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Chemical applications of the Laplacian spectrum. 
VII. Studies of the Wiener and Kirchhoff indices 
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Some further chemical app li cations of the Laplacian spectra are reported. The Kel'mans theorem for the calculation of 
the coefficients of the Laplac ian characteri stic polynomial is stated and exemplifi ed. By means of this theorem a (previously 
known) formula for the Wiener and Kirchhoff index is deduced. It is shown that the Wiener index is correla ted with the 
"algebraic connectivity", name ly, the smallest positi ve Laplacian eigenvalue. Lower and upper bounds for the Kirchhoff 
index are obtained. 

Introduction 
Contrary to the ordinary graph spectrum, which 

found numerous applications in chemistry (see, for 
instance, the booksl.\ the Laplacian graph spectrum 
was for a long time on the periphery of interest of 
mathematical chemists . Yet, in a number of recent 
works3

.
8 (which are parts J-VI of the series "Chemical 

applications of the Laplacian spectrum") we 
communicated results showing that by means of 
Laplacian eigenvalues of molecular graphs also, it is 
possible to acquire chemical ly useful conclusions. 
Other authors also did research along the same 
lines9

. ' 3. 

In this paper we continue our studies3
.4 of the 

connections between the Laplacian eigenvalues and 
the Wiener and Kirchhoff indices. In Section 2 we 
state and exemplify the application of the Kel'mans 
theorem from year 1967 (a result not widely known 
among mathematical chemists) and show how from it 
the famous formula (1 ) for the Wiener index W is 
deduced: 

1/ - 1 1 
W =nL-

; =1 Ji ; 
... (1) 

For cycle-containing molecular graphs the right­
hand side of (1) differs from the Wiener index and is 
equal to another structure-descriptor, initially called 
"quasi-Wiener index,,14, but later identified ' S with the 
Kirchhoff index (Kj) ; for details see Section 4 . 

Formula (1) suggests that the gross part of the 
Wiener and Kirchhoff indices is determined by the 
smallest positive Laplacian eigenvalue (the so-called 

"algebraic connectivity"). The quality of this 
assumption is tested in Section 3. 

In Section 4 formula (1) is used to deduce lower 
and upper bounds for Wand Kf 

The notation used throughout this paper is the 
following : C denotes a (molecular) graph, possessing 
n vertices and In edges. Its adjacency matrix is A(C). 
(Recall '6 that the eigenvalues of A form the ordinary 
spectrum of C .) The diagonal matrix, whose i-th 
diagonal element is equal to the degree (= number of 
first neighbours) of the vertex i, is denoted by D(C). 
Then the Laplacian matrix of C is L(C) = 
D(C)-A(C). The eigenvalues of L(C) form the 
Laplacian spectrum of the graph C . 

The Laplacian eigenvalues are denoted by /1i, 
i=1,2, ... ,/1, and are labelled so that 

A general result of the theory of Laplacian spectra 
is that /1n= 0 for all graphs, and that /1n- 1 is equal to 
zero if and only if C is not connected. For connected 
graphs (such as all molecular graphs), /1n-1 is positive­
valued and is called "the algebraic connectivity" (of 
the graph C) . 

The Laplacian characteristic polynomial 1f'(G,x) is 
defined as 

1f'(G,x) = del [x 1- L(C)} 

Recall that the Laplacian eigenvalues of the graph C 
are just the zeros of the polynomial 1f'(G,x), i.e. , the 
roots of the equation 1f'(G,x)=O. More details on the 
Laplacian spectrum can be found in the reviews I7

•' 8 . 
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The Kel'mans theorem 
In 1967, the Russian mathematician A. K. Kel'mans 

published an article "On the properties of the 
characteristic polynomial of a graph " . This article 
appeared on pp. 27-41 of a booklet entitled 
"Cybernetics in the Service of Communism", and was 
in Russian language. This may be the reason why 
many of the contemporary mathematical chemists are 
not familiar with Kel'mans' result. 

The Laplacian characteristic polynomial of the 
graph G is a polynomial of order n that can be written 
as 

... (2) 

The theorem discovered by Kel'mans establishes 
the connection between the structure of the graph G 
and the coefficients Co , C I , ... , C.- I , CII of its 
Laplacian characteristic polynomial 'f/(G,x). In order 
to state it we need to introduce a few simple graph­
theoretic notions. 

