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Chemical applications of the Laplacian spectrum.
VII. Studies of the Wiener and Kirchhoff indices
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Some further chemical applications of the Laplacian spectra are reported. The Kel'mans theorem for the calculation of
the coefficients of the Laplacian characteristic polynomial is stated and exemplified. By means of this theorem a (previously
known) formula for the Wiener and Kirchhoff index is deduced. It is shown that the Wiener index is correlated with the
“algebraic connectivity”, namely, the smallest positive Laplacian eigenvalue. Lower and upper bounds for the Kirchhoff

index are obtained.

Introduction

Contrary to the ordinary graph spectrum, which
found numerous applications in chemistry (see, for
instance, the books'?), the Laplacian graph spectrum

was for a long time on the periphery of interest of

mathematical chemists. Yet, in a number of recent
works™® (which are parts I-VI of the series “Chemical
applications of the Laplacian spectrum”™) we
communicated results showing that by means of
Laplacian eigenvalues of molecular graphs also, it is
possible to acquire chemically useful conclusions.
Other authors also did research along the same
lines” .

In this paper we continue our studies™® of the
connections between the Laplacian eigenvalues and
the Wiener and Kirchhoff indices. In Section 2 we
state and exemplify the application of the Kel'mans
theorem from year 1967 (a result not widely known
among mathematical chemists) and show how from it
the famous formula (1) for the Wiener index W is
deduced:

s(1)

=1
W =n :

i=l #_

For cycle-containing molecular graphs the right-
hand side of (1) differs from the Wiener index and is
equal to another structure-descriptor, initially called
“quasi-Wiener index”", but later identified'® with the
Kirchhoff index (Kf); for details see Section 4.

Formula (1) suggests that the gross part of the
Wiener and Kirchhoff indices is determined by the
smallest positive Laplacian eigenvalue (the so-called

“algebraic connectivity”). The quality of this
assumption is tested in Section 3.

In Section 4 formula (1) is used to deduce lower
and upper bounds for W and Kf.

The notation used throughout this paper is the
following: G denotes a (molecular) graph, possessing
n vertices and m edges. Its adjacency matrix is A(G).
(Rccall“’ that the eigenvalues of A form the ordinary
spectrum of G.) The diagonal matrix, whose i-th
diagonal element is equal to the degree (= number of
first neighbours) of the vertex i, is denoted by D(G).
Then the Laplacian matrix of G is IL(G) =
D(G)-A(G). The eigenvalues of L(G) form the
Laplacian spectrum of the graph G.

The Laplacian eigenvalues are denoted by u;,
i=1,2,...,n, and are labelled so that

My 2 Py 2.2 iy 2 Uy,

A general result of the theory of Laplacian spectra
is that g,= 0 for all graphs, and that yx,, is equal to
zero if and only if G is not connected. For connected
graphs (such as all molecular graphs), z,-, is positive-
valued and is called “the algebraic connectivity” (of
the graph G).

The Laplacian characteristic polynomial ¥(G,x) is
defined as

Y(G,x) =det [x - 1(G)]

Recall that the Laplacian eigenvalues of the graph G
are just the zeros of the polynomial ¥(G,x), i.e., the
roots of the equation Y(G,x)=0. More details on the
Laplacian spectrum can be found in the reviews' "',
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The Kel'mans theorem

In 1967, the Russian mathematician A. K. Kel'mans
published an article “On the properties of the
characteristic polynomial of a graph”. This article
appeared on pp. 27-41 of a booklet entitled
“Cybernetics in the Service of Communism”, and was
in Russian language. This may be the reason why
many of the contemporary mathematical chemists are
not familiar with Kel'mans’ result.

The Laplacian characteristic polynomial of the
graph G is a polynomial of order n that can be written
as
¥(G,x)=Cox" +Cjx" ' +...4C,_1x+C,, e (2)

The theorem discovered by Kel'mans establishes
the connection between the structure of the graph G
and the coefficients Cy , C; ..., Ci-1 » Gy of its
Laplacian characteristic polynomial ¥(G,x). In order
to state it we need to introduce a few simple graph-
theoretic notions.

