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Abstract

A mathematical model, referred here as the Zhang–Zhang polynomial ζ(x) , that
embraces all the main concepts encountered in the Clar aromatic sextet theory of
benzenoid hydrocarbons, was recently put forward by H. Zhang and F. Zhang. We
now show that ζ(x) is related to resonance energy (RE), and that ln ζ(x) and RE
are best correlated when x ≈ 1 . This indicates that ζ(1) could be viewed as a
(novel) structure–descriptor, playing a role analogous to the Kekulé structure count
in Kekulé–structure–based theories. Some basic properties of ζ(1) are established.

1. Introduction

In a series of papers [1–4] Heping Zhang and Fuji Zhang introduced a mathematical

object, related to the Clar aromatic sextet theory of benzenoid hydrocarbons [5–7],

that in the following will be referred to as the Zhang–Zhang polynomial.

The Zhang–Zhang polynomial

ζ(x) = ζ(B, x) =
∑
k≥0

z(B, k)xk

of a benzenoid system B is defined via its coefficients z(B, k) , that count the number

of ways in which the vertices of B can be covered by k mutually isolated hexagons

and edges.

An example illustrating the definition of the Zhang–Zhang polynomial is shown in

Fig. 1. In the case of phenanthrene, z(B, 0) = 5 (diagrams C1–C5), z(B, 1) = 5 (dia-

grams C6–C10), z(B, 2) = 1 (diagram C11), and z(B, k) = 0 for k ≥ 3 . Consequently,

the Zhang–Zhang polynomial of phenanthrene is 5 + 5 x+ x2 .
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Fig. 1 comes about here

Further examples as well as details of the theory of the Zhang–Zhnag polynomial,

in particular, on its relations to other combinatorial polynomials of Clar theory, can be

found in the papers [1–4]; recall that in [1–4] ζ(x) is called “Clar covering polynomial”.

Originally [1–4] no physical meaning was attributed to x in ζ(B, x) . In principle, x

may be any real–valued number, not necessarily an integer. Yet, for some particular

values of the variable x , the polynomial ζ(B, x) is, or may be, related to certain

chemically interesting features of the underlying benzenoid molecule.

Some straightforward properties of the Zhang–Zhang polynomial are the following:

(a) The power of ζ(B, x) is equal to Cl(B) , the Clar number of B (= the number of

aromatic sextets in any of the Clar formulas [7,8]).

(b) The coefficient z(B,Cl) is equal to C(B) , the number of Clar aromatic sextet

formulas of B .

(c) The coefficient z(B, 1) is equal to the number of greatest off-diagonal matrix

elements γ1 in Herndon’s resonance–theoretical approach [6,9,10]. Also, z(B, 1) is

equal to the number of edges of the resonance graph RG(B) , associated with B [11].

(d) The coefficient z(B, 0) is equal to K(B) , the number of Kekulé structures of B .

In the chemical literature a variety of “resonance energies” was introduced and

considered; for details see the recent reviews [7,12,13]. Each of the quantities men-

tioned in points (a)–(d) was previously related to some kind of resonance energy:

Cl and C in [14,15], γ1 in [9], RG in [11,16], K in [17,18]. Bearing this in mind,

it is reasonable to expect that also the Zhang–Zhang polynomial will be somehow

connected with resonance energy [19]. That this indeed is the case is demonstrated

in the subsequent section.

2. Relation between the Zhang–Zhang polynomial and resonance energy

If B1 ∪B2 is the molecular graph of two disconnected π-electron systems, then

RE(B1 ∪B2) = RE(B1) +RE(B2)
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holds for any of the numerous kinds of resonance energies. Observing that

K(B1 ∪B2) = K(B1) ·K(B2)

and postulating that the resonance energy is some function of the Kekulé structure

count, one readily arrives at [17,18]

RE ≈ a0 lnK (1)

with a0 being a constant, whose actual value depends on the kind of RE considered,

and on the class of benzenoid systems to which formula (1) is applied. Now, because

the Zhang–Zhang polynomial obeys an analogous relation, viz.,

ζ(B1 ∪B2 , x) = ζ(B1, x) · ζ(B2, x)

it is purposeful to seek for an approximation of the form

RE ≈ a ln ζ(x) (2)

where a is a fitting parameter, to be understood as a function of the variable x . In

view of property (d), formula (1) is a special case of (2), for x = 0 .

