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Abstract: 

The paper presents implicit stress integration of the elastic-plastic strain hardening 
constitutive model with non-associative yield condition based on the Mohr-Coulomb model using 
incremental plasticity theory. Yield surface of the presented constitutive model is defined using 
material parameters whose interpretation and estimation is presented in the paper. Governing 
parameter method was used for solving of non-linear equation system. Implicit integration 
procedure of model constitutive relations is presented in details as well as the algorithm for its 
FEM implementation. Developed algorithm was implemented in the general-purpose finite 
element program PAK designed for static and dynamic, linear and non-linear analysis of the 
structures. Verification of the implemented algorithm is performed using test example. 
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1. Introduction 

Stress integration represents calculation of stress change during an incremental step, 
corresponding to strain increments in the step. The essence of the incremental integration of 
inelastic constitutive relations is to trace the history of material deformation. The stress 
integration is an important ingredient in the overall finite element inelastic analysis of structures. 
It is crucial that the integration algorithm accurately reproduces the material behavior since the 
mechanical response of the entire structure is directly dependent on this accuracy. The algorithm 
should be also computationally efficient because the stress integration is performed to all 
integration points. For general applications, this computational procedure should be robust, 
providing reliable results under all possible loading conditions. This paper presents the 
computational procedure for implicit stress integration of the elastic-plastic strain hardening 
model based on Mohr-Coulomb [1, 2] using incremental plasticity method [3]. Integration steps 
of the constitutive relations were summarized in the form of algorithm and implemented into the 
program PAK. The implemented algorithm is verified by comparing the numerical results with 
the results of the shear test of soil. 



2 
 

2. Elastic-plastic constitutive matrix 

Elastic-plastic constitutive models are described using elastic-plastic constitutive relations. In 
incremental plasticity theory, stress is directly proportional to strain up to reaching yield stress. 
After reaching yield stress, strain increment can be divided into elastic and plastic part [4] 

 E Pd d d e e e   (1) 
Only elastic part of strain causes the stress change thus the stress increment can be formulated 

as 

 E Ed dσ C e   (2) 

where EC  is elastic constitutive matrix. Substituting (1) into (2), the following is obtained 

  E Pd d d σ C e e   (3) 

In the case of elastic-plastic constitutive models with hardening, yield function depends on 
the stress state and so does the internal parameter  . Therefore, the increment of yield function 
change can be formulated as 

  , 0 and 0
T Tf f

f d d d 


 
  

 
σ σ

σ
  (4) 

In incremental plasticity theory, it is necessary that the yield function is in every time step 
less or equal to zero (neutral loading condition). 

Implicit stress integration implies the increment of plastic strain in the direction normal to 
the plastic potential surface, which can be formulated as 

 
 ,P g

d d







σ

e
σ

  (5) 

where d  is positive scalar, which is to be calculated, and plastic potential function g  is the 
function of the stress and internal parameter  . Substituting the plastic strain increment (5) in (3) 
and using (4), can be written  

 0
T T

E E
P

f g f g
df d d d

d

 


              
C e C

σ σ σe
  (6) 

The last term in the equation (6) represents hardening modulus [5], where: 

 
T

P

f g
H

d



  

 
  σe

 (7) 

so, equation (6) can be written as 

 0
T

E Ef g
df d d d H         

C e C
σ σ

 (8) 

from where scalar d  can be calculated as 

 

T
E

T
E

f

d d
f g

H





 


 

C
σ e

C
σ σ

  (9) 

Finally, using scalar d  from (9), stress increment dσ  can be obtained using equations (3) and 
(5)in the function of total strain increment 

 EPd dσ C e   (10) 

where term EPC  represents elastic-plastic constitutive matrix 



3 
 

 

T
E E

EP E
T

E

g f

f g
H

 
  
 


 

C C
σ σC C

C
σ σ

  (11) 

3. Stress integration of the elastic-plastic strain hardening model 

Elastic-plastic strain hardening model based on Mohr-Coulomb [1] represents modification of 
the original Mohr-Coulomb material model [6]. Yield surface of this model can be expressed 
using stress invariants in the following form 

