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Recently three methods for calculating the π-electron content of rings of benzenoid
hydrocarbons were put forward: one based on the consideration of Kekulé structural
formulas, and the other two based on an analogous treatment of the Clar aromatic
sextet formulas. These three methods are applied to the homologous series consist-
ing of two condensed acene chains (whose first members are pyrene, anthanthrene,
peri-naphthacenonaphthacene, . . . ), leading to basically identical results. In con-
trast to acenes (in which the partition of π-electrons into rings is uniform), in the
double-hexagonal-chain species the partition of π-electrons is highly non-uniform. The
electron content monotonically decreases, in opposite directions, along the two acene
chains, being maximal in the least annelated rings. Some other generally valid regu-
larities in the π-electron properties of the double–hexagonal–chain benzenoids are also
pointed out.
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theory; benzenoid hydrocarbons; double hexagonal chains

Received February , 2005

Address for correspondence: Ivan Gutman, Faculty of Science, P. O. Box 60, 34000 Kragujevac,

Serbia & Montenegro. E-mail: gutman@kg.ac.yu

1



INTRODUCTION

In this paper we are concenred with the partition of the π-electrons in the rings of

double linear hexagonal chains (peri-acenoacenes). The structure of the members of

this homologous series of benzenoid hydrocarbons we show in Fig. 1. In the same

figure is shown also the structure of acenes, namely of single hexagonal chains. The

double hexagonal chain consisting of 2a rings will be denoted by Da .

Fig. 1 comes about here

The partition of π-electrons in the rings of polycyclic conjugated molecules was

recently much studied [1–14]. These researches were initiated by two of the present au-

thors [1,2], who proposed a method for assessing the π-electron content of a ring by ex-

amining the Kekulé structures of the respective molecule. This Kekulé–structure–based

approach, that in the following we refer to as Method 1 , was eventually further elab-

orated and applied to a variety of conjugated systems [3–8,10,13,14].

In Method 1 the π-electron content of a ring in a polycyclic conjugated molecule

is computed as follows. In each Kekulé structure the π-electrons are assumed to

be distributed in the rings according to the positions of the double bonds [1]: a

double bond belonging to a ring contributes two π-electrons to this ring; a double

bond shared by two rings contributes one π-electron to each of these rings. The final

electron content of a ring k , denoted here as EC1(k) , is computed as the arithmetic

average of the respective electron contents of all Kekulé structures.

Method 1 is illustrated in Fig. 2 on the example of anthanthrene.

Fig. 2 comes about here

In the work [14] it was proposed to treat the aromatic sextet formulas in Clar

theory [15–18] in a similar manner as the Kekulé structures in Method 1. In particular,

according to [14], an aromatic sextet drawn in a ring contributes six π-electrons to

this ring; a double bond belonging to a ring contributes two π-electrons to this ring;

a double bond shared by two rings contributes one π-electron to each of these rings.

The final electron content of a ring k , denoted here as EC2(k) , is the arithmetic

average of the respective electron contents of all Clar aromatic sextet formulas. We

call this procedure for assessing the π-electron content of a ring Method 2 .
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Method 2 is illustrated in Fig. 3 on the example of anthanthrene.

Fig. 3 comes about here

An evident consequence of Method 2 is that for the rings that in Clar theory are

“empty”, it predicts a zero π-electron content, which might does not agree with Clar’s

original views on localization of π-sextets. Anyway, other quantum mechanical and

graph–theoretical approaches, for instance [19–21], assign to so-called “empty” rings

certain amount of “conjugation”. This restriction imposed by Model 2 on “empty”

was recently overcome [22,23] by its following pertinent modification: An aromatic

sextet drawn in a ring contributes (6 − 1
2
ν) π-electrons to this ring, where ν is the

number of adjacent rings, and contributes 1
2
π-electrons to each adjacent ring; a

double bond belonging to a ring contributes two π-electrons to this ring; a double

bond shared by two rings contributes one π-electron to each of these rings. The final

electron content of a ring k , denoted here as EC3(k) , is the arithmetic average of

the respective electron contents of all Clar aromatic sextet formulas. We call this

procedure for assessing the π-electron content of a ring Method 3 . Its application to

anthanthrene is shown in Fig. 3.

