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ABSTRACT. Tt is shown that the value of the variable z, at which the Coulson function
F{&, x) has its inflection point, is related to the respective total m-electron energy {E) and
depends mainly on & and the number of non-bonding molecular orbitals.

INTRODUCTION

In another paper [1] the basic properties of the Coulson function
irgd' (G, i)
Flz)=F(G,z)=n— ————— . I
(#) = F(G,z) =n HG.iz) (1)
were determined. This function, introduced by Charles Coulson long time ago [2], plays
a significant role in the theory of the total w-electron energy of conjugated molecules (for
details see [1, 3, 4]).
On the right-hand side of Eq. (1), $(G, z) denotes the characteristic polynomial of the
molecular graph &, n is the number of vertices of 7 and ¢ = /=1, For more details see
1, 3, 4].

In the work [1] the spectral decompaosition of the Coulson function was shown to be
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where A;, Az, .. An stand for the eigenvalues of G . To be more precise: the right-hand side
of Eq. (2) is equal to the real part of the Coulson function [1), a feature that is immaterial
for the present considerations.

It was demonstrated [1] that for all graphs 7 (either representing conjugated m-electron
systems or saturated hydrocarbons or no molecular species at all), F{(, £) is an even bell-
shaped function. From this fact follows that F(G,z) has a unique maximum at = = 0 and
bwo symmetrically arranged inflection points, at & = 245 > 0 and z = —Einfl .

In order to calculate 24, ; one has to find the second derivative of F(G, x) and to equate

it with zero. Utilizing formula (2), we immediately arrive at

PGy = 23 ot B
' = [z"+}-§-]3

n
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implying that =y, is the unique solution of the equation
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for z > 0.
According to (2) the Coulson function is equal to the sum of o increments, each be-
ing associated with a particular eigenvalue of the respective molecular graph . These

increments have the form
2

1059 = ol
for  =1,2,...,n. If A; = 0 then f(A;,x) = 0 and, consequently, the summation in {2)
can be restricted to the n — ng non-zero eigenvalues of G. As before [1], ng denotes the
multiplicity of the number zero in the spectrum of the graph & .

Recall that in Hiickel molecular orbital theory, np is just the number of non-bonding
molecular orbitals [3, 5]. Several methods for evaluating ng (without actually computing
the graph eigenvalues) were put forward [6, 7].

If A; # 0, then the increment f{Ay,z) is an even bell-shaped function, and its inflection
points are at z = fl_-l.|f\)'ﬁ and ¢ = -|J|.\,|I."v.,"':§, see [1]. Then, in view of (2), Zinp will be
greater than the minimal value of |A;|/v/3, provided A; # 0, and smaller than the maximal

value of |A;|/v/3. In view of this, the average value of |A;1/+/3 (over all non-zero eigenvalues)
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appears to be a reasonable approximation for g . If so0, then

Nl (4)

Chad ) Jrer
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The sum occurring on the right-hand side of (4} is immediately recognized as the energy
of the graph G [4, 8], a graph invariant much studied in both theoretical chemistry (see,
for instance, [4,9-14] and the references cited therein), and mathematics (see, for instance,
(15-21] and the references cited therein). Note that if G is a molecular graph of an alternant
hydrocarbon, then its “energy” is precisely equal to the total w-electron energy, as computed
within the Hiickel molecular orbital model and expressed in units of the carbon-carbon
resonance integral 3 [5]. Note also that the same quantity, under the name eigenvalue sum
was recently used for describing physico-chemical properties of alkanes [22]. In fact, the
“gigenvalue sum"” is simply equal to one half of the “energy”,

In what follows we denote the quantity [A| + [A2] + -+ + |Ax| by F and refer to it as

either “total m-electron energy” or “graph energy”. Then formula (4) is rewritten as

E

n—ng

Tinfl ==

The quantity E is in the following manner related with the Coulson function [2]:

Thus, in order to compute E one has to integrate the Coulson function over the entire
interval (—oo,+00). We now show that some information about E can be obtained by
examining the Coulson function in just a single point - at its inflection point. This result

is obtained by means of the approximation (5).