A spanning subgraph of a graph G is a subgraph of 
G containing all vertices of G. Hence, any spanning 
subgraph of G is obtained by deleting some edges 
from G, but keeping all vertices of G. 

An acyclic spanning subgraph of a graph G is 
called a spanning forest of G. A connected acyclic 
spanning subgraph is called a spanning tree of the 
respective graph. 

Examples of spanning forests and spanning trees 
are found in Figs 1 and 2. 

Let F be a spanning forest of the (molecular) graph 
G. In the general case F is disconnected and consists 
of several components Fj, F2, .•• , Fp . Each component 
F;, i=1 ,2, ... ,p, is a graph for itself and is connected. 

The number of vertices of the component F; is 
denoted by n(F;). i=1,2, ... ,p. The product of the 
numbers n(F;), i=1,2, ... ,p, is denoted by y(F) . 

The set of all spanning forests of the graph G, 
containing exactly p components, is denoted by 
F (G,k). For illustrative examples see Figs 1 and 2. 

With this notation, the Kel'mans theorem reads as 
follows: For k=O,l, ... ,n, the k-th coefficient of the 
Laplacian characteristic polynomial of the graph G, 
Eq. (2), is related to the structure of G via 

L reF) ... (3) 
FE F(G ,n- k ) 

Hence, in order to obtain the k-th coefficient of 
'f/(G,x) we simply have to sum the y-values of all 
spanning forests of G, possessing n-k components. 
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Fig. I- The molecular graph ofmethylcyclobutane (GA ) and its 
spanning forests. 
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Fig. 2- The molecular graph of2-methylpentane (GB) and its 
spanning forests. 

We first illustrate the application of the Kel'mans 
theorem on the example of the molecular graph GA of 
methylcyclobutane. This graph and its 30 spanning 
forests are depicted in Fig. 1. We have 
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F(GA, 5) = ( FAI ) 

F(GA, 4) = (FA2' FA3 ,· .. , FA6 ) 

F (GA, 3) = ( FAl , FA8 , ... , FAI6 ) 

F (GA ,2) = ( GAil , FAI8 , ... , FA26 ) 

F (GA, 1) = ( GA2l , GA28 , GA29 , GAJo) 

F (GA , 0) = 0 (empty set) 

For any n-vertex graph the set F(G,n) has a unique 
element, for which y= 1. Therefore, for any graph, 
Co=l. 

All elements of F(G,n-l) possess one edge and n-2 
isolated vertices. Therefore, each such element has 
y=2, and by Eq. (3) 

C1 = (_1) 1 [2m] = -2m 

where 111 is the number of edges. In our case 111=5 and 
therefore C I = -10. 

There are two kinds of 3-component spanning 
forests of GA : for six spanning forests (FAl' FA8 , FA9 , 
FAIO , FAil and FAd it is y=3'1'\=3, whereas for four 
spanning forests (FAI3 , FAJ4 , FAI5 and FAI6) the value 
ofy is 2'2'1 =4. Application ofEq. (3) gives then 

Similarly, there are two kinds of 2-component 
span ning forests of GA : for seven of them (FA I?, FAl8 
, ... , FA23 ) it is y=4 '1 =4, whereas for three spanning 
forests (FA 24 , F" 25 and FA26) the value of y is 2'3=6. 
Application of Eq. (3) gives then 

c) = (-1) :1 [7·4+3·6] = -46 

The four I-component (i. e., connected) subgraphs of 
GA are its spanning trees. These are FA27 , FA28 , F" 29 , 
FA30. Thus, 

In the general case, the coefficient CII _ I is equal to 
(plus or minus) the number of spanning trees times 
the number of vertices. 

There cannot be spanning subgraph with 0 
components, implying that the set F (G,O) is always 
empty. Consequently, the coefficient CII is always 
equal to zero. 