        1
2

1
sin cos sin sin cos

3 3
D

I
f J c         
    

 
 (12) 

while plastic potential function in general case may have different forms (non-associative yield 
condition) and it is defined by following equation 

    1
2

1
sin cos sin sin

3 3
D

I
g J      
   

 
 (13) 

In equations (12) and (13), 1I  and 2DJ  represent first stress invariant and second deviatoric 

stress invariant, while   is Lode’s angle. Material model has a hardening feature because the 

model parameters  c  ,     and     are the functions of the effective plastic strain [7, 8]. 

Effective plastic strain can be calculated using the following equation 

 P Pe de     (14) 

while the increment of the effective plastic strain can be calculated as 

 
2

3

T
P dg dg

de d
d d


σ σ

 (15) 

Yield function of the strain hardening model based on Mohr-Coulomb is a function of the 
effective plastic strain, so yield surface equation (12) can be written in following form 

     , ,f f c    σ  (16) 

In case when stress point reaches yield surface, according to (4), increment of the yield 
function is equal to zero in any time step, so the following equation is fulfilled 

     , , 0df c    σ  (17) 

Using equation (4), previous condition can be represented using chain rule as 

 
        0

Tf f f
df d dc d

c
  

  
  

   
  

σ
σ

 (18) 

or 

 

 
 

 
 

0

P PT
P P

P PP P

c e ef f f
d de de

e ec e e





   
  

   
σ

σ
 (19) 

Last two terms in consistency equation (19), according to (7), represent hardening of the material 

 

 
 

 
 P P

P P
P PP P

c e ef f
Hd de de

e ec e e






  
  

  
, (20) 

where H  represents hardening parameter [5]. Using (20), equation (19) can be written as: 
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 0
Tf

d Hd
 


σ

σ
 (21) 

and using (15) to (21), hardening parameter H  can be calculated as 

 

 
 

 
  2

3

P P T

P PP P

c e ef f dg dg
H

d de ec e e





          
 

σ σ
 (22) 

Substituting plastic strain increment (5) in (3) stress increment in time step can be written as 

 E E g
d d d 

 


σ C e C
σ

 (23) 

Multiplying equation (23) with   1E 
C total strain increment can be calculated by 

   1E g
d d d

 
 


e C σ

σ
 (24) 

and multiplying with 
T

Ef


C
σ

, knowing that   1E E 
C C I , where I  represent identity matrix, 

(24) can be written 

 
T T T

E Ef f f g
d d d   

 
   

C e σ C
σ σ σ σ

 (25) 

Substituting (21) in (25) scalar d  can be calculated as 

 

T
E

T
E

f

d d
f g

H





 


 

C
σ e

C
σ σ

 (26) 

Substituting (26) in (5), plastic strain increment can be written in form 

 

T
E

P
T

E

g f

d d
f g

H

 
 

 

 

C
σ σe e

C
σ σ

 (27) 

Finally, substituting scalar d  from (26) in (23) the stress increment dσ  (3) can be written as the 
function of total strain increment de  in form 

 

T
E E

E
T

E

g f

d d d
f g

H

 
  
 


 

C C
σ σσ C e e

C
σ σ

 (28) 

or 

 

T
E E

E
T

E

g f

d d
f g

H

  
 

   
  

 
  

C C
σ σσ C e

C
σ σ

  (29) 

which implies  
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T
E E

EP E
T

E

g f

f g
H

 
  
 


 

C C
σ σC C

C
σ σ

 (30) 

Equation (30) represents elastic-plastic constitutive matrix.  

3.1 Hardening formulation 

The mobilized friction angle in material, according to [1, 9], can be written as 

    1sin 2 sin
P P

fP
fP P

f

e e
e

e e
 

 
    
 

 (31) 

where P
fe  represents effective plastic strain required to mobilize peak friction angle f . The 

relationship (31) is shown graphically in Fig. 1. 

