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Abstract

Background: To assess the effectiveness of inhalation therapy, it is important to evaluate the lungs’ structure;
thus, visualization of the entire lungs at the level of the alveoli is necessary. To achieve this goal, the applied
visualization technique must satisfy the following two conditions simultaneously: (1) it has to obtain images of
the entire lungs, since one part of the lungs is influenced by the other parts, and (2) the images have to capture
the detailed structure of the alveolus/acinus in which gas exchange occurs. However, current visualization
techniques do not fulfill these two conditions simultaneously. Segmentation is a process in which each pixel of
the obtained high-resolution images is simplified (i.e., the representation of an image is changed by categorizing
and modifying each pixel) so that we can perform three-dimensional volume rendering. One of the bottlenecks
of current approaches is that the accuracy of the segmentation of each image has to be evaluated on the outcome
of the process (mainly by an expert). It is a formidable task to evaluate the astronomically large numbers of
images that would be required to resolve the entire lungs in high resolution.
Methods: To overcome this challenge, we propose a new approach based on machine learning (ML) techniques
for the validation step.
Results: We demonstrate the accuracy of the segmentation process itself by comparison with previously
validated images. In this ML approach, to achieve a reasonable accuracy, millions/billions of parameters used
for segmentation have to be optimized. This computationally demanding new approach is achievable only due
to recent dramatic increases in computation power.
Conclusion: The objective of this article is to explain the advantages of ML over the classical approach for
acinar imaging.
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Introduction

The behavior of drug particles in the lungs depends
largely on airflow patterns, which are chiefly conditioned

by the anatomy of the airways. Therefore, knowledge of the
configuration of the airways is fundamental to the under-
standing of the efficacy of inhalation therapy.

The structure of the lung parenchyma depends on a del-
icate force balance between pressure inside the lungs (i.e.,
alveolar pressure) and pressure outside the lungs (i.e.,
pleural pressure) (West, 2000) and the mechanical proper-
ties of lung tissue (i.e., various cells, interstitium, etc.)
(Mead, 1961). Moreover, there is a strong interdependence
between various regions of the lungs (Mead et al, 1970);
that is, the local conditions (e.g., local tissue stiffness due to
disease lesions, etc.) can affect the conditions of other parts.
For instance, the flow distribution in the lungs, tissue ex-
pansion distribution of the lungs, and so on cannot be de-
termined without knowing the mutual interdependence of
various parts of the organ.

Therefore, it is important to visualize the whole lungs, in-
stead of focusing only on a small portion of the lungs, to assess
the condition of the lungs and their function as a gas exchange
organ. This is a formidable task, especially with the high res-
olution required to visualize the alveolar structure. In this
study, we propose a machine learning (ML) approach to cir-
cumvent the fundamental shortcoming of classical segmenta-
tion approaches; namely, the requirement of human judgment
on the accuracy of each segmented image.

In our previous study (Tsuda et al, 2008), we used one of
the most popular approaches for lung image processing,
namely, threshold banalization methods [i.e., grays below the
threshold are replaced with black (air), and grays above the
threshold are replaced with white (tissue)]. Although we could
successfully segment the images of the lung parenchyma (i.e.,
imaged by a high-resolution synchrotron radiation-based
X-ray tomography and rendered to three-dimensional (3D)
structure at micron scale), the area we could segment and thus
deal with in our previous study was only a small portion of the
parenchyma—a few acini—due to the limitation of the seg-
mentation method (explained below) (Tsuda et al, 2008). To
visualize the whole lung at the same micron-length scale, we
need a more general and robust segmentation approach.

One of the bottlenecks of the classical segmentation ap-
proach is that the evaluation is performed on the results of
the segmentation process (Haberthür et al, 2021; Haberthür
et al, 2013; Haberthür et al, 2009; Sznitman et al, 2010;
Tsuda et al, 2008; Vasilescua et al, 2012; Xiao et al, 2013);
the classical approach requires the evaluation of the accu-
racy of the segmentation process on astronomically large
numbers of images if the entire lungs were imaged to high
resolution (Fig. 1, top panel). Since this approach (i.e., based
on a posteriori evaluation), although theoretically possible,
is not practical, we need a different approach to visualize the
entire lungs in high resolution.

An ML approach (LeCun et al, 2015; Schmidhuber, 2015)
uses a different concept of segmentation compared with the
classical approach. Namely, in the classical concept, the
evaluation is performed on the results of the segmentation
process (i.e., on the output by a posteriori evaluation shown
in Fig. 1, top), whereas in the ML approach, the function is
treated as a black box (the relationship between the input

and the output is treated as unknown, just expressed using a
group of parameters), and by using a vast amount of past
data, the expression of this relationship is optimized and
evaluated (Fig. 1, bottom).