A fourth method, which will be mentioned only in passing, assigns in a benzenoid

ring to each atom shared with 0, 1, or 2 other rings 1, 1/2, and 1/3 π-electrons,

respectively [9]. This results in π-electron counts for Da-systems of 4.333 π-electrons

for k = 1 , 3.000 π-electrons for k = 2, 3, . . . , a− 1 , and 3.667 π-electrons for k = a .

PARTITION OF π-ELECTRONS OF RINGS OF ACENES

From a structural point of view, acenes Lh form the simplest homologous series of

benzenoid hydrocarbons [16], cf. Fig. 1. The π-electron content of the rings of Lh

was among the first to be examined. It was found that within Method 1, all non-

terminal rings have equal π-electron contents, whereas the two terminal rings have a

slight excess of π-electrons relative to the non-terminal rings. By means of Methods

2 and 3, the electron distribution is predicted to be completely uniform. It is easy to
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establish the following analytical expressions for EC1 , EC2 , and EC3 of Lh :

EC1(k) =


4h+ 7

h+ 1
for k = 1 and k = h

4h+ 6

h+ 1
for k = 2, 3, . . . , h− 1

.

EC2(k) = EC3(k) =
4h+ 2

h
for k = 1, 2, . . . , h .

PARTITION OF π-ELECTRONS IN RINGS OF DOUBLE
HEXAGONAL CHAINS

The double hexagonal chain Da (cf. Fig. 1) has 2a rings. The formula of the respective

benzenoid hydrocarbon is C6a+4H2a+6 . Da has K(Da) = (a + 1)(a + 2)/2 Kekulé

structures. If a > 1 then Da has C(Da) = a(a− 1)/2 Clar aromatic sextet formulas,

each with two aromatic sextets [24]. Exceptionally, if a = 1 (naphthalene), then

C(Da) = 2 with a single aromatic sextet in the Clar formulas. Therefore, in what

follows the case a = 1 will be excluded from our considerations and the parameter a

is assumed to be greater than or equal to 2.

From Figs. 2 and 3 we see that Methods 1, 2, and 3 yield different partitionings

of π-electrons in the rings of the double–chain benzenoids, but that these differences

are not very large. This conclusion is corroborated by the data given in Table 1, that

contains the EC1–, EC2–, and EC3-values of all rings of Da up to a = 10 .

Table 1 comes about here

The results of both Methods 1, 2, and 3 agree in the following general regularity

in the π-electron distribution of double hexagonal chains. Note that it is in stark

contrast with the analogous property of the single chains (acenes), in which the π-

electrons are uniformly distributed among the rings.

Rule 1. Tn the double–chain benzenoid systems Da the partition of π-electrons in

rings is highly non-uniform. The rings 1 and 1’ of Da have a somewhat higher EC-

values than the other rings, and for k = 1, 2, . . . , a , the EC(k)-values monotonically

decrease. Thus the rings a and a′ of Da have the smallest π-electron contents.

A typical dependence of EC(k) on k , illustrating Rule 1, is shown in Fig. 4.
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Fig. 4 comes about here

A detailed examination revealed that the π-electron contents of the rings of Da

conform to the following general expressions. (The numbering of the rings agrees

with that in Fig. 1.)

