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1. INTRODUCTION

During the last decade, it has been shown [1–4] that
rare gases could be ionized relatively easily with CO

 

2

 

lasers for which Keldysh’s parameter [5] 

 

γ

 

 

 

�

 

 1, this
being the so-called 

 

tunneling regime

 

. The tunneling
regime was theoretically explained in [6], and after
some time this result obtained the name ADK theory
(first in paper [7], then also in papers [8–13], to mention
some). Later in [14], it was shown that the set of pre-
scriptions for calculations given in [6] is a theory,
based on Landau–Dykhne adiabatic approximation
[15] and Keldysh’s theory [5]. As there are a lot of
experimental confirmations of the ADK theory for
fields up to 10

 

12

 

 W/cm

 

2

 

 (see, for instance, [1–4, 7–11]),
though this theory is not valid in the superstrong fields
case, we felt the need to make its foundations more firm
and to include into this theory the 

 

Coulomb interaction

 

as the first-order correction into all phases of construc-
tion of the theory. As shall be seen, when determining
the turning point, which is included into the theory
through the Landau–Dykhne adiabatic approximation,
the Coulomb interaction was completely neglected,
which was correct for the case of fields much smaller
than the atomic field 10

 

16

 

 W/cm

 

2

 

, but for the fields that
are of order of magnitude 10

 

12

 

–10

 

14

 

 W/cm

 

2

 

, the term
previously neglected could give considerable gain to
the probability for ejecting an electron from the atom in
the strong laser field.

In the framework of Landau–Dykhne adiabatic
approximation [15, 16], the transition amplitude
between initial and final states is (

 

E

 

f

 

 > 

 

E

 

i

 

 on real axes)

(1)Aif i ωif t( ) td

t1

τ

∫ 
 
 

.exp=

 

Here, 

 

ω

 

if

 

 is the frequency of the transition in the
presence of the external field and 

 

τ

 

 is the complex turn-
ing point in the time plane, for which

(2)

The transition rate 

 

i

 

  

 

f

 

  is given by expression

(3)

The estimation of the probability of ionization based
on (3) in the case of the short-range potential uses the
fact that this kind of potential does not affect the energy
of the final state 

 

f

 

 of the electron in the electromagnetic
field, because the ejected electron is far enough from
the nucleus (which is the essence of the Keldysh
approximation [5, 6, 14, 16]).

In the case of Coulomb potential, typical for the
atom ionization, its effect is accounted for by the addi-
tion of Coulomb potential as a small quantity to the
energy of the final state [6].

Nevertheless, using condition (2) for defining the
turning point with including the Coulomb interaction
results in a shift of the position of turning point 

 

τ

 

. This
paper deals with the influence of that shift on the ion-
ization probability of atoms in the low-frequency elec-
tromagnetic field.

2. DEFINING OF COMPLEX TURNING POINT 

 

τ

 

The method for calculating the probability of tunnel
ionization using the Landau–Dykhne adiabatic approx-
imation is given in book [16]. It begins with the equa-
tion (2), i.e.,

(4)

ωif τ( ) 0.=

Wif Aif
2 2Im ωif t( ) td∫–{ } .exp= =

E f τ( ) Ei τ( ),=
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—In constructing the ADK theory, the Coulomb interaction was not included as the first-order correc-
tion into the all phases, i.e., the turning point was calculated to the zero-order degree of approximation with
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) much smaller than the atomic
field (10
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). But as lately in experiments are used fields even greater than the atomic one (in this case
ADK theory does not work), we decided to reconsider the influence of the Coulomb interaction on the turning
point for the fields that are strong enough to make a difference and yet are smaller than the atomic fields (i.e.,
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 W/cm

 

2

 

). So, in this paper we have included the Coulomb interaction
where it has been completely neglected earlier. We have shown that this more accurate approach gives some-
what different result for the ionization probability. 
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where 

 

E

 

i

 

(

 

τ

 

), 

 

E

 

f

 

(

 

τ

 

) are the initial and final energy, respec-
tively, in the external electromagnetic field, and 

 

τ

 

 is the
complex time, related to the turning point. As the exter-
nal field 

 

F

 

 is much smaller than the atomic (

 

F

 

 

 

�

 

 

 

F

 

at

 

) it is
possible, following Keldysh [5], to consider its influ-
ence only on the final state, taking the initial state to be
nonperturbated, so one has 

 

E

 

i

 

(

 

τ

 

) = –

 

E

 

i

 

, where 

 

E

 

i

 

 is the
ionization potential of the atomic electron, or (in
atomic units 

 

e

 

 = 

 

m

 

e

 

 = 

 

�

 

 = 1, which will be used through-
out this paper)

(5)

The Coulomb term in equation (5) is small com-
pared to the other terms, and we will be using iteration.
So, for calculating classically coordinate 

 

η

 

(

 

τ

 

