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Several approximate relations have recently been estab li shed between mo lecular-graph-based structure descriptors of 
alkanes, in particular between (a) eigenvalue sum and Hosoya index. (b) greatest graph e igenvalue and connectivity index, 
(c) Wi ener index and smallest positive Lapl ac ian eigenval ue, (d) greatest Laplacian and greatest ordinary graph eigenvalue, 
(e) Zenkevich and Wiener index, and (f) hyper-Wiener and Wiener index. These all have been found to ho ld for alkanes 
with 11=10 or fewer carbon atoms, and have verified on samples consisting o f all alkane isomers. Applying an algorithm for 
generating trees uniformly by random we have now tested these regulariti es for very large che mical trees (11=50). It has been 
found that regularities (c) and (f) hold equally well in the case of very large chem ical trees, whereas regu larities (a), (d) and 
(e) are applicable, but with significantly attenuated accuracy. Regularity (b) vani shes at large values of n. 

In the last few years our research group has syste­
matically searched for relations between molecular­
graph-based structure-descriptors, especially in the 
simplest case of chemical trees. A chemical tree is a 
tree (= connected acyclic graph) I in which no vertex 
has degree greater than 4; chemkal trees are the 
graph-representations of alkanes I . 

We found several such relations, of which in this 
work we are concerned with the following six . 

(a) Quite some time ago it was noticed2 that there is a 
linear correl ation between the eigenvalue sum ES 
(= the sum of all positive eigenvalues of the 
molecular graph) and the logarithm of the Hosoya 
index Z (= the number of ways in which 
independent edges can be selected in the 
molecular graph). However, only quite recently it 
was established3 that the data points lie not on a 
single, but on several lines, depending on the 
number eta of zero eigenvalues. An illustrative 
example is shown in Fig. I ; for further details see 
ref. 3. 

(b) Two measures of molecular branching, both 
proposed in the 1970s, are the greatest eigenvalue 
A. I of the molecular graph4 and the connectivity 
index X (= sum over all pairs of adjacent vertices 
of the terms (dr dsr l/2 

, where dr is the degree of 
the vertex rl In spite of the fact that both 
structure-descriptors are frequently encountered 
in the chemical literature6

, their mutual relation 

was not investigated until quite recentl/. It was 
found7 that there is a decreasing correlation 
between AI and X' of very low quality. On the 
other hand, the data points are grouped into 
clusters and within each such cluster a reasonably 
good increasing linear correlation is observed. 
The structural parameter on the basis of which the 
clustering occurs is - as a kind of surprise - n3 + 3 
n4, where n3 and n4 are the number of tertiary and 
quaternary carbon atoms, respectively, or - what 
is the same - the number of vertices of degree 3 
and 4 in the molecular graph. An illustrative 
example is shown in Fig. 2; for further details see 
ref. 7. 

(c) The existence of an exact mathematical relation 
between the Wiener index W (= the sum of 
distance between all pairs of vertices of the 
molecular graph)8 and the Laplacian eigenvalues 
is known for some time (for details and further 
references see refs 8 and 9). Based on this relation 
and approximation W ;::; nl jJ.II _1 was put forward lO

, 

where n is the number of vertices and jJ.(II_ I ) is the 
smallest positive Laplacian eigenvalue of the 
respective chemical tree. The example depicted in 
Fig. 3 shows that the correlation between Wand 
nl jJ.II _1 does indeed exist, but is not particularly 
good. 