 
Fig. 1 Variation of internal friction angle with effective plastic strain 

Cohesion hardening can be assumed to be linear [1] with respect to the effective plastic strain 

  P P
i cc e c h e   (32) 

where ic  represents initial cohesion, while ch  is cohesion hardening parameter. In order to limit 
the increase of the cohesion, the maximal value of the material parameter is specified as 

  P
fc e c  (33) 

after that cohesion has a constant value. The dependence of the cohesion with respect to effective 
plastic strain is shown in Fig. 2. 
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Fig. 2 Variation of cohesion with effective plastic strain 

Dilatancy angle, as like as internal friction angle, is the function of the effective plastic strain 
and according to [1] can be expressed by equation 

      1
sin sin

sin sin sin sin
sin sin

P
iP

i f i
f i

e
e

 
   

 

      
 

 (34) 

where i  represents the initial dilation angle of the material, i  is initial friction angle, f  is 

final dilation angle, while f  represents final friction angle. The dependence of the dilatancy 

angle with respect to effective plastic strain is shown in Fig. 3. 
 

 
Fig. 3 Variation of dilatancy angle with effective plastic strain 

3.2 Stress integration algorithm 

Steps of implicit stress integration of strain hardening model based on Mohr-Coulomb are 
presented in the algorithm form [10] in the Table 1. Algorithm in the presented form was 
implemented in the program package PAK.  

Table 1 Implicit stress integration algorithm of the strain hardening model 

Known: t t e , t e , t σ , t pe , Pe   
А. Trial (elastic) solution: 

 E E E t t td d   σ C e C e e , t t t d  σ σ σ  

Stress invariants: 1I , 2DJ ,   
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Material parameters:   P P
i cc e c h e   for  P

fc e c ,     

      1sin 2 sin

P P
fP

fP P
f

e e
e

e e
 

 
 

  
 

 

,  

            1
sin sin

sin sin sin sin
sin sin

P
iP

i f i
f i

e
e

 
   

 

      
 

  

Yield function:          1
2

1
sin cos sin sin cos

3 3
P P P P

D
I

f e J e c e e     
    

 
 

Plastic potential function:     1
2

1
sin cos sin sin

3 3
P P

D
I

g e J e    
   

   
B. Yield condition check: 
IF ( 0f  ) trial solution are elastic (GOTO Е) 

IF ( 0f  ) solution is elastic-plastic (CONTINUE) 

1 2

1 2

D

D

I Jf f f f

I J




     
  

      σ σ σ σ
,  

1 2

1 2

D

D

I Jg g g g

I J




     
  

      σ σ σ σ
,  

32

2 3

DD

D D

JJ

J J

     
 

    σ σ σ  

E

E

f
d

d
f g

H





 


 

T

T

C e
σ

C
σ σ

 

C. Correction dλ (local iterations):  P g
d d 


e

σ
, E Pd d d e e e ,    

                E Ed dσ C e , t t t d  σ σ σ  
New stress invariants:  1I , 2DJ ,   

Yield function:        1
2

1
sin cos sin sin cos

3 3
P P P P

D
I

f e J e c e e     
    

 
 

D. IF (  ABS f TOL ) go to C with new d : 

2

3

T
P dg dg

de d
d d


σ σ

 , t t P t P Pe e de    ,  

t t P t P Pd  e e e  

Е. End: t t σ , t t P e , Pe   

4. Model verification 

4.1 Direct shear test  

Verification of the developed algorithm for implicit stress integration of strain hardening 
model based on Mohr-Coulomb was performed through numerical simulation of direct shear test 
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in large scale. Due to its simplicity, direct shear test is often used for estimation of material model 
parameters. Therefore, numerical simulation of direct shear test is suitable for validation and 
verification of soil material models.  