In summary, the Laplacian characteristic 
polynomial of the methylcyclobutane graph is 

From this example we established two general 
results: 

... (4) 

and 

.. . (5) 

with n, m and t denoting the number of vertices, edges 
and spanning trees, respectively, of the underlying 
molecular graph. Relations (4) and (5) are tantamount 
to 

II - I 

L,,u; = 2m . . . (6) 
;=1 

and 
II - I 

rIp; = nt ... (7) 
;=1 

Formulae (4)-(7) hold for all graphs. 
In order to arrive at another application of the 

Kel'mans theorem we consider the special case of 
trees, exemplified by the molecular graph Gn of 2-
methyl pentane, see Fig. 2. Here we shall be interested 
only in the 2- and I-component spanning forests. The 
respective sets are: 

and 

F( G 8 , 1) = (F 832 ) 

One should note that each member of the set 
F(G8,2) is obtained by deleting an edge from Gn. This 
is true for any tree: each 2-component spanning forest 
F of a tree T is obtained by deleting an edge from T. 
Therefore the numbers n(FI) and n(F2} of vertices of 
the two components of such a spanning forest count 
the vertices lying on the two sides of the respective 
edge of T. According to a long known result in the 
theory of Wiener index 19,20, the summing the products 
of these two numbers over all edges of T results in the 
Wiener index W of T. On the other hand, the product 
of n( FI ) and n( F2) is just the y-value of F. Therefore, 
from the Kel'mans theorem (3) it immediately 
follows, 



GUTMAN et at. : STUDIES OF WIENER & KIRCHHOFF INDICES 1275 

C = (- I) ,,-2W 
,, - 2 .. . (8) 

and this results holds for all trees. In terms of 
Laplacian eigenvalues, formula (8) is rewritten as 

( 
1 1 1 )n-l 

W = - +-+ ... +-- n,ui 
,u1,u2 ,un- I i=1 

. .. (9) 

For trees, as a special case of (7), 

II - I 

I1,ui = n .. . (10) 
;= 1 

because for trees, evidently, t=1. 
Combining (9) and (10) one immediately arrives at 

the formula (1). 
Formula (1) was simultaneously discovered by 

several mathematicians nearly in the same time (in the 
late 1980s); bibliographic details can be found in the 
article3

. Chemists became aware of it after the 
publication of the papers in refs 3 and 10. 

Relation between Wiener index and the algebraic 
connectivity 

Formula (1) may be viewed as a decomposition of 
the Wiener index in terms of Laplacian eigenvalues. 
Each Laplacian eigenvalue has a certain contribution, 
equal to nlJ1i , i=i,2, ... ,n-i, and the Wiener index is 
equal to the sum of these contributions. 

As already mentioned, the second smallest 
Laplacian eigenvalue (,un - I) is called "algebraic 
connectivity" . Evidently, it will have the greatest 
contribution to the Wiener index. Within the theory of 
Laplacian spectra the dependence of the algebraic 
connectIvIty on graph stru.cture was much 
investigated 17,18,21 -23. 

In view of this we were interested to see if there 
exists some correlation between the Wiener index W 
and the term nlJ1n-f. Indeed, such a correlation does 
exist. 

In Fig. 3 we show the correlation between the 
Wiener index and the term nlJ1n-1 for the chemical 
trees with 10 vertices. In Fig. 4 we show the 
analogous correlation for all (chemical and non­
chemical) trees with 10 vertices. Analogous 
correlations were found to exist in the case of n-vertex 
trees and chemical trees also for other values on n. 
The respective correlation coefficients are given in 
Table 1. 
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Fig. 3--Correlation between the Wiener index (W) and the term 
nll1n-1 for chemical trees with n=JO vertices; 11,,_1 is the algebraic 
connectivity. The outlier corresponds to the molecular graph of 4-
propyl heptane (cf. Fig. 5). 
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Fig. 4-Analogous data as in Fig. 3 for general trees with n= JO 

vertices. 

Table I-Correlation coefficients for the correlation between the 
Wiener index and the term nll1,, -1 for n-vertex chemical trees and 
n-vertex trees. Chemical trees are trees in which no vertex has 
degree greater than 4. 

n Chemical trees General trees 

6 0.993 0.993 
7 0.918 0.958 
8 0.945 0.966 
9 0.937 0.952 
10 0.931 0.943 
11 0.938 0.941 
12 0.939 0.938 
13 0.936 0.933 
14 0.937 0.932 
15 0.936 0.929 
16 0.935 0.928 
17 0.934 0.926 
18 0.934 0.925 
19 0.933 0.924 
20 0.932 0.922 
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From the data given in Table I (as well as from the 
examples shown in Figs 3 and 4) we see that Wand 
n//1,,-1 are linearly correlated, and that the quality of 
this correlation is essentially the same for both 
chemical and general trees. Although the correlation 
is not particularly good, in all cases studied the 
correlation coefficients are well above 0.9. The 
correlation slowly weakens with increasing number Il 
of vertices. 