A spanning subgraph of a graph G is a subgraph of
G containing all vertices of G. Hence, any spanning
subgraph of G is obtained by deleting some edges
from G, but keeping all vertices of G.

An acyclic spanning subgraph of a graph G is
called a spanning forest of G. A connected acyclic
spanning subgraph is called a spanning tree of the
respective graph.

Examples of spanning forests and spanning trees
are found in Figs 1 and 2.

Let F be a spanning forest of the (molecular) graph
G. In the general case F is disconnected and consists
of several components F, F5, ..., F,, . Each component
Fi, i=1,2,..,p, is a graph for itself and is connected.

The number of vertices of the component F; is
denoted by n(F;) i=1,2,..,p. The product of the
numbers n(F;), i=1,2,...,p, is denoted by y(F) .

The set of all spanning forests of the graph G,
containing exactly p components, is denoted by
F (G,k). For illustrative examples see Figs 1 and 2.

With this notation, the Kel'mans theorem reads as
follows: For k=0,1,...,n, the k-th coefficient of the
Laplacian characteristic polynomial of the graph G,
Eq. (2), is related to the structure of G via

=-n" ¥

Fe F(G.,n-k)

Y(F) .. (3)

Hence, in order to obtain the k-th coefficient of
Y(G,x) we simply have to sum the y-values of all
spanning forests of G, possessing n-k components.
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Fig. 1—The molecular graph of methyleyclobutane (G,) and its
spanning forests.
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Fig. 2—The molecular graph of 2-methylpentane (Gy) and its
spanning forests.

We first illustrate the application of the Kel'mans
theorem on the example of the molecular graph G, of
methylcyclobutane. This graph and its 30 spanning
forests are depicted in Fig. 1. We have
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Gy, S)={Fu}

F(Ga,4)={Faz, Faz,..., Fas ]

F(Ga, 3) ={ Fa7, Fag..... Fais ]
F(Ga,2)={ Gz, Faig o Fazs ]
F(Ga, 1) ={ Gazz, Gazs, Gazo, Gaso}
F(Gy, 0) = @ (empty set)

For any n-vertex graph the set #(G,n) has a unique
element, for which y=1. Therefore, for any graph,
C(|=l.

All elements of F(G,n—1) possess one edge and n—2
isolated vertices. Therefore, each such element has
y=2, and by Eq. (3)

C, =(1)'[2m]==2m

where m is the number of edges. In our case m=5 and
therefore C,; = -10.

There are two kinds of 3-component spanning
forests of G, : for six spanning forests (Fu7, Fas, Fao,
Fajo. Fayy and Fyp) it is p=3-1-1=3, whereas for four
spanning forests (Fa;3, Fazs, Fass and Fay6) the value
of v is 2:2-1=4. Application of Eq. (3) gives then

C,=(-1)°[6-3+4-4]=34

Similarly, there are two kinds of 2-component
spanning forests of G, : for seven of them (Fa;7, Fas
..... Fa23) it is y=4-1=4, whereas for three spanning
forests (Fazs, Fass and Fyz) the value of y is 2-3=6.
Application of Eq. (3) gives then

C,=(-1)'[7-443-6]=-46

The four I-component (i. e., connected) subgraphs of
G, are its spanning trees. These are Fyz7, Fazg, Fazo,
Fa30. Thus,

C,=(-1"4-5]1=20

In the general case, the coefficient C,-; is equal to
(plus or minus) the number of spanning trees times
the number of vertices.

There cannot be spanning subgraph with 0
components, implying that the set F (G,0) is always
empty. Consequently, the coefficient C, is always
equal to zero.

In summary, the Laplacian characteristic
polynomial of the methylcyclobutane graph is
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Y(G,,x)=x" —10x* +34x’ —46x° +20x
A

From this example we established two general
results:

C,=-2m ... (4)
and
C,,=C=D)""nt wal5)

with n, m and t denoting the number of vertices, edges
and spanning trees, respectively, of the underlying
molecular graph. Relations (4) and (5) are tantamount
to

n=1

Zﬂi =2m ... (6)

i=l

and

[1u =n ver (7)

Formulae (4)-(7) hold for all graphs.

