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Abstract

The topological bond order is a bond–order–like quantity, put forward in the 1970s.
It is defined as pT

rs = Z(Grs)/Z(G) , where G is the molecular graph, Grs is obtained
from G by deleting from it the adjacent vertices labelled by r and s , and Z stands
for the respective topological (Hosoya) index. Because no easy way for the calcula-
tion of pT

rs is known, its properties were studied only to a limited degree. We now
introduce a modified topological bond order , p̃T

rs , that can (easily) be calculated from
the eigenvalues of G and Grs . For acyclic systems, p̃T

rs = pT
rs . In the case of polycylic

systems a reasonably accurate linear correlation exists between p̃T
rs and pT

rs . Thus, by
studying p̃T

rs the main properties of pT
rs can be established.

1. Introduction

In the topological theory of conjugated molecules [1, 2] several bond–order–like

quantities are considered. Of these the best known are the Pauling [3], the Coulson

[4], and the Ham–Ruedenberg [5] bond orders. In the 1970s one of the present authors

proposed [6] the topological bond order , defined by means of the topological index .1

Thus, the topological bond order pertaining to the bond between atoms r and s is

defined as

pT
rs =

Z(Grs)

Z(G)
(1)

where G is the molecular graph, Grs is the subgraph obtained from G by deleting from

it the vertices corresponding to the atoms r and s , and Z stands for the respective
1The quantity Z , put forward in [7] and named “topological index”, is nowadays in the chemical

literature usually referred to as the “Hosoya index”. We, nevertheless, call it by its original name.
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topological index. The topological index is defined as [7]

Z(G) =
∑
k≥0

m(G, k) (2)

where m(G, 0) = 1 , m(G, 1) = number of edges of the graph G , and m(G, k) , k ≥ 2 ,

is the number of selections of k mutually independent (that is, mutually non-touching)

edges in the graph G .

Some fundamental properties of the topological bond order were established in

two papers published in the 1970s [6, 8], where also its relations to the Coulson and

Pauling bond orders were analyzed. After that not much research in this area was

done, as seen from the reviews [9, 10].

An object, closely related to Z is the matching polynomial, defined as [11]

α(G, λ) =
∑
k≥0

(−1)k m(G, k)λn−2k (3)

where n is the number of vertices of G . Details of the theory of the topological

index and matching polynomial can be found in the books [12] and [13], respectively.

Comparative studies of various bond orders (including the topological bond order)

were reported in [14, 15].

Combining (2) and (3) one immediately obtains

Z(G) = i−n α(G, i) (4)

where i =
√
−1 . Furthermore, if µ1, µ2, . . . , µn are the zeros of the matching polyno-

mial, then

Z(G) =

√√√√ n∏
j=1

[1 + (µj)2] . (5)

Formulas (4) and (5) are applicable to any (molecular) graph G . If G is acyclic,

then the matching polynomial α(G, λ) coincides with the characteristic polynomial

φ(G, λ) [13], implying

Z(G) = i−n φ(G, i) (6)

and

Z(G) =

√√√√ n∏
j=1

[1 + (λj)2] . (7)
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where λ1, λ2, . . . , λn are the respective graph eigenvalues. In contrast to the zeros of

the matching polynomial, graph eigenvalues are easily computed (using the power-

ful methods of linear algebra). Therefore, in contrast to (5), formula (7) provides a

convenient route for the computation of the topological index. Combined with (1),

formula (7) makes it possible to easily evaluate the topological bond orders of acyclic

π-electron systems. Unfortunately, this graph–eigenvalue–based method for comput-

ing pT
rs is not applicable in the case of cycle–containing conjugated molecules, which,

from both experimental and theoretical points of view, are the most interesting and

most frequently examined π-electron systems.

In order to evade the computational difficulties encountered in the study of the

topological bond orders of cyclic molecules we consider an approximation whose

essence is that the right–hand sides of Eqs. (6) and (7) are extended to all (molecular)

graphs. The modified topological index Z̃ thus obtained, namely

Z̃(G) = i−n φ(G, i) (8)

was also investigated already in the 1970s [16], when also the expression

Z̃(G) =

√√√√ n∏
j=1

[1 + (λj)2] . (9)

was established [17]. However, the analogous modified topological bond order , viz.,

p̃T
rs =

Z̃(Grs)

Z̃(G)
(10)

was, so far, not investigated in due detail.

Recall that ∆Z = Z̃ − Z is considered as an “aromaticity index” [10, 16].