Subsequently, the optimized relationship is used to yield
the prediction (output) for a given input. In other words, in
the ML approach, the optimization is evaluated, that is, the
evaluation is performed at the function level. This leads to a
significant advantage of this new approach over the classical
approach; namely, there is no limitation on the productivity
once the optimal relationship between the input and the
output (i.e., a group of the parameters to achieve the optimal
prediction based on past experience) is established. Hence,
the productivity of the ML approach does not depend on a
posteriori evaluation.

The use of ML has dramatically increased in many fields
(Hamet and Tremblay, 2017; Hussain and Zeadally, 2018;
Huynh et al, 2020) as new techniques have been developed
and computational power has increased, but this has not
been the case for acinar imaging. The lack of uptake of ML
for acinar imaging maybe due to the fact that this technique
relies heavily on complex mathematics and uses a great
deal of computer-science jargon. Hence, the technique is
difficult for non-mathematicians to understand. The ob-
jective of this article is to demystify ML by explaining in
simple terms the basic concepts of the ML approach
(Supplementary Data) and its advantages over the classical
approach for acinar imaging. We note that what follows is
largely restricted to two subsets of ML; namely, deep
learning and neural networks (NNs), the latter being the
backbone of ML.

FIG. 1. Classical approach versus ML approach. In the
classical approach, the evaluation is performed a posteriori on
the output. However, in the ML approach, the function itself is
evaluated a priori based on experience. ML, machine learning.
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Methods

An NN is a computer program that mimics the way in
which a human brain learns. Today, NNs are being used in
such diverse fields as tumor recognition and weather pre-
diction. Similar to the human brain, an NN ‘‘learns’’ by
being exposed to many different occurrences of a target
event. A common example of the use of NN in image rec-
ognition is one that can distinguish digital images of cats
from those of dogs. The NN knows nothing of the physical
distinguishing features of cats and dogs, but it is trained
to recognize particular patterns of pixels that generally
occur in images of cats and not in images of dogs, and vice
versa.

A vast amount of data are required to train the NN. These
data are called ‘‘learning material,’’ and in the context of
image recognition would consist of tagged, or labeled images.
In the case of the cat/dog example, the learning material
would be thousands of images of dogs and cats, each appro-
priately labeled dog or cat. The relationship between the input
(e.g., an image of a dog) and the output (whether the image
contains a dog or a cat) is determined mathematically using
many relatively simple equations with unknown coefficients
or parameters. The unknown parameters are optimized using
the learning material. Using all the input data once, is termed
an ‘‘epoch.’’ After each epoch, the error between the predic-
tion and the label is calculated and another epoch is carried out
if the desired accuracy has not been achieved.

In our case of segmenting images of the lung parenchyma,
we used the data and results of our previous article as a gold
standard since they have been previously evaluated stereo-
logically by experts (Tschanz et al, 2003). Roughly 70% of the
data set was used as training material and the remaining data
were used to test the accuracy of the NN. In this case, each

input-label pair comprised an original gray-scale image (the
input) and the corresponding segmented image (the labeled
image), the latter being created using the classical approach.

CNN (Convolution neural network) is a subset of NNs;
here we developed CNN-based U-Net to work with images.
A more thorough description of the technical details of ML
is given in the Supplementary Data.

FIG. 2. ML approach. Top: 881 input label pairs, generated based on the techniques we used in the previous study (Tsuda et al,
2008), were used to turn and evaluate the parameters. Bottom: optimized parameters were applied to yield the best prediction.

FIG. 3. Qualitative comparison in 3D structures between one
segmented by the classical threshold approach and one seg-
mented by the ML approach. They are qualitatively identical.
3D, three dimensional; CNN, Convolution neural network.

MACHINE LEARNING FOR ACINAR SEGMENTATION 29



Results

Considering the results of our previous published study
(Tsuda et al, 2008) as a gold standard, a total of 881 input-
label pairs were generated based on the techniques we used
in the previous study and these were utilized as learning
material. In the training period, about 70% of the learning
material (i.e., pairs of input label) was used to tune the
50,946,699 parameters of the system for optimization
(Fig. 2, top). About 50 iterations were necessary to optimize
the parameters with a tolerance of 0.001. In the testing pe-
riod, the rest of the learning material was used for evaluation
(Fig. 2, top). In the application, optimized parameters were
applied to yield the best prediction (Fig. 2, bottom). Also, as
an example, a ‘‘fly through’’ animation produced based on
the segmented data by the ML technique is shown in the
Supplementary Data (see Supplementary Video S1).