EC1(k) =



4a2 + 16a+ 2

(a+ 1)(a+ 2)
= 4 +

2a

K(Da)
for k = 1

3a2 + 13a+ 12− 6k

(a+ 1)(a+ 2)
= 3 +

2a+ 3− 3k

K(Da)
for k = 2, 3, . . . , a− 1

3a2 + 7a+ 14

(a+ 1)(a+ 2)
= 3 +

a− 4

K(Da)
for k = a

(1)

EC2(k) =



4a+ 4

a
= 4 +

2a− 2

C(Da)
for k = 1

3a2 + 3a+ 6− 10k

a(a− 1)
= 3 +

3a+ 3− 10k

C(Da)
for k = 2, 3, . . . , a

(2)

EC3(k) =



4a2 − a− 4

a(a− 1)
= 4 +

1.5a− 2

C(Da)
for k = 1

3a2 + a+ 3− 6k

a(a− 1)
= 3 +

2a+ 1.5− 3k

C(Da)
for k = 2, 3, . . . , a− 1

3a2 − 5a+ 4

a(a− 1)
= 3− a− 2

C(Da)
for k = a

(3)

Formulas (1)–(3) hold for all values of a ≥ 2 .

Formulas (1)–(3) reproduce, of course the data given in Table 1 as well as Rule 1.

From them also some other, less-easy-to-envisage, regularities can be deduced.

For k = 2, 3, . . . , a − 1 , the expressions (1) and (3) are linear functions of the

parameter k . The same is true for the expression (2), except that here linearity holds

up to k = a . As a consequence of this, and in view of the symmetry of the system

Da (cf. Fig. 1), we arrive at the following peculiar, but generally valid, conclusions.
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Rule 2. For k = 2, 3, . . . , a−1 , the sum of the π-electron contents of the rings k and

(a− k + 1)′ is constant, i. e., independent of k . In particular,

EC1(k) + EC1((a− k + 1)′) =
6a2 + 20a+ 18

(a+ 1)(a+ 2)

EC2(k) + EC2((a− k + 1)′) =
6a2 − 4a− 4

a(a− 1)

EC3(k) + EC3((a− k + 1)′) =
6a− 4

a(a− 1)
.

Rule 3. For k = 3, 4, . . . , a−1 , the sum of the π-electron contents of the rings k and

(a− k + 2)′ is constant, i. e., independent of k .

Rule 4. In the limit case a → ∞ the electron contents of the rings 1 and 1’ of Da

become equal to 4, whereas the limit value of the electron contents of all other rings

is equal to 3.

Note that Rules 2–4 follow from both Methods 1, 2, and 3. (According to Method

2, Rule 3 would hold also for k = 2 .)

Rules 2 and 3 imply the following. In the case of double hexagonal chains, the

partition of π-electrons in rings is non-uniform, but the partition of π-electrons into

two adjacent rings (belonging to two different chains) is uniform, except for the rings

located at the ends of the chain. This unexpected property of the π-electron distri-

bution in double chains should be compared with the (above mentioned) uniformness

of the π-electron distribution in the single chains.

The above described π-electron properties of the double–chain benzenoid mole-

cules, formulated as Rules 1–4, could be deduced from either Method 1 or Method 2

or Method 3. Therefore we trust that these are not artifacts of our approaches, but

that they reflect chemical reality.
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[3] A. T. Balaban and M. Randić, Partitioning of π-electrons in rings of polycyclic
benzenoid hydrocarbons. 2. Catacondensed coronoids, J. Chem. Inf. Comput.
Sci. 44 (2004) 50–59.
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electrons in rings of fibonacenes, Z. Naturforsch. 60a (2005) 000–000.
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a k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
2 4.67 3.33

6.00 2.00
5.00 3.00

3 4.60 3.30 3.10
5.33 3.67 2.00
4.83 3.50 2.67

4 4.53 3.33 3.13 3.00
5.00 3.83 3.00 2.17
4.67 3.58 3.08 2.67

5 4.48 3.33 3.19 3.05 2.95
4.80 3.80 3.30 2.80 2.30
4.55 3.55 3.25 2.95 2.70

6 4.43 3.32 3.21 3.11 3.00 2.93
4.67 3.73 3.40 3.07 2.73 2.40
4.47 3.50 3.30 3.10 2.90 2.73

7 4.39 3.31 3.22 3.14 3.06 2.97 2.92
4.57 3.67 3.43 3.19 2.95 2.71 2.48
4.40 3.45 3.31 3.17 3.02 2.88 2.76