) (here we
are using parabolic coordinates, see [15]), it is neces-
sary, in the zero order of approximation, to take into
account only the external electric field

(6)

Integrating equation (6), taking into account that

 

z

 

 

 

≈

 

  [15], one obtains, for turning point 

 

τ

 

,

(7)

The first term in (7) was chosen so that at the ini-
tial time 

 

t

 

 = 0 energy of the electron equals the
atomic energy –

 

E

 

i

 

. In zero-order approximation one

has 

 

η

 

(

 

τ

 

0

 

) = –2

 

i

 

τ

 

0

 

, the expression which was used
earlier in the ADK theory [6], 

 

τ

 

0

 

 being the turning point
in the zero-order approximation,

(8)

Then from (5) one obtains (for Re(

 

ωτ

 

) 

 

�

 

 1)

(9)

When cosine in expression (7) for 

 

η

 

(

 

τ

 

) is written in
power series, this expression goes over to

Now, if we, iterating, put 

 

τ

 

0

 

 instead of 

 

τ

 

, we have

(10)

As the Coulomb correction under the root of expres-
sion (9) is very small compared to the ionization poten-

1
2
--- p

F
ω
---- ωτsin– 

 
2 Z

η τ( )
-----------– Ei.–=

d2z

dt2
------- F ωτ.cos–=

η
2
---

η τ( ) 2i 2Etτ– 2F ω2⁄( ) 1 ωτcos–( ).–=

2Ei

τ0

p i 2Ei+
F

------------------------.=

p Fτ– 2Ei– Z
η τ( ) 2⁄
------------------+ .–=

η τ( )
2

----------- i 2Eiτ–
Fτ2

2
--------.+=

η τ 0( )
2

-------------
Ei p2 2⁄+

F
-----------------------.=

tial Ei, it is possible to expand this expression into the
power series. So iterating, i.e., using (10), one obtains
for the turning point

(11)

and, finally,

(12)

We will use expression (12) for the turning point,
instead of expression (8), which was used in earlier
variant of the theory [6, 16, 17]. Let us begin with cal-
culating of the time-dependent part of the action S,
which will give us the transition rate in the case of tun-
nel ionization (see [16]),

(13)

where

(14)

Writing sine in power series and keeping only the
first term, one obtains

(15)

Only the upper limit influences quantity (15), as the
lower limit is real, so

(16)

Now, putting expression (12) into equation (16), and
turning to the approximation used earlier [6], one gets

(17)

In equation (17), we have kept only the first-order
terms of the Coulomb interaction. Expression in the
parentheses on the right-hand side of equation (17) is
identically equal to zero, so one obtains

(18)

or, using equation (13),

(19)

τ p
F
---

i 2Ei

F
-------------- 1 ZF
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which is exactly the well-known expression for the
probability in the tunneling case. So, including Cou-
lomb interaction to the first order of approximation
does not change this part of the tunneling formula.

3. INFLUENCE OF THE COULOMB 
INTERACTION ON THE ESTIMATING 

OF THE PRE-EXPONENT IN THE RATE 
OF TUNNELING IONIZATION

It is necessary here to examine the influence of the
turning point, given by equation (12), on the pre-expo-
nent obtained in the ADK theory.

As it is already known [6], the pre-exponent was
obtained by including Coulomb interaction into the cal-
culation of the time-dependent part of the action (Cou-
lomb interaction was expressed in parabolic coordi-
nates, and, in fact, this method was developed in [17],
so the ADK theory only used this result). In this theory,
the energy of final state with defined parabolic quantum
numbers (n, n1, n2, m) is, for m = 0, given by

(20)

Here, n* = (2Ei)–1/2Z is the effective principal quantum
number, defined by the ionization potential of the
atomic electron Ei, and

(21)

We are working in the limit ω  0 for the electro-
magnetic field, and with classical perturbation theory
for including Coulomb interaction.

And so, Coulomb interaction gives the following
part of the action:

(22)

Here, we have used the well-known relation
between parabolic coordinates: –ξ � η, as ξ is of the
order of magnitude of atomic distances, and η is much
larger [15], then, to complex turning point η(τ), and,
finally, to arbitrary point ηa = 2ra, at which the field of
atomic residue is already small and the external field

could be yet neglected (Ei � Fηa � ). Expression

(20) is true for t > ta (ta being the time related to coor-
dinate ηa), i.e., when the electron is under the barrier,
and the atomic potential is negligible.

It should be stressed once again that regions η < ηa,
corresponding to the time t < ta, and η > ηa, connected
with the time t > ta, respectively, are essentially differ-
ent. Indeed, in region η < ηa quantum effects are very
strong, and this region should be treated in a completely
different manner than the region η > ηa.