In order to arrive at another application of the
Kel'mans theorem we consider the special case of
trees, exemplified by the molecular graph Gg of 2-
methylpentane, see Fig. 2. Here we shall be interested
only in the 2- and |-component spanning forests. The
respective sets are:

F(Gg.2) = [ Fgars Frag, Foo, Fso, Fai ]
and
HGg, 1) = {Fgsz ]

One should note that each member of the set
F(Gg,2) is obtained by deleting an edge from Gg. This
is true for any tree: each 2-component spanning forest
F of a tree T is obtained by deleting an edge from 7.
Therefore the numbers n(F;) and n(F>) of vertices of
the two components of such a spanning forest count
the vertices lying on the two sides of the respective
edge of T. According to a long known result in the
theory of Wiener index'”*", the summing the products
of these two numbers over all edges of T results in the
Wiener index W of 7. On the other hand, the product
of n(F;) and n(F5) is just the y-value of F. Therefore,
from the Kel'mans theorem (3) it immediately
follows,
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C,,=(-1)"W . (8)

and this results holds for all trees. In terms of
Laplacian eigenvalues, formula (8) is rewritten as

11 ] s
W=| —+—+..+ [T -9
My M Kn-1 )iy
For trees, as a special case of (7),
n=l
W, =n ... (10)

because for trees, evidently, r=1.

Combining (9) and (10) one immediately arrives at
the formula (1).

Formula (1) was simultaneously discovered by
several mathematicians nearly in the same time (in the
late 1980s); bibliographic details can be found in the
article’. Chemists became aware of it after the
publication of the papers in refs 3 and 10.

Relation between Wiener index and the algebraic
connectivity

Formula (1) may be viewed as a decomposition of
the Wiener index in terms of Laplacian eigenvalues.
Each Laplacian eigenvalue has a certain contribution,
equal to n/y; , i=1,2,...,n—I, and the Wiener index is
equal to the sum of these contributions.

As already mentioned, the second smallest
Laplacian eigenvalue (u,,) is called "algebraic
connectivity”. Evidently, it will have the greatest
contribution to the Wiener index. Within the theory of
Laplacian spectra the dependence of the algebraic
connectivity on graph structure was much
investigated'"'®*!

In view of this we were interested to see if there
exists some correlation between the Wiener index W
and the term n/w,-;. Indeed, such a correlation does
exist.

In Fig. 3 we show the correlation between the
Wiener index and the term n/u,; for the chemical
trees with 10 vertices. In Fig. 4 we show the
analogous correlation for all (chemical and non-
chemical) trees with 10 vertices. Analogous
correlations were found to exist in the case of n-vertex
trees and chemical trees also for other values on n.
The respective correlation coefficients are given in
Table 1.
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Fig. 3—Correlation between the Wiener index (W) and the term
n/p,; for chemical trees with n=10 vertices; u,_, is the algebraic
connectivity. The outlier corresponds to the molecular graph of 4-
propylheptane (cf. Fig. 5).
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Fig. 4—Analogous data as in Fig. 3 for general trees with n=10
vertices.

Table 1—Correlation coefficients for the correlation between the
Wiener index and the term n/u,, for n-vertex chemical trees and
n-vertex trees. Chemical trees are trees in which no vertex has

degree greater than 4.

n Chemical trees
6 0.993
7 0918
8 0.945
9 0.937
10 0.931
11 0.938
12 0.939
13 0.936
14 0.937
15 0.936
16 0.935
17 0.934
18 0.934
19 0.933

20 0.932

General trees

0.993
0.958
0.966
0.952
0.943
0.941
0.938
0.933
0.932
0.929
0.928
0.926
0.925
0.924
0.922
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From the data given in Table | (as well as from the
examples shown in Figs 3 and 4) we see that W and
n/u,-y are linearly correlated, and that the quality of
this correlation is essentially the same for both
chemical and general trees. Although the correlation
is not particularly good, in all cases studied the
correlation coefficients are well above 0.9. The
correlation slowly weakens with increasing number n
of vertices.

