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Abstract: Using continuous variables in truss structural optimization results in solutions which have a large number of 
different cross section sizes whose specific dimensions would in practice be difficult or expensive to create. This 
approach also creates optimal models which if varied, even slightly, result in structures which do not meet constraint 
criteria. This research proposes the discretization of cross section sizes to standard sizes of stock produced for the 
particular cross section and material, and a 1mm precision for node location when using shape optimization. 
Additionally, Euler buckling constraints are added to all models in order to achieve optimal solutions which can find 
use in practical application. Several standard test models of trusses from literature, which use continuous variables, 
are compared to the discrete variable models under the same conditions. Models are optimized for minimal weight 
using sizing, shape, topology, and combinations of these approaches. 
 
Key words: truss, structural optimization, buckling, dynamic constraints. 
 
1. INTRODUCTION 
 

Truss structural optimization for minimal weight is a 
complex problem which can consider one or more aspect 
of the construction for optimization. Most studies in this 
field optimize cross-section dimensions, which is called 
sizing optimization, while fewer consider topology and 
shape optimization, and even fewer a combination of two 
or all three. Continuous variables for truss sizing produce 
optimal solutions with decimal precisions with such 
specific cross-section dimensions that such bars would be 
hard or impossible to produce. In order to achieve usable 
results the sizing aspect of truss optimization needs to be 
done using discrete variables. Proper constraining of 
models is also very important. By adding dynamic 
constraints for Euler buckling the resulting structure 
becomes practically applicable. 
The majority of work published to date considers truss 
optimization problems with just stress and displacement 
constraints using various heuristic methods. Few papers 
consider buckling constraints when solving truss 
structural optimization problems [1, 2]. Only in the last 
year or so has the addition of buckling constraints started 
to appear in research. 
In [3] Madah and Amir have optimized the geometric 
nonlinear response, instead of by imposing a large 
number of constraints, in order to consider buckling, 
ensuring local and global stability without actually 
imposing any buckling constraints. In their research, 
Grande et al [4] proposed a new approach to optimization 
of grid shell structures based on a mixed sizing/topologic 
process, specifically accounting for the global buckling 
behaviour introducing local and global buckling 
phenomena opportunely. Sizing and topology truss 
optimization using dynamic and static constraints was 
also conducted in [5]  imposing a critical buckling load as 

a static constraint, and adding dynamic natural frequency 
constraints to avoid deconstructive resonance. Assimi et 
al [6] also considered a static critical buckling load 
constraint for sizing and topology optimization using 
genetic programming, even applying it to a 10 bar truss 
problem. A combination of sizing, shape, and topology 
optimization of truss structures using Jaya algorithm was 
used in [7] with considering dynamic constraints for 
buckling in analysed models. Optimization was done with 
discrete sizing and shape variables, also considering 
simplified topology optimization. 
Authors in [8] compared the implementation of Euler 
buckling constraints to sizing optimization problems and 
found that examples from literature which do not include 
this constraint have solutions which do not meet buckling 
criteria, while the addition of the constraint increased the 
overall weight of tested models by a small percentage. 
This problem was further explored in [9] where authors 
compared structural optimization for sizing, topology, 
shape, and their combinations with and without buckling 
constraints on a standard 10 bar truss example. 
As previous research shows, the addition of buckling 
constraints increases complexity, requires longer 
calculation times, and results in constructions of greater 
weight than their counterparts which do not. Such an 
approach, however, ensures practical applicability of 
attained results. This paper aims to show the change in 
solutions when discrete sizing variables are used on a 
standard 10 bar truss problem, as it has been observed that 
solutions using continuous variables give results with 
expensive or impossible precision. The motivation behind 
this research is the creation of a comprehensive structural 
optimization method for trusses which can produce 
realistic optima. 
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2. OPTIMIZATION PROBLEM 
FORMULATION 

 
Optimization is the process of finding solutions from a 
group of alternative possible solutions. These solutions 
impose better characteristics of the construction, while 
simultaneously decreasing invested efforts and expended 
costs. Truss structural optimization, based on discrete 
design variables, entails simultaneous sizing, topological, 
and shape optimization. In many practical problems, the 
optimization of all three of these aspects is not always 
applicable for various reasons. This means that 
optimization models should consider the application of 
any one of these types of optimization as well as possible 
combinations of any two or all types, simultaneously. The 
objective function for this problem is to find optimal 
solutions, for all seven possible cases, with a minimal 
weight of the construction. For typical truss optimization 
found in literature the minimum weight design problem 
can be defined as: 
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In (1) the number of nodes, li is the length of the ith 
element, Ai is the area of the ith element cross section, i is 
the stress of the ith element, uj is displacement of the jth 
node.  Depending on the case the objective function 
criteria changes accordingly, however the constraints are 
unchanged for all cases. 
Trusses have elements subjected to compression forces 
which need to be lower than critical buckling values for 
each cross section. Since the Euler critical buckling load 
equation (3) considers axial compression force, cross 
sectional characteristics, and bar length, buckling needs to 
be checked for all bars for each iteration. To avoid surplus 

calculations axial compression forces are compared to 
Euler’s critical load, instead of comparing stresses which 
are derived from these forces and the same area value. 
The proposed Euler buckling constraint defined by 
Euler’s critical load is given in the following expressions:  
  

for 1,...,comp
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In (2) and (3), FAi
comp is the axial compression force, FKi is 

