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Abstract—Theoretical basis of the Drucker-Prager 

constitutive model is given and the implicit stress 

integration in the case of a plane strain state is shown in this 

paper. The reduction of the stress and strain tensor to the 

plane strain case was carried out, after which an algorithm 

for implicit stress integration was developed using the 

governing parameter method. This algorithm was 

implemented in the PAK program package. The verification 

of the developed algorithm was done through several 

examples where the results compared with 3D model, as 

well as with the solutions obtained by using other software. 

On the basis of the obtained results it can be concluded that 

the developed algorithm for implicit stress integration, gives 

identical results with solutions using the 3D constitutive 

model, as well as solutions using other software. 

Keywords— constitutive model, implicit stress integration, 

plane strain, Drucker-Prager, PAK  

I. INTRODUCTION

Using the incremental theory of plasticity, the 

development of the algorithm for the implicit stress 

integration of the Drucker-Prager material model for the 

plane strain condition was carried out. The development 

of the stress tensor and the strain tensor in the case of a 

plane strain condition was conducted. Developed 

algorithm was implemented in the PAK software package. 

The verification of the developed algorithm was 

conducted through the simulation of the direct shear test 

as well as through the uniaxial compression test. 

Comparison of results obtained using the 2D finite 

elements with results obtained using 3D finite elements. 

The numerical results of the direct shear test were also 

compared with the experimental results.  

II. ELASTIC-PLASTIC CONSTITUTIVE MATRIX

In the small strain theory, the total increment of the 

strain is equal to the sum of elastic and plastic strain [1], 

that is: 
E Pd d d e e e (1.1) 

The stress in the material causes only the elastic 

part of the strain. Increase of the stress corresponding to 

elastic strain is determined by the following equation [2]: 
E Ed dσ C e (1.2) 

where E
C represents an elastic constitutive matrix. 

The increase of plastic strain pde can be calculated

using the yield conditions, according to which the 

increment of plastic strain is directly proportional to the 

plastic potential gradient [3], which can be written as: 
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The plastic strain increment pde  is normal to the surface 

of the plastic potential. 

The scalar d  represents the factor of proportionality 

between the increase of the plastic strain and the plastic 

potential gradient. 

By using equations (1.1) and (1.2) can be obtained by: 

( )E Pd d dσ C e e= - (1.4) 

In the case of a constitutive model without hardening, 

which is discussed in the paper, the yield surface is 

defined by a scalar function that depends only on the 

stress tensor. When a plastic strain occurs, the increment 

of the yield function is equal to zero, or: 
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In the case of plain strain, a differential of the yield 

function with respect to the stress components are: 
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where dσ  represents the increment of the stress that 

can be written in vector form as: 
T
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Using the relations (1.3) and (1.4), we get the 

increment of the yield function (1.5) in the following 

form: 
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where scalar d  can be calculated as: 
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Finally, using the scalar d  from (1.9), the increment 

of total stress dσ  can be determined using the equations 

(1.3) and (1.4) in the function of the increment of the total 

strain as: 

EPd dσ C e (1.10) 
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Where, C
EP  represents elastic-plastic constitutive 

matrix: 
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III. STRESS INTEGRATION IN CASE OF PLANE-STRAIN 

CONDITION 

In the case of the plane-strain condition, the strain 

tensor has the next form [4]: 

0

0

0 0 0

xx xy

yx yy

e e

e e

 
 


 
  

е (1.12) 

Because of the symmetry of the strain tensor, it can be 

written using a single-index notation as: 

0xx yy xye e e   e (1.13) 

The stress tensor for the case of plane-strain condition 

has the form: 
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or, because of the symmetry, it can be written in 

vector form as: 

xx yy xy zzσ s s s sé ù= ë û (1.15) 

Representation of a plane-strain is shown on Fig. 1. 

Fig. 1 Plane strain condition 

Experimental material testing shows existence of a 

domain that defines the area of possible stress state. The 

surface that limits the area of possible stress area is called 

yield surface. In general case, the function that defines 

this surface depends on the stress and the material 

hardening and it can be represented by the following 

equation: 

( , )f f k σ (1.16) 

The surface of the plastic potential is defined by the 

similar function as: 

( , )g g σ k= (1.17) 

The yield surfaces and the plastic potential surfaces 

can coincide, and then it is called associative yield 

condition. If they do not coincide, this is non-associative 

condition yield. 

In the case when the stress point is inside of the yield 

surface, only elastic deformation will occur in the 

material. If the stress point reaches the yield surface, 

plastic strain occurs. Stress states outside this region are 

not possible. 