In Figs 3 and 4 an outlier can be seen. It 
corresponds to 4-propylheptane. By scrutinizing our 
data for higher values of n we noticed that the points 
for two molecular graphs significantly deviate from 
the regression line. We denote them by T" and Q". The 
first of these exceptional chemical trees (T,J was 
identified as the n-vertex tree possessing a single 
vertex of degree 3 to which three linear branches are 
attached, having length as equal as possible. The 
second exceptional chemical tree (Q,J is the Il-vertex 
tree possessing a single vertex of degree 4 to which 
four linear branches are attached, having length as 
equal as possible. For instance, for n= 15, T" and Q" 
are the molecular graphs of 5-butylundecane and 5,5-
dipropylnonane. Another example is found in Fig. 5. 

The exceptional nature of the chemical trees T" and 
Q" is hardly at all seen for smaller va lues of n. 
Therefore, in order to test their exceptional nature we 
constructed a set of 100 randomly chosen trees with 
very large (n=48) number of vertices, and added to it 
the trees T48 and Q48. The respective plot is shown in 
Fig. 5. The two outliers are now clearly vis ible, thus 
corroborating our hypothesis. 
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Fig. 5-Analogous data as in Figs. 3 & 4 for a set of 100 
randomly constructed trees with n=48 vertices, plus two spec ially 
chosen trees: one with a single vertex of degree 3 to which linear 
branches of length 15, 16 and 16 are attached (T48) , and another 
with a single vertex of degree 4 to wh ich linear branches of length 
12, 12, 12 and I I are attached (Q48)' These trees pertain to the two 
obv ious outliers. 

For reasons which we do not fully understand, in 
the exceptional trees T" and Q" the term nl/1,, _1 
reproduces a much smaller fraction of the Wiener 
index than in the case of other trees. Thus, in the trees 
T" and Q" the algebraic connectivity has an unusually 
small effect on the value of the Wiener index. 

Bounds for the Wiener and Kirchhoff indices 
As well known 19.20, the Wiener index is equal to the 

sum of distances between all pairs of vertices of the 
molecular graph, where "distance" means the length 
of the shortest path connecting the respective two 
vertices. In 1993 Klein and Randic24 conceived 
another type of distance, tile so-called "resistance 
distance". It is equal to the electrical resistance 
between the respective two vertices, assuming that 
any two adjacent vertices are connected by a 
resistance of 1 Ohm. The sum of resistance distances 
between all pairs of vertices of the molecular graph 
was named the "Kirchhoff index,,2s. In the case of 
trees the Wiener and the Kirchhoff indices coincide, 
but for cycle-containing graphs their values differ. 

As a kind of surprise it was shown IS that the 
Kirchhoff index is precisely equal to the right-hand 
side of formula (l). This, in particular, means that 
formula (1) is meaningful not only for trees, but also 
for all connected (molecular) graphs. 

In this section we use formula (1), together with the 
conditions (6) and (7) to deduce lower and upper 
bounds for the Kirchhoff index, in terms of the 
parameters n, m and t. As before, n is the number of 
vertices, m the number of edges and t the number of 
spanning trees of the molecular graph G considered. 

Using standard methods of calculus, we try to .. . 
determine positive real numbers /11, /12 , ... , /1n -1 
which satisfy the conditions 

II - I 

L./1i· = 2m 
;= 1 

and 

,,- 1 II - I 

TI,ui' =nt i.e., I,ln,ui ' =ln(nt) 
i=1 

and which minimize or maximize the expression 

,,- I 1 
Kf' =nI.-. 

;=1 ,ui 

To achieve this goal we construct the auxiliary 
function E 
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find its derivatives with respect to 11/' i=1 .2 ....• n-l. 
and set them equal to zero. This results in 

I.e. 

( .)2 . 
alfL; + f3f.1 ; - 11 = 0 .. . (1) 

which is just a quadratic equation, having two roots x 
and y. According to the nature of the problem we are 
examining, the roots x and y must be positive real 
numbers. They must not be equal , because x=y would 
require that the condition 

_ I ( 2m ],,-1 
1-- --

It It-I 

to be satisfied, which certainly cannot be obeyed by 
molecular graphs because they possess a relatively 
small number of spanning trees . (This condition is 
obeyed by the complete graph .) 

Hence the roots x and y of Eq. (11) must be 
different. Without the loss of generality we assume 
that x>y . 