In Figs 3 and 4 an outlier can be seen. It
corresponds to 4-propylheptane. By scrutinizing our
data for higher values of n we noticed that the points
for two molecular graphs significantly deviate from
the regression line. We denote them by 7, and Q,. The
first of these exceptional chemical trees (7,) was
identified as the n-vertex tree possessing a single
vertex of degree 3 to which three linear branches are
attached, having length as equal as possible. The
second exceptional chemical tree (Q,) is the n-vertex
tree possessing a single vertex of degree 4 to which
four linear branches are attached, having length as
equal as possible. For instance, for n=15, T, and Q,
are the molecular graphs of 5-butylundecane and 5,5-
dipropylnonane. Another example is found in Fig. 5.

The exceptional nature of the chemical trees 7, and
(Q, is hardly at all seen for smaller values of n.
Therefore, in order to test their exceptional nature we
constructed a set of 100 randomly chosen trees with
very large (n=48) number of vertices, and added to it
the trees 7,5 and Q. The respective plot is shown in
Fig. 5. The two outliers are now clearly visible, thus
corroborating our hypothesis.
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Fig. 5—Analogous data as in Figs. 3 & 4 for a set of 100
randomly constructed trees with n=48 vertices, plus two specially
chosen trees: one with a single vertex of degree 3 to which linear
branches of length 15, 16 and 16 are attached (Tyz), and another
with a single vertex of degree 4 to which linear branches of length
12, 12, 12 and 11 are attached (Q,3). These trees pertain to the two
obvious outliers.
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For reasons which we do not fully understand, in
the exceptional trees 7, and Q, the term n/u,-
reproduces a much smaller fraction of the Wiener
index than in the case of other trees. Thus, in the trees
T, and Q, the algebraic connectivity has an unusually
small effect on the value of the Wiener index.

Bounds for the Wiener and Kirchhoff indices

As well known'”?", the Wiener index is equal to the
sum of distances between all pairs of vertices of the
molecular graph, where “distance™ means the length
of the shortest path connecting the respective two
vertices. In 1993 Klein and Randic® conceived
another type of distance, the so-called “resistance
distance™. It is equal to the electrical resistance
between the respective two vertices, assuming that
any two adjacent vertices are connected by a
resistance of 1 Ohm. The sum of resistance distances
between all pairs of vertices of the molecular graph
was named the “Kirchhoff index”. In the case of
trees the Wiener and the Kirchhoff indices coincide,
but for cycle-containing graphs their values differ.

As a kind of surprise it was shown'" that the
Kirchhoff index is precisely equal to the right-hand
side of formula (1). This, in particular, means that
formula (1) is meaningful not only for trees, but also
for all connected (molecular) graphs.

In this section we use formula (1), together with the
conditions (6) and (7) to deduce lower and upper
bounds for the Kirchhoff index, in terms of the
parameters n, m and t. As before, n is the number of
vertices, m the number of edges and ¢ the number of
spanning trees of the molecular graph G considered.

Using standard methods of calculus, we try to
determine positive real numbers ,u,:‘, ;:2‘,‘.., ‘u,,_;‘
which satisfy the conditions

H=

uw, =2m

I
i
i=l

and

n-| n-

1
H,ul. =ntie, Y Iny, =In(nr)
i=l

i=l

and which minimize or maximize the expression

% ="ZML
i=1 §

To achieve this goal we construct the auxiliary
function =
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n=1

Z u, —2m
i=l

-
E=ny —+0
ﬂg:‘#.- [

find its derivatives with respect to g, i=1,2,...n—,
and set them equal to zero. This results in

-1
Zln u, - In(m)]
i=1

+a+ﬁL_ 0

H,

.2

(u; )
e
a(yl'): +Bu, -n=0

which is just a quadratic equation, having two roots x
and y. According to the nature of the problem we are
examining, the roots x and y must be positive real
numbers. They must not be equal, because x=y would
require that the condition

-z

s (1)

2m
n-—1
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to be satisfied, which certainly cannot be obeyed by
molecular graphs because they possess a relatively
small number of spanning trees. (This condition is
obeyed by the complete graph.)