The yield surface of the Drucker-Prager constitutive 

model in principal stress space is the cone (Fig. 2), which 

the main axis coincides with the hydrostatic axis [2] and 

it is described by the next equation: 

1 2Df I J k   (1.18) 

while, the plastic potential function has the following 

form: 

21 D
g I J  (1.19) 

In equation (1.18) and (1.19), 
1I represents the first

stress invariant, 
2DJ  is the second deviatoric stress 

invariant, while , , k   represents material constants. 

Fig. 2 The yield surface of the Drucker-Prager constitutive model 

In order to determine the stress increment (1.10) it is 

necessary to find derivatives of the yield function and the 

plastic potential function with respect the stress tensor. 

The plastic potential function and the yield surfaces 

function are composite functions. By applying chain rule, 

these derivatives are: 
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IV. IMPLICIT STRESS INTEGRATION ALGORITHM OF 

THE DRUCKER-PRAGER CONSTITUTIVE MODEL 

In this section, the algorithm for implicit stress 

integration of the Drucker-Prager constitutive model in 

case of plane-strain state is given (TABLE I). This 

algorithm in presented form is implemented in the PAK 

program package. After algorithm implementation the 

verification of the algorithm was done through the 

numerical simulation of test examples. 

V. VERIFICATION OF DEVELOPED ALGORITHM

A. Uniaxial compression test (Oedometer Test)

The first example represents an elastic-plastic analysis

of the sand specimen compression using multi-cycle 

uniaxial load. The axial load of the model is applied using 

prescribed displacement on the model top, while 

displacements of the model side are restricted in normal 

direction. Bottom of the model is fixed in all direction 

(Fig. 3). 

Finite element model for compression test simulation 

consisting of one 2D finite element without midside 

nodes, with corresponding constraints and loads, in 
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accordance with the scheme in Fig. 3, is given in Fig. 4. 

Model dimensions are 2x2 m. Finite element model was 

created using software package Femap [5]. 

TABLE I ALGORITHM FOR IMPLICIT STRESS INTEGRATION 
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e e e

A. Trial (elastic) solution:

( ),

,

E E E t t t

t t t t t

t t t t t t

m

d d

d

m



 

  

  

 

 

σ C e C e e

σ σ σ

s σ σ

Calculation of stress invariants: 

 1

2

1

2

t t t t

D

I tr

J  





σ

s s

Yield function: 

1 2Df I J k  

Plastic potential function: 

1 2Dg I J 

B. Check the yield condition:

IF ( 0)f   trial solutions are elastic (GO TO E)

IF ( 0)f   elastic-plastic solutions (CONTINUE)

1 2

1 2

1 2

1 2

D

D

D

D

f f I f J

I J

g g I g J

I J

    
 

    

    
 

    

σ σ σ

σ σ σ

T
E

T
E

f
d

d
f g






 

 

C e
σ

C
σ σ

C. Correction d  (local iterations)

p

E P

E E

t t t

g
d d

d d d

d d

d










 



 

e
σ

e e e

σ C e

σ σ σ

Calculation of new stress invariants: 

 1 2

1
,

2

t t t t

DI tr J   σ s s

Yield function: 

1 2Df I J k  

D. IF ( ( ) )ABS f TOL  go back to C with new d
t t P t P Pd  e e e

E. End: ,t t t t P 
σ e

Fig. 3 Scheme of uniaxial compression test 

Fig. 4 Finite element model for uniaxial compression test 

Material data for numerical simulation are taken from 

the literature [3] and they are presented in the TABLE II. 

TABLE II MATERIAL PARAMETERS  

Young modulus Е=100 MPa 

Poison's coefficient v=0.25 

Material parameter α=0.05 

Material parameter k=0.25 MPa 

The model is loaded using load function given in Fig. 

5. The displacement of the model is applied using 80 time

steps. For equilibrium iterations Modified Newton

method is employed.

Fig. 5 Model loading function 

In order to verify the developed algorithm for plane 

strain stress integration, a model was also created using a 

3D finite element with the application of boundary 

conditions corresponding to a plane strain condition 

(Fixed translation in the direction normal to the plane of 

the drawing). The results of both analyses are shown in 

Fig. 6 and Fig. 7.  

Fig. 6 Axial stress in the function of axial strain 
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Fig. 6 shows dependence of the vertical strain from 

vertical stress. Analysing the showed results, we can 

conclude that results of the model obtained using 2D 

finite elements completely coincide with the results 

obtained using 3D finite elements, with plane strain 

boundary condition. 

Fig. 7 shows the dependence of the first stress 

invariant from the second invariant of the deviatoric 

stress. In the load regime, the plastic yield takes place on 

the Drucker-Prager yield surface, while in the unloading 

regime, the stress point is in the elastic area (below the 

failure surface-FS). 