TESTING THE APPROXIMATION (5)

In order to test the formula (5) we have first computed =, 5 (as the solution of Eq.
(3)) for all chemical trees with n < 10. Recall that chemical trees are trees in which the
maximal vertex degree does not exceed 4; these are molecular graphs of alkanes. A typical

result, for n = 10, is shown in Figure 1.
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Figure 1. Relation between the energy (E) of the 10-vertex chemical trees and Lhe value of
the variable z at which the corresponding Coulson function has an inflection point (@ )
g 18 the multiplicity of the mumber zero in the graph spectrum; for details see text.



In Figure la are plotted the energies of the 73 distinet 10-vertex alkane graphs versus
the corresponding .'rmar;-\-'ﬂ.llliﬂﬁ. The data points are, in an obvious manner, separated into
three clusters. By direct checking we established that all data points, belonging to the same
cluster, pertain to molecular graphs with equal number of zero eigenvalue {rig). In the case
of 10-vertex chemical trees ng is equal to either 0 or 2 or 4, hence the three clusters.

The same clustering of data points is found also when instead of E we use E/(n —ng).
This is shown in Figure 1b, Here, of course, the position of the clusters is inverse to what
we have in Figure la.

Fully analogous results were observed also for chemical trees with n = 6,7,8, and 9
vertices, and there is no doubt that regularities of the same kind hold also for n > 10.

The above described relation between E and x4, 5y 38 by no means restricted to chemical
trees. This is seen from the example shown in Figure 2, where we have plotted E and
Ef{n — ng) versus zip for all 10-vertex trees. There exist 106 such trees and their ng-
values are equal to either 0 or 2 or 4 or 6 or 8. There is a single 10-vertex tree with ng = 8,
namely the star. In both Figure 2a and Figure 2b we see that the data points form four
well-separated clusters, with a single point (corresponding to the star), not belonging to
any of the clusters. Each cluster of data points correspond to trees with the same value of
7lg -

Fully analogous results were observed also for trees with n = 6,7, 8, and 9 vertices, and
we believe that regularities of the same kind hold also for n = 10.

From both Figures 1 and 2 it is seen that for any fixed value of ny , there is a relatively
good (but far from perfect) correlation between Ef(n — ng) and g

From Eq. (5) one would expect that this correlation is linear and, furthermore, that
the respective line goes through the origin. Already from Figures 1 and 2 we see that such
expectations are only partially fulfilled. The main violation from Eq. (5) is the fact that
the data points lie not on a single, but on several correlation lines.

In most cases the correlation between E/(n = ng) and Tingr i8 linear, One example is
shown in Figure 3, in which the data points for 9-vertex trees with ng = 3 are depicted. We
see that with a single exception all data points lie near a straight line; the outlier (the “single
exception” ) is indicated by an arrow. More details on this and other linear correlations are

found in Tables 1 and 2, where also the outliers are specified.
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Figure 2. Same data as in Figure 1, for the 10-vertex trees,
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Figure 3. Relation between the energy (E) and @i, 5 for the 9-vertex trees with three sero
eigenvalues (rng = 3). The outlier, indicated by arrow, correspond to the tree T depicted
in Figure 5. More data on this correlation are found in Table 2.

An inspection of Figure 2 reveals that not all correlations are linear. A convincing
example for this is provided in Figure 4, depicting the data points for the 9-vertex trees
with rig = 5. For further details see Tables 1 and 2 as well as the discussion following them.

In order to learn more on the nature and quality of the correlation between E/{n — ng)
and T,y we have examined all sets of trees and chemical trees with fixed values of the
parameters n and ng, for n < 10. For obvious reasons, sets containing less than three
elements were not analyzed. In all other sets we have drawn the best straight line through
the data points (by means of the method of least squares). If the number of elements was
ereater than 3, then we have also drawn the best quadratic parabola through the data
points (an example is shown in Figure 4}, which should account for curvilinearity. Whether
the correlation between E/(n — ng) and Tinge 15 linear or curvilinear was then determined
by means of F-test.