Hence the roots x and y of Eq. (11) must be
different. Without the loss of generality we assume
that x>y.

Thus, the numbers 4" . i=1,2,...,n—I, assume only
two different values: x and y. Assuming that £ of them
are equal to x and the remaining n-/-k are equal to y,
we have

[k n—[—k]
=n| -4 —
X v

where x and y are obtained by solving the system of
equations:

Kf"

kx+(n—1-k)y=2m
klnx+(n—1-k)Iny=In(nr)

Table 2—Lower (Kf;) and upper (Kf;;) bounds for the Kirchhoff index. computed according to Egs. (12) and (13). for some chemically
realistic molecular graphs with n vertices, m edges and r spanning trees. A—alkanes; B—monocycloalkanes with a five- and a six-
membered ring (r=35 and r=6, respectively); C—bicyclic systems with non-condensed rings; D—bicyclic systems with condensed rings.
Bicyclic molecular graphs with two five-, a five- and a six-, and two six-membered rings have respectively r=25, 30 and 36 (if not

condensed) and r=24, 29 and 35 (if condensed).

type n m t Kf Kfy

A 7 6 l 36.00 91.62
8 7 1 49.00 178.75
9 8 1 64.00 356.07
10 9 1 81.00 693.46
11 10 1 100.00 1369.79
12 11 i 121.00 3054.14
13 12 1 144.00 5480.85

B 5 5 5 9.70 10.54
6 6 5 17.06 22.31
7 ¥ 5 26.44 44.52
8 8 5 37.82 86.98
9 9 5 51.21 170.21
10 10 b 66.60 336.93
11 11 5 83.99 669.08

C 9 10 25 40.72 81.35
10 11 25 54.52 156.75
11 12 25 70.32 310.82
12 13 25 88.12 617.60
13 14 25 107.91 1294.21
14 15 25 129.71 2983.42
15 16 25 153.50 8408.82

D 8 9 24 29.15 43.87
9 10 24 41.00 83.90
10 11 24 54.84 162.17
11 12 24 70.68 323.64
12 13 24 88.52 646.17
13 14 24 108.35 1294.21
14 15 24 130.19 2983.42

30
30
30
30
30
30
30

29
29
29
29
29
29
29

Kf, Kfy t Kf,. Kfy,
8.99 9.34

16.16 19.63

25.35 38.82

36.54 75.22

49.74 145.57

6494  287.16

82.14 56185

39.52 70.88 36 38.33 62.30
53.14 135.15 36 51.77 116.66
68.75 260.78 36 67.21 22334
8637  526.19 36 84.64  446.20
10598  1079.77 36 104.06  868.67
127.59 240025 36 125.50 173374
15120 4916.68 36 14892  3487.69
28.08 38.62 35 27.04 3433
39.74 72.58 35 38.51 63.45
53.39 138.86 35 51.98 119.17
69.04 269.26 35 67.45 229.18
86.69  546.18 35 84.91 446.20
106.34  1079.77 35 10436 928.65
127.98 240025 35 125.82 201146
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It can be shown that W* is a monotonically increasing
function of &, implying that the choice k=1 results in a
lower bound for the Kirchhoff index:

.. (12)

Kf:_zﬁ(“]""ﬂ_zJ

x y
with x and y determined via
x+(n-2)y=2m & xy"’=nt & x>y

whereas the choice k=n-2 yields an upper bound

Kf, =n[n_2+—l-]

X y

s (13)

with x and y determined via
(n=-2x+y=2m & x"’y=mt & x>y

The numerical values of the lower and upper
bounds for Kf, for some chemically relevant choices
of the parameters n, m, t are given in Table 2. It
should be noted that the lower bound for the Wiener
index of acyclic systems (the case m=n-1, t=1) is the
best possible®® and is equal to (n—1)*; the upper bound
is somewhat above the best possible value™
n(nz—l)/é. For cyclic systems (the cases m > n—l,
t>1) no bounds for the Kirchhoff index, better than
those presently obtained, are known.
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