8 4.36 3.29 3.22 3.16 3.09 3.02 2.96 2.91
4.50 3.61 3.43 3.25 3.07 2.89 2.71 2.54
4.36 3.41 3.30 3.20 3.09 2.98 2.88 2.79

9 4.33 3.27 3.22 3.16 3.11 3.05 3.00 2.95 2.91
4.44 3.56 3.42 3.28 3.14 3.00 2.86 2.72 2.58
4.32 3.38 3.29 3.21 3.13 3.04 2.96 2.88 2.81

10 4.30 3.26 3.21 3.17 3.12 3.08 3.03 2.98 2.94 2.91
4.40 3.51 3.40 3.29 3.18 3.07 2.96 2.84 2.73 2.62
4.29 3.34 3.28 3.21 3.14 3.08 3.01 2.94 2.88 2.82

TABLE 1 The π-electron content of the ring k of the double hexagonal chain
Da , a = 2, 3, . . . , 10 (and, by symmetry, also of the ring (a− k + 1)′ , see Fig. 1. For
each value of a , in the upper, middle, and lower rows are the results of Methods 1,
2, and 3, respectively, i. e., EC1 , EC2 , and EC3 , respectively. Except for a = 2
and, perhaps, a = 3 , the differences between the outcomes of the three models are
insignificant.
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Figure and Table Captions

FIGURE 1 The structure of acenes Lh (single hexagonal chains) and of double
hexagonal chains Da , as well as the labelling of their hexagons. The first members
of the Lh-series are naphthalene (h = 2), anthracene (h = 3), naphthacene (h = 4),
. . . The first members of the Da-series are pyrene (a = 2), anthanthrene (a = 3),
naphthaceno[4,5,6,7,8-defghij]naphthacene or, simply, peri-naphthacenonaphthacene
(a = 4), . . . Note that for k = 1, 2, . . . , a , the rings of Da labelled by k and k′ are
symmetry–equivalent.

FIGURE 2 The ten Kekulé structures of anthanthrene (D3) with the respective
π-electron contents indicated in their rings. In the bottom diagram the arithmetic
averages of these electron contents are given, that are just the π-electron contents
of the rings of anthanthrene, computed according to Method 1. The sum of the six
EC1-values is equal to 22, the total number of π-electrons of anthanthrene.

FIGURE 3 The three Clar aromatic sextet formulas of anthanthrene (D3) and the
respective π-electron contents of their rings, calculated according to Method 2 (upper
numbers) and Method 3 (lower numbers). In the bottom diagrams the arithmetic
averages of these electron contents are given, that are just the π-electron contents of
the rings of anthanthrene, computed according to Methods 2 and 3. The sum of both
the six EC2– and the six EC3-values is equal to 22, the total number of π-electrons
of anthanthrene.

FIGURE 4 Dependence of the π-electron content on the position of the ring in the
double hexagonal chain Da with a = 8 . The labelling of the rings is same as in Fig.
1. The EC-values monotonically decrease with increasing k . Diagram (a): Results
obtained by Method 1. The data points for k = 2, 3, . . . , a−1 lie on an exact straight
line. The point pertaining to k = a only slightly deviates from this line, cf. Eq. (1).
Diagram (b): Analogous results obtained by Method 2. In this case the linear relation
holds for k = 2, 3, . . . , a , cf. Eq. (2). Diagram (c): Analogous results obtained by
Method 3. Here again the data points for k = 2, 3, . . . , a− 1 lie on an exact straight
line, whereas the point at k = a only slightly deviates from it, cf. Eq. (3).

TABLE 1 The π-electron content of the ring k of the double hexagonal chain
Da , a = 2, 3, . . . , 10 (and, by symmetry, also of the ring (a− k + 1)′ , see Fig. 1. For
each value of a , in the upper, middle, and lower rows are the results of Methods 1,
2, and 3, respectively, i. e., EC1 , EC2 , and EC3 , respectively. Except for a = 2
and, perhaps, a = 3 , the differences between the outcomes of the three models are
insignificant.
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