Using the newly developed model, based on the ML ap-
proach, a grayscale raw dataset was segmented and 3D vol-
ume rendering was performed by a well-established finite
element method similar to our previous study (Tsuda et al,
2008). For comparison purposes, the same dataset was seg-
mented by a classical threshold method (Tsuda et al, 2008)
and 3D volume rendering was performed by the same FE
method (Fig. 3). The obtained 3D structures segmented by the
classical threshold approach (Fig. 3, left) and segmented by
the ML approach (Fig. 3, right) are qualitatively identical.

To demonstrate quantitative similarity between the two
approaches, the sizes of the alveolar opening of 30 samples
were approximated using both methods and compared. The
process of how we approximate the alveolar entrance area is
described in detail in the Appendix. Briefly, 50 position
vectors in 3D space in each alveolar entrance rim (i.e., the
classical approach vs. the ML approach, 30 each) were
measured. Then, from those 50 position vectors, the optimal
two-dimensional alveolar entrance plane was approximated
for each alveolar opening by matching the direction of the

unit vector normal to the plane to the one calculating from
50 position vectors under the definition that a moment of
inertia for the alveolus would be maximal.

Frequency distributions of the approximated alveolar
entrance area (blue bars in Fig. 4) shows the Gaussian dis-
tribution (orange curve in Fig. 4) in both cases. Indeed, the
distributions are practically identical (Fig. 4). A statistical
analysis (Student’s t-test) confirmed that both distributions
are essentially identical (with p = 0.001), indicating that
segmentation by the ML approach was successful.

To demonstrate the advantage of CNN-based U-Net over
fully connected network (FCN) (refer to Supplementary
Data), mean Intersection over Union (mIoU)* was computed
and compared. Although the mIoU value of the U-Net (0.848)
is comparable to the mIoU of FCN (0.846), the number of
parameters to be determined in the current U-Net model is
about 60 millions, which is a half of that in the case of FCN
(130 millions). This shows that the U-Net can be trained
faster and is more memory efficient compared to FCN.

Discussion

The principal aim of this work was to describe in an easy-
to-understand manner the basic concepts of the highly
mathematical ML approach to those who may not be par-
ticularly familiar with this method, and to explain why the
utilization of ML for acinar image segmentation may have

FIG. 4. Quantitative comparison in 3D structures between one segmented by the classical threshold approach and one
segmented by the ML approach. A statistical analysis (Student’s t-test) showed that the two methods are essentially identical
(with p = 0.001), suggesting that the ML approach indeed yields the same level of segmentation by the classical threshold
approach.

*mIoU is a common evaluation metric for semantic image seg-
mentation, which first computes the IoU for each semantic class and
then computes the average over classes. . The predictions are
accumulated in a confusion matrix, weighted by sample_weight,
and the metric is then calculated from it. mIoU New semantic
segmentation algorithms are typically assessed by the mIoU on the
VOC2012 dataset. The IoU is calculated for each class at the pixel
level as . The mIoU is then the mean value across all classes in the
dataset.
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major advantages over classical approaches. We used ste-
reologically well-evaluated data as a gold standard (Tschanz
et al, 2003; Tsuda et al, 2008) and reproduced our previ-
ously reported results with this new approach. Comparison
of our results obtained with the new ML approach to the
results obtained using the classical threshold approach
(Figs. 3 and 4) shows a good degree of accuracy. Con-
sidering the potential advantages of this approach on pro-
ductivity (see the Introduction) over the classical approach,
it is clear that this ML approach is opening up new possi-
bilities in image processing.

As discussed previously, the classical threshold approach
of lung segmentation is not feasible{ when a very large
number of images have to be processed. This intrinsic
problem of the classical approach is because the validity of
the segmentation is evaluated on the outcome of the process,
rather than on the process itself. To overcome the intrinsic
problem that the classical method suffers, the evaluation
should be done at a functional level. Thus, instead of solving
the function (i.e., process) exactly and evaluating the output
of the process, we optimize (and approximate) the process,{

and we evaluate the validity of optimization of the process.
In this way, the productivity is not limited once the validity
of optimization is proved.

Physiological consideration

Since the structure and function of various regions of the
lungs are interdependent, to assess the condition of the
lungs, it is important to obtain detailed images of the whole
lungs, instead of visualizing only a small portion of the
organ. For instance, it is critical to see the lungs as a whole
because it is well known that the ventilation distribution
(i.e., flow distribution in the lung) is largely determined by
the balance of downstream mechanical load, rather than
upstream flow conditions and local flow conditions (Otis
et al, 1956; Tsuda et al, 1990).