The results obtained are collected in Tables 1 and 2.
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n ng N outlier a b R R,  remark |
6 2 3 = 67+0.7 —-33£05 0994 —
T 1 6 = 5606 -27+£05 0975 0977 linear
b EEI T | == 53+£05 -224+04 099 -
B M ih T 25401 —06+01 0997 0.9996 linear
g 2 11 — 6.3+04 —31+£03 0983 0.985 linear
a 1 18 51+06 —-24204 0904 0905 linear
9 i3 15 5O+03 —28+02 098 0990 linear
10 0 14 = 24401 —06+01 0986 0986 linear
10 2 47 — 62103 —3.2402 0947 0948 linear
10 4 14 = -E.E:EU‘A —2540.3 0963 0984 linear

Table 1. Data on the correlation between E/(n — nig) and &, for chemical trees: n =
number of vertices; ny = number of zero eigenvalues; N = sample size; a and b are the
coefficients (obtained by least-squares fitting) in the formula Ef(n — ng) = agmp + 55 R
and R, are the correlation coefficients for linear and quadratic correlations, respectively;
“linear” indicates that by means of F-test (at 90% confidence level) the correlation is found
to be linear (and not quadratic curvilinear). Among the samples examined, only in a single

sample an outlier was encountered (for details see Table 2.

n ng N outlier a b R R, remark
R = 6.7+£07 =33£05 0094 —
i == F6+06 27405 0975 0977 linear
| - — 714209 —35+046 0985 09999 curvilinear
8 0 6 Ty 25401 —06+£01 0.997 0.9996 linear
e - 6705 —-3.5x03 0977 0953 linear
8 4 b B3+11 —-43+08 0,974 099988 curvilinear
L e | | — B5+06 —=26x04 0910 0.913 linear
9 3 20 Tg 6.6+03 =33x02 0986 099 linear
& 6O = BT+1.2 —46409 08955 09995 curvilinear
10 O 15 Tc 24401 —-0.64+01 098 0.986 linear
1w 2 52 Tn 62403 —3.14+0.2 0956 0957 linear
10 431 = T 67+03 —-33+02 0975 0.992 curvilinear
13:, 58, 1 = 102+1.3 -564+1.0 0960 09989 curvilinear

Table 2. Same data as in Table 1 for trees. In five cases one data point was an outlier;
then this point was not taken into account and the size of the sample employed was by
one smaller that & . The trees corresponding to the outliers are depicted in Figure 5.
By “curvilinear” is indicated that the quadratic correlation is significantly better than the
linear nne (as decided by means of F-test at 99% confidence level); “linear” indicates that

the opposite applies.
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Figure 4. An example of curvilinear relation between the energy (E) and zigr: the
B-vertex trees with five zero eigenvalues (ng = 5).

In five cases, specified in Tables 1 and 2, a single data point was an obvious outlier.
{For one such case see Fig. 3.) These outliers were excluded from the statistical analysis.

The trees corresponding to the outliers are depicted in Figure 5.

DISCUSSION AND CONCLUDING REMARKS

In this work we examined only acyclic ({molecular) graphs and, strictly speaking, all our
conclusions hold only for them. We, however, believe that the same or similar results hold
also for cycle-containing systems. Anyway, the study of the inflection point of the Coulson
function of eycle-containing (molecular) graphs is a task that awaits to be accomplished in
the future.

The calculated values for the coefficients o (given in Tables 1 and 2) indicate the there
is an approximate (linear or curvilinear) proportionality between E/(n —ng) and 34,5, but

that the slopes significantly and in a manner difficult-to-predict depend on the parameters
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n and nig. Furthermore, in all cases studied the a-values significantly differ roma =1, a
value that would be expected on the basis of Eq. (3).
The calculated values for the coefficients b are, in all cases studied, significantly different

from zero, again at variance with formula (5).

Figure 5. The trees whose (F, 1,51 data points significantly deviate from the lines formed
by other members of the same cluster; for example see Figure 3; for details see Table 2,

Based on the above presented evidence we conclude that the approximation (5) is valid
only to a limited extent, It correctly predicts that E/(n — ny) is proportional to Tip,
although the proportionality found is not always linear. It, however, fails to foresee that
the correlation between E/(n — ng) and 2z, 15 dependent on both n and ng. In other
words, for each particular choice of the parameters » and ng one has a distinet correlation
line. Some of these correlations are linear, some curvilinear. Some of these correlations are
rather good (with correlation coefficients close to unity, £ > 0.98), some much weaker (but,
in all cases, & = 0.9).