Euler’s critical load, Ei is the modulus of elasticity, and Ii 
is the minimum area moment of inertia of the cross 
section of the of the ith element. For the purposes of this 
research the condition from equation (1) is added to the 
existing constraints. Since the buckling constraint changes 
with each iteration, this constraint is considered a 
dynamic constraints, and its calculation significantly 
increase the complexity of the optimization problem. 
 

2.1. Optimization Method and Algorithm 
 

The optimization method selected for the purposes of this 
research is genetic algorithm (GA) because of its 
favorable characteristics and availability. GA is a 
heuristic optimization method whose operation is based 
on imitating natural processes [10]. As this research is not 
focused on the algorithm characteristics, other algorithms 
are not considered, however the same principles would 
apply for use in with other optimization algorithm. 
The genetic algorithm consists of three elementary 
operators: selection, crossover, and mutation (figure 1). 
The process of transferring genetic information through 
generations is called selection. Crossover represents the 
operations between two parents, where an exchange of 
genetic information is conducted, and new generations are 
created. A random change in the genetic structure of some 
individuals for overcoming early convergence is created 
by the mutation operator.  

 

 
 

 
Fig.1. Genetic algorithm 

 

 
 

Algorithm operation is based on survival of the fittest 
individuals through evolution which exchange genetic 
material. Selection is used to rank individuals in the 
population using values from the fitness function, which 
defines the quality of the individual. 

The parametric model and optimization in this research 
are all done in Rhinoceros 5.0 software using 
Grasshopper, Galapagos optimization, and Karamba 
plugins as well as using operators programmed in Visual 
Basic. An original files were created in this program 
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which allows for the choice of optimization type, and/or 
combination of types, as well as the choice of constraints 
used. Galapagos optimization uses GA as its optimization 
method. 
 

2.2.  The 10 Bar Truss Problem 
 

One of the most frequently appearing examples in 
literature, when it comes to truss optimization, is the 10 
bar truss (Figure 2). This cantilever truss has 10 
independent sizing variables (cross section diameters), 4 
shape variables (x and y coordinates for nodes 3 and 4), 
and 10 topology variables (bars). The material of the truss 
elements is Aluminium 6063-T5 whose characteristics 

are: Young modulus 68947MPa, and a density of 
2.7g/cm3. The point load is F=444.82kN, in nodes 2 and 
4, as shown in figure 2. The model is limited to a maximal 
displacement of ±0.0508m of all nodes in all directions, 
and axial stress of ±172.3689MPa for all bars.  
Discrete variables for cross section diameters are taken 
from various vendors, and the compiled list of available 
diameters for this material stock is : 12, 16, 20, 25, 30, 34, 
35, 40, 45, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 
110, 115, 120, 125, 130, 140, 145, 150, 152, 160, 165, 
170, 175, 178, 180, 190, 200, 210, 220, 230, 240, 250, 
254, 260, 270, 278, 280, 300, 305, 356, given in mm. 

 

 
Fig.2. Configuration of the 10 bar truss problem 

 

The initial cross section area for all calculations is 
45238.932mm2 (240mm diameter). It is calculated by 
optimizing the initial model which would have the same 
diameter of all bars and a minimal weight in such a 
configuration. This is also taken as the cross section area 
of all bars for all examples which do not consider sizing. 
The initial model with these bars has a weight of 
13089.2614kg. In order to allow for shape optimization 
coordinates of nodes 1 and 3 are variables in examples 
which optimize this aspect of the truss [9]. Node 5, as it is 
a support is not set as a variable, as found in [1]. 
Topology optimization is limited to the removal of at 

most 6 bars. A 1mm precision for node location is set 
when using shape optimization. 
 
3. ANALYSIS AND RESULTS 
 
Optimization was conducted according to the parameters 
set in the previous section and compared to results from 
[9]. Table 1 shows the comparison of results between 
continuous variable, and discrete variable models. Since 
the cross sections of the optimizations which do not 
consider sizing use the same cross-section as in [9], the 
optimization results are the same, and therefore not given 
in Table 1. 

 

Table 1. Comparison of bar cross-section areas, displacements, and optimal weights for continuous and discrete 
optimization models. 