 
Fig. 4 Material parameter estimation 

Results of experimental testing of supporting body material in Prvonek dam were used for 
estimation of material model parameters. Estimated material parameters are then used in 
numerical simulation of direct shear test. Analyzed sample represents rockfill of downstream 
slope L-1 of the Prvonek dam [11]. Since rockfill represents granular material type, its 
mechanical behavior can be described using strain hardening material model based on Mohr-
Coulomb. Measured stress values during experiment are presented on Fig. 4. The same figure 
presents the yield surface of strain hardening model obtained through estimation, for final values 

of material model parameters ( P
fe ).  

Values of estimated material parameters based on direct test experimental results and used in 
numerical simulation of direct shear test in large scale are shown in the Table 2. 

Table 2 Estimated parameters of the strain hardening model based on Mohr-Coulomb 
Parameter name Sign Value 

Young’s Modulus E 1x105 kN/m2 

Poisson’s Ratio ν 0.3 

Final cohesion cf 87.0 kN/m2 

Final friction angle ϕf 24.5° 

Final effective plastic strain 
P
fe   3x10-2 

FE model consisting of one finite element of unit dimensions was used for numerical 
simulation of direct shear test. Boundary conditions and loads used in the numerical simulation 
correspond to boundary conditions and loads in the testing device are presented on Fig. 5a. Load 
functions used in numerical simulation are presented on Fig. 5b. 

During numerical simulation and experimental sample test, load was specified in two phases: 
in the first phase model was loaded up to specified stress level whereas in the second phase, 
normal stress keeps the constant value, during simultaneous applying of horizontal displacement 
which represents shear of the model. Shear displacement increases up to the failure with the 
monitoring of stress and strain changes.  
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Fig. 5 FE model of direct shear test and load functions 

Comparative values of shear stress obtained using Mohr-Coulomb model and strain 
hardening model based on Mohr-Coulomb for same material parameters are presented on Fig. 6. 
This figure presents the effect of model with hardening compared to classic Mohr-Coulomb 
material model. 

 
Fig. 6 Comparison of shear stress 

Results of numerical simulation of direct shear test using the developed algorithm were 
compared to the results obtained using Mohr-Coulomb material model without hardening as well 
as to the results of experimental sample test. Comparative presentation of these results is 
presented on Fig. 7.  

 
Fig. 7 Direct shear test results: a) Mohr-Coulomb, b) Strain hardening model  

Analyzing the results presented on Fig. 7, it is noticed that both used material models provide 
matches with the experimental results for the high strain values. However, for the low strain 
values, strain hardening model based on Mohr-Coulomb provides better matches with the 
experimental results. These matches are the effect of the material hardening feature as the 

a) b) 
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function of effective plastic strain. Using of this material model provides more realistic modelling 
of the soil behavior. This proves that developed algorithm well describes mechanical behavior of 
analyzed sample of granular material. Therefore, it is proved that using of direct shear test results 
can be used for determination of material model parameters for using in numerical simulations of 
geotechnical problems.  

5. Conclusions 

This paper presents the implicit stress integration of strain hardening model with non-
associative yield condition based on Mohr-Coulomb material model using the theory of 
incremental plasticity. Yield surface of the presented model was described through Mohr-
Coulomb yield surface equation except that the model parameters in presented constitutive model 
are not constants but depend on the value of effective plastic strain. Developed material model 
was designed for numerical simulation of granular material mechanical behavior with and without 
cohesion. Steps of implicit stress integration of this material model are presented in the algorithm 
form which was implemented in the program PAK in the specified form. Governing parameter 
method was used for solving the equation system.  

Developed algorithm was verified on the test example representing the simulation of direct 
shear test in large scale. Material parameters were obtained through estimation based on 
experimental results. Direct shear test using estimated material parameters was simulated in the 
repeated analysis. Numerical simulation results were compared to the experimental results as well 
as to the results obtained using Mohr-Coulomb model without hardening. The analysis of 
numerical simulation results indicates a good match with the experiment, using both material 
models. However, using of the presented material model with hardening provides better match for 
the small strain values. This is the consequence of model hardening feature so using of the 
presented material model with hardening provides more precise calibration of material parameters 
and therefore more precise numerical simulation of soil mechanical behavior. 
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