3. Numerical work

In this paper we report the results of the examination of the relation between the

logarithm of the Zhang–Zhang polynomial and the so-called “topological resonance

energy”, TRE [20,21]. Recall that TRE is just a variant of the Dewar resonance

energy [13], designed so as to require no (additional) parameters for the computation

of the energy of the reference structure.

For fixed values of x , especially for those lying in the interval [0 , 2] , we found

good linear correlations between TRE and ln ζ(x) . A characteristic example is shown

in Fig. 2.

Fig. 2 comes about here

For different groups of isomers the slopes of the regression lines differ, and the

regression lines do not go through the origin. Therefore instead of (2) we have used

relations of the form

RE ≈ a ln ζ(x) + b . (3)
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The obvious question is how the quality of the approximation (3) depends on the

variable x , and for which value of x is it optimal. Typical x-dependencies of the

correlation coefficient (R) and of the average relative error (ARE) are shown in Figs.

3 and 4.

Figs. 3 & 4 come about here

We found that in all examined cases (i. e., for all examined classes of isomeric

benzenoids) R attains a maximum and ARE attains a minimum for some x that

considerably differs from zero. The respective results for catacondensed benzenoids

with h hexagons, h = 4, 5, 6, 7 , are collected in Table 1.

Table 1 comes about here

The fact that R becomes maximal and ARE becomes minimal for some x greater

than zero is no surprise whatsoever. The unexpected finding is that the optimal

value of x is always remarkably close to unity. As seen from Table 1, there is no

statistically significant difference between the accuracy of the approximation (3) for

optimal x and for x = 1 . This points towards the conclusion that ζ(1) is a quantity

of some importance in the theory of benzenoid molecules, and that the problem of its

interpretation and structure–dependence deserves attention.

Anyway, according to our numerical studies, there is a good linear correlation

between resonance energy and ln ζ(x) , x = 1 , and the quality of this correlation

cannot be improved (in a statistically significant manner) by taking any other value

of x .

At this point it should be mentioned that the data given in Table 1 also reveal

that for x = 0 the accuracy of the approximation (3) is much reduced relative to the

case x = 1 (cf. Figs. 3 and 4). This, in turn, shows how the expressions for RE

put forward by Wilcox [17] and Swinborne–Sheldrake et al. [18] can be substantially

improved. Furthermore, our results suggest that not the Kekulé structure count K ,

but the hitherto overlooked quantity ζ(1) is the one that should be used for the

rationalization of the stability and aromaticity of benzenoid molecules.

In the subsequent section we point out some properties of ζ(1) .
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4. On properties and interpretation of ζ(1)

Let B be the molecular graph of a benzenoid system, and let e be its edge. Then

by B − e we denote the subgraph obtained by deleting from B the edge e , and by

B− [e] the subgraph obtained by deleting from B the edge e and its both endvertices.

In what follows, in order to emphasize its analogy to ζ(B, 1) , we write ζ(B, 0) for

the number of Kekulé structures of B . Then, a well known result in the theory of

Kekulé structure enumeration reads [6,22]:

ζ(B, 0) = ζ(B − e, 0) + ζ(B − [e], 0)

where e may be any edge of B . The analogous recurrence relation for ζ(1) is

ζ(B, 1) = ζ(B − e, 1) + 2 ζ(B − [e], 1) .

It holds if e belongs to a terminal hexagon of B , and is at greatest distance from the

edge shared by this hexagon and its neighbor. (It holds also in some other cases that

we will not specify here.)

As special cases of the above relations we have for Lh , the linear polyacene with

h hexagons,

ζ(Lh, 0) = ζ(Lh−1, 0) + 1 ; ζ(L1, 0) = 2

ζ(Lh, 1) = ζ(Lh−1, 1) + 2 ; ζ(L1, 1) = 3

implying ζ(Lh, 0) = h + 1 and ζ(Lh, 1) = 2h + 1 . It is known [22] that ζ(B, 0) ≥

h + 1 holds for all normal benzenoids with h hexagons. (Recall that a benzenoid

hydrocarbon is normal if it is Kekuléan, and has no fixed single or double bonds

[6,22]; all catacondensed benzenoids are normal.) It can be shown that, analogously,

also ζ(B, 1) ≥ 2h+ 1 holds for all normal benzenoids with h hexagons.