In the case of non-alternant conjugated systems, the right–hand side of (8) is

complex–valued, in which case one has to take only its real part. In what follows

we restrict our considerations to alternant hydrocarbons, in which case this difficulty

does not occur.

2. Relations between p̃T
rs and pT

rs

For acyclic systems, the topological bond order (1) and its modified version (10)

coincide. In the case of polycyclic (molecular) graphs the relation between the two

bond orders is much more complicated.

3



Let G be a graph and C,C ′, C ′′, . . . be its cycles. Let |C| denote the size of the

cycle C and let G−C be the subgraph obtained from G by deleting from it all vertices

of C . Two cycles C and C ′ are said to be disjoint if they have no common vertex.

For an example see Fig. 1.

Fig. 1 comes about here

Let, as before, φ(G) = φ(G, λ) and α(G) = α(G, λ) denote the characteristic and

matching polynomials of G . Then [13, 18, 19],

φ(G) = α(G)− 2
∑
C

α(G− C) + 4
∑
C,C′

α(G− C − C ′)

− 8
∑

C,C′,C′′
α(G− C − C ′ − C ′′) + · · ·

α(G) = φ(G) + 2
∑
C

φ(G− C) + 4
∑
C,C′

φ(G− C − C ′)

+ 8
∑

C,C′,C′′
φ(G− C − C ′ − C ′′) + · · ·

where the summations go over all cycles, over all pairs of disjoint cycles, over all

triples of mutually disjoint cycles, etc, of the graph G .

In the case of alternant hydrocarbons, when all |C|-values are even, by means of

(4) and (8) we get

Z̃(G) = Z(G)− 2
∑
C

(−1)|C|/2 Z(G− C) + 4
∑
C,C′

(−1)(|C|+|C′|)/2 Z(G− C − C ′)

− 8
∑

C,C′,C′′
(−1)(|C|+|C′|+|C′′|)/2 Z(G− C − C ′ − C ′′) + · · ·

Z(G) = Z̃(G) + 2
∑
C

(−1)|C|/2 Z̃(G− C) + 4
∑
C,C′

(−1)(|C|+|C′|)/2 Z̃(G− C − C ′)

+ 8
∑

C,C′,C′′
(−1)(|C|+|C′|+|C′′|)/2 Z̃(G− C − C ′ − C ′′) + · · ·

For instance, for the phenanthrene graph G and its subgraph G12 (see Fig. 1) we

have:
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Z̃(G) = Z(G) + 2 [Z(G− C1) + Z(G− C2) + Z(G− C3) + Z(G− C4)

+ Z(G− C5) + Z(G− C6)] + 4Z(G− C1 − C3)

Z̃(G12) = Z(G12) + 2 [Z(G12 − C2) + Z(G12 − C3) + Z(G12 − C5)]

Z(G) = Z̃(G)− 2
[
Z̃(G− C1) + Z̃(G− C2) + Z̃(G− C3) + Z̃(G− C4)

+ Z̃(G− C5) + Z̃(G− C6)
]
+ 4 Z̃(G− C1 − C3)

Z(G12) = Z̃(G12)− 2
[
Z̃(G12 − C2) + Z̃(G12 − C3) + Z̃(G12 − C5)

]
Bearing in mind that Z(G− C1) = Z(G− C3) = 44 , Z(G− C2) = 25 , Z(G− C4) =

Z(G − C5) = 5 , Z(G − C6) = 1 , Z(G − C1 − C3) = 2 , and Z(G12 − C2) = 10 ,

Z(G12 − C3) = 12 , Z(G− C5) = 2 , we get

p̃T
12 =

Z(G12) + 2 (10 + 12 + 2)

Z(G) + 2 (44 + 25 + 44 + 5 + 5 + 1) + 4 (2)
=

Z(G12) + 48

Z(G) + 256

i. e.,

p̃T
12 =

pT
12 + 48/Z(G)

1 + 256/Z(G)
.

Bearing in mind that Z̃(G− C1) = Z̃(G− C3) = 48 , Z̃(G− C2) = 25 , Z̃(G− C4) =

Z(G − C5) = 5 , Z̃(G − C6) = 1 , Z̃(G − C1 − C3) = 2 , and Z̃(G12 − C2) = 10 ,

Z̃(G12 − C3) = 12 , Z̃(G− C5) = 2 , we get

pT
12 =

Z̃(G12)− 2 (10 + 12 + 2)

Z̃(G)− 2 (48 + 25 + 48 + 5 + 5 + 1) + 4 (2)
=

Z̃(G12)− 48

Z̃(G)− 256

i. e.,

pT
12 =

p̃T
12 − 48/Z̃(G)

1− 256/Z̃(G)
.