(d) The connection between the greatest graph 
eigenvalue A. I and the greatest Laplacian 
eigenvalue jJ.I was determined by us in a recen t 
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Fig. I- The eigenvalue sum (ES) vs. the logarithm of the Hosoya 
index (2) for the 35 isomeric nonanes. The data points are 
c lustered into three groups, depending on the number of zero 
eigenvalues (10. The isolated point corresponds to 2,2,4,4-
tetramethylpentane, the only nonane spec ies with '1=5 . The two 
other groups of linearly corre lated points pertai n to '1=3 (middle) 
and '1= I (right). 
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Fig. 2-Correlation between the greatest e igenvalue (J,,) and the 
connecti vity index (x) for the isomeric nonanes. Each of the seven 
groups of data points has a di fferent value of the parameter 113 + 3 
114, equal to 0, I , 2, 3, 4, 5 & 6 (going fro m right to left) . The 
single point in the right lower corner, corresponds to the 
unbranched II -nonane with 113 + 3 114 = 0; the two points in the left 
upper corner correspond to 2,2,3,3- and 2,2,4,4-
tetramethylpentane, for which /1) + 3 /14 = 6. 

work. t 1 Here the data points are grouped 
according to dlllax-the maximal vertex degree. In 
chemical trees with more than two vertices dlllax 
may assume only the values 2, 3, 4 ; besides, 
dlllax=2 happens only in the case of unbranched /l­
alkanes. An illustrative example is shown in 
Fig. 4; further detai ls are found in ref. 1l. 
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Fig. 3-The Wiener index (W) vs. the rec iprocal value of the 
sma lles t positive Laplacian eigenvalue (jill .') for the isomeric 
nonanes. The correlat ion coeffi cient is R=0.937 . 
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Fig. 4-Correlation between the greatest Laplacian eigenvalue 
(JII) and the greatest ordinary graph eigenvalue (},,) for isomeric 
nonanes. There are two groups of data points, pertaining to dmax=4 
(upper cluster) and ci"uL(=3 (lower cluster) . The isolated point in 
the lower left corner corresponds to /1-nonane with dmax=2. 

(e) Zenkevich proposed' 2
- '

4 a molecular structure­
descriptor U, being proportional to the sum of 
vibrational energies (in the harmonic 
approximation) of the stretching vibrations of the 
carbon-carbon bonds of an organic molecule. In 
the case of alkanes, it could be demonstrated ' S 

that U is related to the Wiener index . A more 
detailed examination revealed 16 that the respective 
data points are grouped, each group having a 
different value for the number of vertices of 
degree one (nl)' This regulari ty is illustrated in 
Fig. 5; further details are found in refs 15 and 16. 
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Fig. 5- Correlation between the Zenkevich index (U) and the 
Wiener index (W) for isomeric nonanes. The data points lie on 
four paraliel lines, corresponding (from top to bottom) to III = 6, 
5, 4 & 3, where 111 is the number of vertices of degree one in the 
molecular graph (= the number of methyl groups). The isolated 
point in the lower right corner corresponds to /l-nonane with 111=2. 

(t) Theoretical arguments were recently 
communicated'7, implying that the hyper-Wiener 
index WW (an extension of the Wiener index 
concept6

.
S

, introduced by Randic ten years ago' s) 
and the Wiener index W must be closely 
correlated. Namely, it was shown'7 that WW is 
bounded from both below and above by linear 
functions of W. A detailed numerical analysis of 
the correlation between WW and W fully 
confirmed this anticipation '9. A typical result of 
this kind is shown in Fig. 6. 

Approaching Chemical Trees with Large Number 
of Vertices 

The six regularities outlined above and illustrated 
in Figs 1-6 were established in the case of chemical 
trees with a relatively small number of vertices 
(usually n ~ to). We examined all possi ble such 
n-vertex trees (corresponding to all possible structural 
isomers of alkanes with n carbon atoms), and verified 
the respective regularity for each member of the 
sample. 

For larger values of n such an approach would not 
be feasible. (Recall that, for instance, there are 
366,319 and 1,117,743 ,651 ,746,953,270 alkane 
isomers with 20 and 50 carbon atoms, respectively.) 