The distribution of pressure, the distribution of tissue
stiffness, and the distribution of airway obstruction in par-
allel pathways determine local acinar configuration. Visua-
lization of the whole lungs requires a significant increase in
the efficiency of image processing. We believe that the
suggested ML approach, which utilizes computational
power, instead of the traditional evaluation by human ex-
perts, would significantly increase the feasibility of whole
lung imaging and would advance our ability to diagnose and
treat lung diseases.

Summary

In this study, we have described the basic concept of the
heavily mathematically based ML approach for image pro-
cessing in an easy-to-understand manner and we have ex-
plained why this approach is advantageous over the classical
approach for processing images of the lungs at high reso-
lution. Thanks to recent increases in computer power and
advances in analytical techniques, the computationally de-
manding optimization of the segmentation function in the
ML approach has become possible.
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Appendix: Approximation of an Alveolar
Entrance Area

The alveolar entrance area was approximated as follows
(Fig. 5): our calculation is based on two simple procedures:
(1) define the optimal plane (shown in black in Fig. 5) and

(2) given that plane, compute the projected area. First, we
approximate the alveolar entrance rim on the plane (shown
as a black curve in Fig. 5), on which the data points mea-
sured on the actual alveolar entrance rimx (shown as a red
curve in Fig. 5) are projected, by defining the unit vector ~�
normal to the plane. Expressing a coordinate system (x,y,z),
whose origin is at the center of mass of the given data (N)

points, let M ¼
Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzt Mzz

0
B@

1
CA

2
64

3
75 be the second-

order spatial moment matrix of the rim.**

Then the (rotational) moment of inertia I~� about any di-
rection specified by a unit vector ~� is given by
I~� ¼ trM�~�TM~�, where tr denotes the trace. This quantity
is maximal when ~� is normal to the approximating plane.
Since the trace is invariant under rotations, maximizing I~� is
equivalent to minimizing ~�T M~�. This is simply the minimal
eigenvalue of M, and for which ~� is the (normalized) ei-
genvector. Second, having solved for ~�, which minimizes
~�T M~�, we now project the points onto the plane defined by
~�, and compute the area by triangular summation. For points
in the (x, y) plane, this is the formula A¼ (1=2)

+
N

n¼ 1

xnynþ 1� xnþ 1yn

����
����, where the wraparound is defined by

xNþ 1¼ x1, yNþ 1¼ yN .
FIG. 5. A schematic view of how we obtain approxima-
tion of the alveolar entrance area.

xFollowing Haberthür et al (2021), we defined the alveolar en-
trance rings at the disappearance of the alveolar wall.

**The components of the matrix M are defined as Mpq ¼
+
N

n¼ 1

pnqn p, q¼ x, y, or zð Þ. Namely they are,

Mxx¼ x1�x1ð Þþ x2�x2ð Þþ x3�x3ð Þþ x4�x4ð Þ � � � � � � � �
þ xn�xnð Þþ � � � � � � � � þ xN�xNð Þ

Mxy¼ x1�y1ð Þþ x2�y2ð Þþ x3�y3ð Þþ x4�y4ð Þ � � � � � � � �
þ xn�ynð Þþ � � � � � � � � þ xN�yNð Þ

Mxz¼ x1�z1ð Þþ x2�z2ð Þþ x3�z3ð Þþ x4�z4ð Þ � � � � � � � �
þ xn�znð Þþ � � � � � � � � þ xN�zNð Þ

Myx¼ y1�x1ð Þþ y2�x2ð Þþ y3�x3ð Þþ y4�x4ð Þ � � � � � � � �
þ yn�xnð Þþ � � � � � � � � þ yN�xNð Þ

Myy¼ y1�y1ð Þþ y2�y2ð Þþ y3�y3ð Þþ y4�y4ð Þ � � � � � � � �
þ yn�ynð Þþ � � � � � � � � þ yN�yNð Þ

Myz¼ y1�z1ð Þþ y2�z2ð Þþ y3�z3ð Þ
þ y4�z4ð Þ � � � � � � � � þ yn�znð Þþ � � � � � � � � þ yN�zNð Þ

Mzx¼ z1�x1ð Þþ z2�x2ð Þþ z3�x3ð Þþ z4�x4ð Þ � � � � � � � �
zn�xnð Þþ � � � � � � � þ zN�xNð Þ

Mzy¼ z1�y1ð Þþ z2�y2ð Þþ z3�y3ð Þþ z4�y4ð Þþ � � � � � � � �
zn�ynð Þþ � � � � � � � � zN�yNð Þ

Mzz¼ z1�z1ð Þþ z2�z2ð Þþ z3�z3ð Þþ z4�z4ð Þþ � � � � � � � �
zn�znð Þþ � � � � � � � � þ zN�zNð Þ
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