Fig. 7 Second stress invariant deviatoric function of the first stress 

invariant 

Fig. 8 and Fig. 9 show the field of vertical 

displacement at the last loading step for 2D and 3D 

model in the plane strain condition. 

Fig. 8 The vertical displacement field in the 2D model 

Fig. 9 Vertical displacement field for a 3D model 

Based on the displacement distribution shown in Fig. 

8 and Fig. 9, we can conclude that the results obtained 

using 2D model are identical to the results obtained using 

3D model in case of plane-strain boundary condition. 

B. Direct Shear Test

Second verification example of the developed

algorithm represents numerical simulation of the direct 

shear test. This relatively simple test is often used to 

estimate constitutive model parameters. Its simulation is 

also suitable for constitutive model verification. Fig. 10 

shows a scheme of the model for direct shear test 

simulation. 

Fig. 10 Model for direct shear test simulation 

Fig. 11 shows the finite element model with given 

boundary conditions and loads. 

Fig. 11 Finite element model for direct shear test simulation 

The bottom nodes of the model are completely 

constrained, and the upper nodes are free. The model load 

is applied in two phases. In the first phase of the load, the 

vertical pressure is applied to the level of stress used in 

the experiment. After reaching the prescribed stress, the 

shear load in the horizontal direction was carried out 

using the prescribed displacement. The model is loaded 

using load functions given in Fig. 12. 

Fig. 12 Model load functions 

The results of the specimen laboratory test are shown 

in TABLE III and represent the dependence of the shear 
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stress at failure of the specimen corresponding to values 

of the normal stress. 

TABLE III MEASURED STRESS VALUES DURING FAILURE 

Test No. σn [kPa] τ [kPa] 

1 209 200 

2 426 276 

3 813 440 

4 1713 927 

In this example, four cases of load were analyzed. In 

each load case the same load functions were used, with 

the changed values of the normal stress given in TABLE 

III. Estimated material parameters of the Drucker-Prager

model, using data from the TABLE III, are given in

TABLE IV.

TABLE IV MATERIAL PARAMETERS  

Young modulus Е=1x105 kPa 

Poison's coefficient v=0.3 

Material parameter α=0.1990 

Material parameter k=88.17 kPa 

The results of direct shear test simulation for 2D and 

3D finite elements, for the plane strain condition, in the 

form of displacement vs. shear stress in the horizontal are 

presented in Fig. 13. 

Fig. 13 Results of direct shear test simulation for case of 3D and 2D 

finite elements 

Fig. 14 The results of the experiment of the direct shear test and the 

simulation of the 2D model 

Based on presented results, we can conclude that the 

results obtained using 2D finite elements are identical 

with the results for 3D finite elements, for the plane strain 

condition used. 

Fig. 14 shows the comparison of the displacement vs. 

shear stress at used values of normal stresses obtained in 

numerical simulation and experimentally. 

By comparing results presented in Fig. 14, we can 

notice that the simulation results do not match completely 

experimental results (the character is appropriate but the 

values of numerical results are higher). The reason for 

this deviation is the greater stiffness of the finite elements 

without midside nodes, used in this numerical simulation. 

In order to make the numerical simulation results more 

consistent with the experimental results, it is necessary to 

use finite elements with midside nodes. 

Fig. 15 and Fig. 16 shows a horizontal displacement 

field at the last time step for 2D and 3D models 

respectively. 

Fig. 15 Displacement field in the 2D model in horizontal direction 

Fig. 16 Displacement field in the 3D model in horizontal direction 

On the basis of the obtained displacement fields, we 

can notice that the results obtained by using the finite 2D 

elements coincide with the results of a model created by 

3D elements in the plane-strain condition. 

VI. CONCLUSION

The paper presents the implicit integration of the 

Drucker-Prager material model in the plane-strain state, 

using the theory of incremental plasticity. The steps of 

implicit stress integration of this material model are 

presented in the form of the algorithm which is 

implemented in the PAK program package. The 

developed algorithm was verified using uniaxial 

compression test and direct shear test. The material 

parameters of the Drucker-Prager constitutive model 

were obtained by estimation based on experimental 

results. The results of numerical simulations for 2D finite 

elements are compared with results obtained using 3D 

finite elements for plane strain condition. An analysis of 

the numerical simulation results indicates that the results 
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obtained by the 2D finite elements completely coincide 

with the results obtained by using 3D finite elements in 

the same condition. Simulation results of the direct shear 

test do not match experimental results values due to 

greater stiffness of the finite elements without midside 

nodes which are used in the simulation. 

Further development of the PAK software package in 

the field of computational geomechanics will be 

development of the integration algorithms for the plane-

strain condition of other constitutive models for 

application in field of geomechanics. 
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