E f t( ) 1
2
--- p Ft–( )2 2n2 1+( )

n*η t( )
----------------------.–=

η t( )   ≈  2– i 2 E i Ft 
2

 .+

δSc

2n2 1+( ) 2Ei

2η t( )Z
----------------------------------- t.d

0

τ

∫–=

Z
ηa

-----

 

So we should divide integral (22) into two parts,

(23)

where by writing symbolic expression (23) we have
defined new quantities 

 

δ

 

S

 

0

 

 and 

 

δ

 

S

 

a

 

.
Corresponding gain to the action of the second one

of this quantities is

(24)

According to relation (13), we have to calculate only
the imaginary part of integral (24), which has its maxi-
mum at 

 

n

 

1

 

 = 

 

m

 

 = 0. Taking into account that 

 

n

 

* 

 

�

 

 1 we
have

(25)

For 

 

t

 

 < 

 

t

 

a

 

 the wave function could be treated as
unperturbed atomic function

(26)

where  r   ≈   η /2  ≈  – i t  and  e  is logarithmic base, not
to be confused with the elementary electric charge.
Using semiclassical approximation, one can write 

 

ψ

 

(

 

t

 

) =
exp{

 

i

 

δ

 

S

 

0

 

(

 

t

 

)}, which gives for the imaginary part of the
classical action at point 

 

t

 

a

 

 

(27)

Adding expressions (25) and (27), we get the imag-
inary part of the complete change of action during ion-
ization:

(28)

Here, the arbitrariness of point 

 

t

 

a

 

 becomes clear,
because it does not influence expression (28), as it is
ruled out of it.

So, the ionization probability is [18, 19]

(29)

In order to take into account the influence of Cou-
lomb interaction on the turning point 

 

τ

 

, we will con-
sider the part of the action 

 

δ

 

S

 

a

 

, as this is the only
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a
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expression in these calculations where τ is explicitly
figuring

(30)

Here, we have used η(τ) from expression (7) and,
taking into account that in the whole region from ta
to τ, i.e., η > ηa, it is |ωt | � 1, we have used relation
(1 – cosωt) ≈ ω2t2/2.

Equation (30) could be rewritten to become

(31)

and, finally,

(32)

Now, as τ ≈ i /F � ta, we can deduce τ given
by (12)

(33)

or

(34)

As the transition rate is proportional to the square of
the absolute value of the exponential function whose
exponential factor is composed of expression (34) [see
equation (3)], we can see that the term

does not have any influence at all on our expression for
the transition rate.
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τ
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2
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×
p i 2Ei– iZF

2Ei p2 2Ei+( )
-------------------------------------–

p i 2Ei
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2
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1 iZF
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ta
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.ln

p i 2Ei–

p i 2Ei+
------------------------

2n2 1+( )
1=

Therefore, remembering that ln i = iπ/2 and that
2n2 max = 2n* – 2, we obtain

(35)

where we expanded in power series the denominator of
the ratio under the logarithm sign in expression (34), as
Coulomb interaction could be considered small.

Thus, according to (23), we have

(36)

Finally, for the ionization probability one has (Ssr
being the part of the action due to the short-range
potential)

(37)

In expression (37), for ionization probability W
the second rational term in the parentheses is a cor-
rection for the Coulomb interaction which we
obtained. For the fields up to 1012 W/cm2, the correc-
tion is small and could be neglected (for instance, in
the case of potassium ionization in the laser field of
1012 W/cm2 [4], it is 0.10876478), but for greater
fields (up to 1014 W/cm2 � Iat ~ 1016 W/cm2, so that
the Keldysh approximation and, accordingly, the ADK
theory can be considered yet valid) this correction gains
in amount (1.340258).

If probability W from expression (37) were plotted
as a function of field intensity I, it is obtained that for
fields of ~3.5 × 1013 W/cm2, one has some kind of sat-
uration and even decreasing of the probability with
growing of the field intensity (the behavior of probabil-
ity for fields greater than 1014 W/cm2 was not included,
because the validity of the ADK theory is doubtful for
those intensities). This is the behavior that is observed
in the superstrong field case, but not for strong fields for
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which the ADK theory is valid. The anomalous behav-

ior is mostly due to the “short-range” term ~ , which
earlier was not extended to greater distances; neverthe-
less, the effect is stronger with the correction we
obtained in expression (37).

4. CONCLUSION

Dividing the proof in two parts, making the differ-
ence between the part of the classical action which
was obtained out of the short-range potential and the
part produced by Coulomb interaction, we have
shown that approximations, connected with Coulomb
interaction in the ADK theory, are well founded for
fields up to 1012 W/cm2, but that for higher field inten-
sities (~1014 W/cm2) the correction obtained by includ-
ing more accurate determination of the turning point τ
gains in its importance. The new expression (37) for
ionization probability, obtained in this paper, shows
controversial behavior when the intensity of the field is
growing, indicating, thus, saturation in the ionization
probability of the electron which is obtained in the case
of superstrong fields. 
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