Area of bar 
(cm2) 

Sizing Sizing and topology Sizing and shape Sizing, topology and 
shape 

Continuous 
[9] 

Discrete Continuous 
[9] 

Discrete Continuous 
[9] 

Discrete Continuous 
[9] 

Discrete

1 74.58352 78.540 89.08818 240.528 179.1678 78.540 125.6289 165.130
2 52.71413 15.904 - - 10.34957 44.179 - - 
3 425.1333 415.475 370.3749 490.874 368.7339 415.476 454.3156 490.874
4 157.3157 240.528 262.2361 283.529 330.5622 283.529 308.5585 380.133
5 0.741299 1.131 - 283.529 28.70441 1.131 102.5278 56.745 
6 61.05257 15.904 - - 11.99239 23.758 - - 
7 169.4642 122.718 36.44082 113.097 33.7946 122.71.8 74.89887 86.590 
8 267.758 415.47.6 441.3566 - 339.8973 314.159 - - 
9 27.82731 103.869 111.2438 226.980 116.4499 95.033 215.1459 165.130

10 352.5366 181.458 - - 0.690409 95.033 - - 
Weight (kg) 4759.458 4795.734 3838.440 4416.674 3715.950 3968.862 3172.868 3460.028

Displacement 
(m) 0.0508 0.0498 0.0508 0.0507 0.0508 0.0508 0.0508 0.0512 
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Optimal node coordinates of nodes 1 and 3 for sizing and 
shape, and sizing topology and shape are given in table 2 
for both continuous and discrete variable models. These 

are the only two cases in which the results of node 
positioning vary between the two examples. 

 
Table 2. Optimal node coordinates 

Area of bar (cm2) 
Sizing and shape Sizing, topology and shape 

Continuous [9] Discrete  Continuous [9] Discrete  

Node 1 (x, y) [m] (12.079, 3.887) (8.120, 8.186) - - 
Node 3 (x, y) [m] (8.954, 5.879) 

 
(12.560, 6.668) (12.799, 3.966) 

 
(8.875, 5.012) 

Figures 3 to 6 show the visual differences between 
optimal continuous and discrete models for sizing, sizing 

and topology, sizing and shape, sizing, topology and 
shape respectively. 

 
 

a)  b) 

Fig.3. Optimal sizing models using a) continuous [9], and b) discrete variables. 

 

a)  b) 

Fig.4. Optimal sizing and topology combination models using a) continuous [9], and b) discrete variables. 

 

a)  b) 

Fig.5. Optimal sizing and shape combination models using a) continuous [9], and b) discrete variables. 
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a)  b) 

Fig.6. Optimal sizing, topology and shape combination models using a) continuous [9], and b) discrete variables. 

 
4. CONCLUSION 
 
Structural optimization of trusses, especially with the 
addition of dynamic constraints for Euler buckling, is an 
intricate process. Implementation of discrete variables 
additionally complicates the problem definition. This must 
be conducted in a single stage optimization approach to 
ensure the best solution combination is achieved. This 
increase in complexity however results in optimal models 
which can find practical application. The resulting list of 
specific cross-sections can be ordered directly from 
vendors, cut to length and assembled. Furthermore the 
more of the same diameter stock which can be ordered the 
more the overall price can be decreased. The differences in 
just topology, just shape, and the topology and shape 
combination optimizations are not considered in this paper, 
as the discretization of cross-section parameters does not 
influence them since the diameter of 240mm (area of 
452.389cm2) is one of the discrete diameters listed, 
meaning that the optimal results from literature are the 
same. 
After comparing optimal solutions which use discrete 
variables to those from literature which use continuous 
cross-section variables, it can be found that the weights do 
not vary significantly. The introduction of discrete 
variables has influenced all aspects of optimization in the 
results, most notably the layout in sizing and topology 
combination, and sizing and shape combination models, as 
their models differ from their continuous variable 
counterparts. 
The differences in weight between the continuous and 
discrete optimal models are 0.762% for sizing, 15.064% for 
sizing and topology combination, 6.806% for the sizing and 
shape combination, and 9.0505% for the complete 
structural optimization. These differences are negligible 
compared to the benefits of having optimal models with 
cross-sections which can be ordered from stock and 
implemented in practical application. There is also the 
added benefit of having the same cross sections for at least 
two bars in each model.  
The optimal model which uses continuous variables can 
achieve results right on the upper limit of displacement. 
Optima achieved with discrete variables have displacement 
values of 1.2mm less for sizing, and 1mm less for sizing 
and topology. The more complex sizing and shape, as well 
as the complete structural optimizations can give results 

right on the displacement limit due to the length of 
elements being discretised to 1mm increments. 
It can be concluded that truss structural optimization using 
discrete cross-section variables, thought more complex, 
gives more practically applicable optima. Using this 
approach on larger scale models is expected to give even 
smaller variances in optimal mass, and will be the subject 
of further research in this field. The goal is to create a 
process which would create results which can be built and 
applied in practice. The next step will also consider the 
influence of tolerances of cross-sectional diameters on 
optimal solutions.  
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