In the general case

p̃T
rs =

pT
rs +∆Z(Grs)/Z(G)

1 + ∆Z(G)/Z(G)
and pT

rs =
p̃T
rs −∆Z(Grs)/Z̃(G)

1−∆Z(G)/Z̃(G)
.

From these expressions and examples one would be inclined to conclude that the

connection between the topological bond order and its modified version is relatively

complicated. However, our numerical testings show the opposite. These are outlined

in the subsequent section.
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3. Numerical work

In Fig. 2 are plotted the topological bond orders of all bonds of the benzenoid

hydrocarbons with 5 and fewer six-membered rings (a total of 25 molecules, 332

symmetry–nonequivalent bonds) versus the respective modified topological bond or-

ders.

Fig. 2 comes about here

From Fig. 2 is seen that a reasonably good, but far from perfect, linear correlation

exists between the two bond orders. The respective regression formula is

pTrs = (0.929± 0.006) p̃Trs + (0.036± 0.001)

which is not very far from pTrs ≈ p̃Trs .

For non-benzenoid molecules (both alternant and non-alternant) the results are

similar, yet somewhat more irregular. Details may be obtained from the authors

(S.R.), upon request.

As already mentioned, the relation between the Coulson and topological bond

orders was much studied in the past [6, 8]. In Fig. 3 we show such correlations for the

carbon–carbon bonds of catacondensed benzenoid hydrocarbons. In these conjugated

systems the carbon–carbon bonds can be classified into three groups, referred to as

3-3, 3-2, and 2-2. The vertices of the molecular graph, corresponding to an i-j bond

have degrees equal to i and j . (Recall that the degree of a vertex is the number of

its first neighbors. In benzenoid graphs only vertices of degree 2 and 3 occur.)

Fig. 3 comes about here

From Fig. 3 three characteristic features are immediately recognized. First, there

is a great deal of similarity between the diagrams (a) and (b), something that could be

anticipated from the above discussed linear correlation between pT and p̃T . Second,

the correlation between pT and pC is of very poor quality; the same is true for the

correlation between p̃T and pC . Third, there is an obvious clustering of the data

points with regards to above described classification of the carbon–carbon bonds.
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This clustering is indicated by using different symbols (triangles, circles, squares) for

3-3, 3-2, and 2-2 bonds.

Within each of these three clusters there is a further grouping of the data points,

determined by the finer details of molecular topology. For instance, the data points

pertaining to 2-2 bonds (squares) are separated into three groups, depending on the

degrees of the first neighbors of the vertices participating in the respective bond;

those belonging to the upper right group have first neighbors of degree 3; those in the

lower left group have first neighbors of degree 2. The data points pertaining to 3-3

bonds (triangles) are separated into two groups, with the upper left group of points

corresponding to bonds lying on the perimeter.

4. Concluding remarks

The main conclusion resulting from of the present study is that instead of the

topological bond order pT one may use its modified version p̃T . Between these two

bond–order–like quantities there is a relatively good linear correlation, and, if not

a very high accuracy is required, one may accept that pTrs ≈ p̃Trs . The numerical

calculation of the modified topological bond order goes via the graph eigenvalues and

is thus much easier than the calculation of pT . Therefore, in future applications of

the topological–bond–order concept, one could safely employ its modified version.
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Figure Captions

Fig. 1. The molecular graph G of phenanthrene and of its vertex–deleted subgraph
G12 . The cycles contained in G are C1, C2, . . . , C6 and are indicated by heavy lines.
The only two disjoint cycles in G are C1 and C3 . The graph G does not possess
triples, quadruples, etc. of mutually disjoint cycles. The subgraph G12 contains only
the cycles C2, C3, C5 . Some typical subgraphs of the form G − C and Grs − C are
also shown.

Fig. 2. Correlation between the topological and modified topological bond orders,
pertaining to benzenoid hydrocarbons with 5 and fewer six-membered rings. Empty
and full circles correspond to catacondensed and pericondensed molecules, respec-
tively. Correlation coefficient: 0.993.

Fig. 3. (a) Correlation between topological (pT ) and Coulson bond orders (pC),
pertaining to catacondensed benzenoid hydrocarbons with 5 and fewer six-membered
rings. (b) The analogous correlation between modified topological (p̃T ) and Coulson
bond orders (pC). Triangles, circles and squares correspond to carbon–carbon bonds
of type 3-3, 3-2, and 2-2, respectively; for details see text.
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