so accordingly, the appropriate boundary conditions of symmetry were used. Model 
loads are applied using prescribed pressure in three coordinate directions. The load was increased 
in multiple steps until inability to achieve convergence of numerical solutions (failure). 

 
Figure 3. FE model for triaxial test simulation 

The procedure was repeated for four levels of confining stress with the aim to confirm that 
the model provides analytical stress values of the failure for different stress states: σm= 0.213 
MPa, 0.421 MPa, 0.839 MPa and 1.665 MPa. In the compression test, the vertical pressure is 
increased until the failure is reached after reaching the initial stress state. In the extension test, the 
vertical pressure is reduced until the failure after reaching the initial stress state. Used load 
functions are presented in Figure 4. 

Parameter Label Value 
Young’s modulus E 20 MPa 

Poison’s ratio ν 0.3 
Material constant ϕB 17.22° 
Material constant Δϕ 29.38° 
Material constant pN 0.62MPa 

Table 2. Material parameters used in triaxial test simulation 

Report [51] was the source for material parameters used in the numerical simulation of the 
triaxial test. Used material parameters of the model are presented in Table 2, for the sample RPU-
1/98. 
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Figure 4. Load functions in triaxial test simulation 

Figure 5 presents the simulation results of the triaxial test, for different values of confining 
pressure in case of compression and extension. 

23 Dq J  (2.16) 

The numerical results are presented in the form of stress paths for both analyzed cases and for 
all confining stresses in the m q  stress space, where m  represents the mean stress (confining 
stress) while q  represents second invariant of deviatoric stress (2.16). 

 
Figure 5. Compression and extension stress path in triaxial test simulation 

According to the analysis of the obtained results, the conclusion is that the developed stress at 
the failure agree with the stress at the failure surface of the Hyperbolic elastic-plastic model. In 
other words, the developed model describes the strength of the material corresponding to the 
theoretical values of the failure stress. 

4.2 Numerical simulation of direct shear test 

This simple numerical simulation is convenient for validation of constitutive model and is 
used for material parameters identification. Analyzed material represents the rock-fill of the 
dam’s downstream slope, making the application of the Hyperbolic soli model suitable for the 
numerical simulation. Experimental results of direct shear test of embankment dam supporting 
body material [21] are presented in Table 3 and used for model parameters identification.  

Block No. σn [kPa] τ [kPa] 
1 213 170 
2 421 307 
3 839 454 
4 1665 793 

Table 3. Measured values of failure shear stress vs. normal stress 
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The same normal stress values were used in numerical simulation of direct shear test. 
Estimated material parameters of Hyperbolic elastic-plastic model are presented in Table 4 and 
failure surface is shown in Figure 6. Such estimated parameters were used in numerical 
simulation of shear test.  

Used FE model consists of one finite element of unite dimensions with boundary conditions 
and loads presented in Figure 7. Boundary conditions used in numerical simulation correspond to 
the boundary conditions of the specimen shear layer. 

Parameter Label Value 
Young’s modulus E 20 MPa 

Poison’s ratio ν 0.3 
Material constant  ϕB 17.22° 
Material constant Δϕ 29.38° 
Material constant pN 0.62MPa 

Table 4. Estimated material parameters of the hyperbolic model 

Model loading was conducted in two phases. The first phase indicates that the vertical 
pressure is specified on the upper surface of the model ( p ) up to the values of normal stress used 
in the material test (Table 3).  

 
Figure 6. Estimated failure surface 

After reaching the specified value of normal stress, horizontal displacement of nodes was 
applied on the upper model surface ( xd ). Load functions used in the test device were the same as 
the load functions in numerical simulation (Figure 7b). 

 
Figure 7. FE model for direct shear test simulation and load functions 

Results of numerical simulation and the test results were presented in xy xe   form (Figure 

8). It can be concluded that the developed constitutive model significantly follows the trend of the 
experimental results through comparing the numerical results obtained using developed algorithm 
with the experimental results presented in Figure 8. Significant deviations are observed for lower 

) ) 
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strain values and are related to the absence of hardening feature in developed model, which could 
be the subject of further development of the constitutive model. 

 
Figure 8. Measured and simulated results of the direct shear test 

Parameters of constitutive model can be obtained using direct shear test in large scale. 
Additionally, developed algorithm for implicit stress integration of Hyperbolic elastic-plastic 
model obviously well describes mechanical behavior of analyzed material sample in general. Due 
to the simple reduction of the shear stress envelope, this constitutive model is suitable for the 
application of shear strength reduction (SSR) method [22] used for factor of safey determination. 

5. Conclusions 

The paper discusses the development of the constitutive model for cohesionless granular 
material based on the hyperbolic failure surface using theory of incremental plasticity. Failure 
surface of the model was defined by modifying Mohr-Coulomb failure surface and introducing 
internal friction angle as the function of stress state. Model describes more realistic mechanical 
behavior of cohesionless granular material especially for lower values of confining stress. The 
model formulation is given and the constitutive relation development for implicit stress 
integration was presented in details. Failure surface of the model was defined using three material 
parameters whose meaning was presented in the paper. These material parameters can be 
obtained using direct shear test or triaxial test. A return mapping algorithm is applied to the model 
in the general-purpose program PAK. The algorithm was verified through several test examples. 
Developed model provides good matches of numerical results with analytical results and 
significantly follows the trend of the experimental results. Some deviations can be observed for 
lower values of strain as the consequence of the fact that developed model does not have 
hardening feature which could be the subject of further development of the constitutive model. 
This confirms applicability of developed model in real geotechnical problem. Suitability for wide 
applications in engineering problem solving of the Hyperbolic constitutive model based on the 
nonlinear failure envelope is reflected in the fact that parameters may be obtained directly using 
standard laboratory tests. Developed model can be improved by introducing a non-associated 
yield condition. In addition, the model can be modified by introducing a kinematic hardening, so 
the model can be suitable for dynamic analysis of granular materials. Due to the simplicity of 
reducing the shear stress envelope, this constitutive model is suitable for the application of shear 
strength reduction (SSR) method. 
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