Thus, the numbers 11/ . i=1 .2 ....• n-l. assume only 
two different values: x and y. Assuming that k of them 
are equal to x and the remaining /1-1-k are equal to y. 
we have 

Kf' = n(~+ n-I-k ] 
x y 

where x and y are obtained by solving the system of 
equations: 

kx + (/1 - I - k) y = 2m 

k In x + (n -1- k) In y = In(nt) 

Table 2-Lower (KJd and upper (Kjv) bounds for the Kirchhoff index. computed according to Eqs. ( 12) and ( 13), for some chemically 
realistic molecular graphs with 11 vertices, 111 edges and I spanning trees. A-alkanes; B-monocycloalkanes with a five- and a six­
membered ring (t=5 and t=6, respecti vely); C-bicyclic systems with non-condensed rings; D-bicyclic systems with condensed rings. 
Bicyclic molecular graphs with two five-, a five- and a six- , and two six-membered rings have respectively 1=25, 30 and 36 (if not 
condensed) and 1=24, 29 and 35 (if condensed). 

type 
A 

B 

C 

D 

n 
7 
8 
9 
10 
II 
12 
13 

5 
6 
7 
8 
9 
10 
II 

9 
10 
11 
12 
13 
14 
15 

8 
9 
10 
II 
12 
13 
14 

m 
6 
7 
8 
9 
10 
II · 
12 

5 5 
6 5 
7 5 
8 5 
9 5 
10 5 
II 5 

10 25 
II 25 
12 25 
13 25 
14 25 
15 25 
16 25 

9 24 
10 24 
II 24 
12 24 
13 24 
14 24 
15 24 

KfL Kfu 
36.00 91.62 
49.00 178.75 
64.00 356.07 
81.00 693.46 
100.00 1369.79 
121.00 3054. 14 
144.00 5480.85 

9.70 10.54 
17.06 22.31 
26.44 44.52 
37.82 86.98 
51.21 170.2 1 
66.60 336.93 
83.99 669.08 

40.72 81.35 
54.52 156.75 
70.32 3 10.82 
88. 12 6 17.60 
107.91 1294.2 1 
129.7 1 2983.42 
153.50 8408.82 

29.15 43.87 
41.00 83.90 
54.84 162.17 
70.68 323 .64 
88.52 646. 17 
108.35 1294.21 
130. 19 2983.42 

Kfu Kfu 

6 8.99 9.34 
6 16.16 19.63 
6 25.35 38.82 
6 36.54 75 .22 
6 49.74 145.57 
6 64.94 287. 16 
6 82.14 56 1.85 

30 39.52 70.88 36 38.33 62.30 
30 53.14 135. 15 36 5 1.77 116.66 
30 68.75 260.78 36 67.21 223.34 
30 86.37 526.19 36 84.64 446.20 
30 105 .98 1079.77 36 104.06 868.67 
30 127.59 2400.25 36 125.50 1733.74 
30 151.20 4916.68 36 148.92 3487.69 

29 28.08 38.62 35 27.04 34.33 
29 39.74 72.58 35 38.5 1 63.45 
29 53 .39 138.86 35 51.98 119.17 
29 69.04 269.26 35 67.45 229.18 
29 86.69 546.18 35 84.9 1 446.20 
29 106.34 1079.77 35 104.36 928.65 
29 127.98 2400.25 35 125.82 2011.46 
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It can be shown that w* is a monotonically increasing 
function of k, implying that the choice k= 1 results in a 
lower bound for the Kirchhoff index: 

( I n-2 ) 
KIL =nl ~+-y-

... (12) 

with x and y determined via 

x+(n-2)y =2m & 11-2 xy =nt & x>y 

whereas the choice k=n-2 yields an upper bound 

[
n-2 1) 

Kjv =n -x- +-y ... (13) 

with x and y determined via 

(n - 2)x + y = 2m & X,, - 2 y = III & x > y 

The numerical values of the lower and upper 
bounds for Kf, for some chemically relevant choices 
of the parameters n, In, t are given in Table 2. It 
should be noted that the lower bound for the Wiener 
index of acyclic systems (the case In=n-l, t= 1) is the 
best possible26 and is equal to (n-I )2; the upper bound 
is somewhat above the best possible value26 

n(n2-1)/6. For cyclic systems (the cases In > n-I, 
t> 1) no bounds for the Kirchhoff index, better than 
those presently obtained, are known. 
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