Let k1, k2, . . . , kζ(0) be the Kekulé structures of the benzenoid system B . Consider

a particular Kekulé structure ki . Let αi be the number of hexagons of B in which

the double bonds are arranged as in diagram I in Fig. 5. Let βi be the number of

hexagons of B in which the double bonds are arranged as in diagram II in Fig. 5.

Then

ζ(B, 1) =
ζ(0)∑
i=1

2αi =
ζ(0)∑
i=1

2βi . (4)
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Fig. 5 comes about here

Formula (4) may serve for a structural interpretation of ζ(1) . Whereas ζ(0) is

the count of Kekulé structures in which each such structure has a unit weight, ζ(1)

is the count of Kekulé structures, weighted in the above specified peculiar manner.

According to (4) the weight associated to the Kekulé structure ki is either 2αi or 2βi .

Thus ζ(1) may be understood as a Kekulé structure count in which not all Kekulé

structures are given equal importance.

A proof and detailed discussion of Eq. (4) will be given elsewhere.
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h maximal R minimal ARE a b
4 0.998 (at x = 0.9) 0.53% (at x = 0.7) 0.167 (at x = 0.9) 0.191 (at x = 0.9)
5 0.993 (at x = 0.8) 0.80% (at x = 0.7) 0.168 (at x = 0.8) 0.233 (at x = 0.8)
6 0.991 (at x = 0.9) 0.88% (at x = 0.8) 0.159 (at x = 0.9) 0.283 (at x = 0.9)
7 0.991 (at x = 1.6) 1.00% (at x = 1.6) 0.128 (at x = 1.6) 0.368 (at x = 1.6)

R (at x = 1.0) ARE (at x = 1.0) a (at x = 1.0) b (at x = 1.0)
4 0.998 0.54% 0.160 0.199
5 0.993 0.80% 0.154 0.250
6 0.991 0.89% 0.153 0.292
7 0.991 1.03% 0.154 0.322

R (at x = 0.0) ARE (at x = 0.0) a (at x = 0.0) b (at x = 0.0)
4 0.994 0.98% 0.306 0.056
5 0.991 0.90% 0.279 0.118
6 0.988 1.10% 0.271 0.154
7 0.983 1.48% 0.272 0.164

Table 1. Statistical data (obtained by least–squares fitting) for the approximation
(3) for the sets of isomeric catacondensed benzenoid hydrocarbons with h = 4, 5, 6 ,
and 7 hexagons (C4h+2H2h+4). The results for x = 1 only slightly differ from the
optimal ones. The results for x = 0 indicate considerably weaker correlations relative
to those for optimal x or x = 1 .
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Figure and Table Captions

Fig. 1. The 11 ways in which the vertices of the phenanthrene graph can be covered
by mutually disjoint hexagons and/or isolated edges. Diagrams C1–C5 correspond to
the five Kekulé structures of phenanthrene; diagram C11 pertains to its (unique) Clar
formula.

Fig. 2. Correlation between TRE and ln ζ(1) in the case of isomeric heptacyclic
catacondensed benzenoid hydrocarbons (C30H18); correlation coefficient: 0.991 . The
data–point in the lower left corner pertains to heptacene (the linear polyacene).

Fig. 3. Dependence of the correlation coefficient R , pertaining to formula (3),
on the variable x , in the case of pentacyclic catacondensed benzenoid hydrocarbons
(C22H14). Note that x = 0 corresponds to formula (1).

Fig. 4. Dependence of the average relative error ARE (in %) , pertaining to formula
(3), on the variable x , for the same data set as in Fig. 3. Note that x = 0 corresponds
to formula (1). The apparent ruggedness of the line is not an artifact, but reflects its
true shape, and cannot be “smoothened” by increasing the density of the calculated
data points.

Fig. 5. Two possible arrangements of three double bonds in a hexagon of a ben-
zenoid molecule, used for stating Eq. (4). Note that these are just the “proper” and
“improper” sextets playing an important role in Clar theory [4,23].

Table 1. Statistical data (obtained by least–squares fitting) for the approximation
(3) for the sets of isomeric catacondensed benzenoid hydrocarbons with h = 4, 5, 6 ,
and 7 hexagons (C4h+2H2h+4). The results for x = 1 only slightly differ from the
optimal ones. The results for x = 0 indicate considerably weaker correlations relative
to those for optimal x or x = 1 .
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