Oin the other hand, we have established that there certainly exists some relation between
Zin i and the graph energy. Thus, a single point of the Coulson function (namely the value
of the variable = at which the Coulson function has its inflection point) carries a lot of

information on the energy of the respective graph, or — what is the same — on the total
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m-glectron energy of the respective conjugated molecule. Another parameter that influences

the value of x5 is the multiplicity of the number zero in the specirum of the respective

graphs, or — what is the same - the number of non-bonding molecular orbitals of the

respective conjugated molecule,

References

[1]

(2

[4

()

[5

[10]

(11

[12]

I. Gutman, The Coulson function, Kragujevac J. Sci. 24 (2002) 65-70, the preceding

paper.

C. A, Coulson, On the calenlation of the energy in unsaturaled hydrocarbon molecudes,
Proc. Cambridge Phil. Soc. 36 (1940) 201-203.

A Graovac, I, Gutman, N. Trinajsti¢, Topological Approach to the Chemiséry of Con-
jugated Molecules, Springer—Verlag, Berlin, 1977.

I. Gutman, (. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer
Verlag, Berlin, 1986,

C. A Coulson, B. O'Leary, R. B. Mallion, Hickel Theory for Organic Chemists, Aca-
demic Press, London, 1978,

D. M. Cvetlovié, I Gutman, The algebraic multiplicity of the number zero in the
spectrum af a bipartite graph, Mat. Vesnik (Beograd) 9 (1972} 141-150.

. Cvetkovié, I. Gutman, N. Trinajstié, Graphical studies on the relations between
the structure and recctivity of conjugated systems: The role of non-bonding molecular
orfitals, J. Mol Struct. 28 [1975) 289-303.

I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungszentrum Graz
103 (1978} 1-22.

I. Gutman, T. Soldatovié, I Vidovié, The energy of o groph and its size dependence.
A Monte Carlo approach, Chem. Phys, Lett. 297 (1998) 428-432.

J. H. Koolen, V. Moulton, [. Gutman, fmproving the MeClelland ineguality for total
w-electron energy, Chem. Phys. Lett, 320 (2000) 213-216.

I, Gutman, A, Nikoli¢, Z. Tomovié, A econcealed property of total w-electron energy,
Chem. Phys. Lett. 349 (2001) 95-98.

I. Gutman, ¥. Hou, Bipartite unicyclic graphs with greatest energy, Commun. Math,
Chem. (MATCH) 43 (2001) 17-28,




82

[13] L. Gutman, Y. Hou, Hyperenergetic line graphs, Commun, Math. Chem. (MATCH] 43

(2001) 29-39.

[14] I Gutman, D, Vidovié, Quest for molecular graphs with mazimal energy: 4 computer

[15]

[16]

[17]

(8]

9]

(20]

[21]

2]

experiment, J. Chem. Inf. Comput. Sei. 41 (2001) 1002-1005.

H. B. Walikar, H. 8. Ramane, P. R. Hampiholi, O the energy of e graph, in: R. Balakr-
ishnan, H. M. Mulder, A. Vijayakumar (Eds.), Graph Connections, Allied Publishers,
Mew Delhi, 1999, pp. 120-123.

J. Koolen, V. Moulton, Mazimal energy graphs, Adv. Appl. Math. 26 (2001) 47-52

[. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert,
K. Laue, A. Wassermann (Eds.), Algebraic Combinatorics end Applications, Springer-
Verlag, Berlin, 2001, pp. 196-211.

H. B. Walikar, H. 5. Ramane, Energy of some cluster graphs, Kragujevac J. Sei, 23
(2001) 51-62.

H. B. Walikar, H. 5. Ramane, Energy of some bipartite cluster graphs, Kragujevac J.
Sci. 23 (2001) 63-74.

A. Graovac, 1. Gutman, P. E. John, D. Vidovié, L. Vlah, On statistics of graph enengy,
Z. Naturforsch. 56a (2001) 307-311,

H. Fripertinger, I. Gutman, 4. Kerber, A. Kohnert, D. Vidovié, The energy of a graph
and ifs size dependence. An improved Monte Carlo approach, Z. Naturforsch. 56a
(2001) 342-346.

M. Randi¢, M. Vratko, M. Novi¢, Figenvalues as molecular decriptors, in: M. V. Diudea
(Ed.}, QSPR/QSAR Studies by Molecular Descriptors, Nova, Huntington, 2001, pp.
147-211,