Therefore, instead of considering the set of all Jl­

vertex chemical trees, we had to use a representative 
sample thereof. For this an algorithm was employed 
that for a given value of n, generates n-vertex trees 
uniformly by random2o. By means of this algorithm a 
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Fig. 6-The hyper-Wiener index (WW) vs. the Wiener index (W) 
for isomeric nonanes. The correlation coefficient is R=0.9973 . 
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Fig. 7- Correlation between the eigenvalue sum (£5) and the 
logarithm of the Hosoya index (2) for a sample consisting of 30 
randomly constructed 50-vertex chemical trees. Of these, 2, 8, 14, 
4, I, and 1 trees have '7 = 2, 4, 6, 8, 10, and 12, respectively. 
Contrary. to what could be expected on the basis of Fig. 1, the 
point in the upper right corner corresponds to a tree with '7=4, and 
the two points in the lower left corner con·espond to a tree with 
'7= I 0 (left) and another with '7= 12 (right). By means of such a 
sample no regularity of the type (a) can be envisaged. 

sufficiently large number of trees was generated, 
usually 2000. From these the non-chemical trees (with 
the property dll/{Lf > 4) were eliminated and the 
remammg chemical trees-forming the "starting 
sample" - were further investigated. 

At the first glance, we could simply choose a 
certain number of trees from the starting sample and 
check if the above specified regularities still hold. 
Indeed, such a simple procedure was possible in cases 
(c) and (t), leading to results shown in Figs 10 and 13 . 
However, in cases (a), (b), (d) and (e) such a direct 
approach is not purposeful. This is illustrated in Fig. 7 
where the ES-ln Z correlation is shown for 30 
randomly constructed 50-vertex chemical trees. No 
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clustering of the data points can be seen, and the data 
points corresponding to various values of fl are mixed. 

In order to overcome this difficulty we checked the 
regularities (a), (b), (d) and (e) by means of the 
following procedure. For all trees from the starting 
sample we computed the values of the structural 
parameter according to which the clustering of data 
points might occur, namely '7 in case (a), 113 + 3 114 in 
case (b), d lllax in case (d), and III in case (e) . In case (d) 
we then selected from the starting sample 15 trees 
with d",a.r=3 and 15 trees with dlllru=4. In cases (a), (b) 
and ( e) we selected 10 trees wi th an as small as 
possible, 10 trees with an as large as possible and 10 
trees with a medium value of the respecti ve 
parameter; details are found in the captions of Figs 8, 
9 and 12. Under "as small as possible" and "as large 
as possible" we mean values that pertain to at least 10 
trees in the starting sample. This procedure limits the 
number of clusters of data points and maximally 
reduces the overlapping between them. 

Results and Discussion 
None of the empirical relations (a)-(f) between 

topological indices of chemical trees cou ld be proven 
in a rigorous mathematical manner, although each of 
them was corroborated by some kind of theoretical 
reasoning. Therefore it was desirable to check the 
validity of these relations for values of 11 far beyond 
what is usually considered in chemical applications. 
We have performed our tests on 11=50. 

The purpose of our studies is the following . If a 
regularity, earlier observed for n :S 10, remains valid 
also for 11=50, then it is likely that thi s is a generally 
valid and mathematically exact relation. Proving this 
relation remains then a challenge for the future . If, on 
the other hand, a regularity , earlier observed for n :S 

10, is found to be violated for n=50, then attempts to 
prove it should be abandoned. 

The results obtained for chemical trees with 1l=50 
are shown in Figs 8-13. 

By inspecting the data di splayed In Figs 8-13 we 
arrive at the following conclusions: 

1. Regularities (c) and (f) hold equally well for small 
and for large values of 11. The correlation between 
Wand n/I1,, -1 is weak for any value of n, and is not 
significantly weaker for 11=50 than for n :S 10. The 
con'elation between WW and W is excellent, and 
basically linear, for all values of 11. 
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Fig. 8- The eigenvalue sum (£5) vs. the logarithm of the Hosoya 
index (Z) for 30 randomly se lected 50-vertex chem ical trees with 
'7=2 (tri angles), '7=6 (sq uares) and '7= IO (circles) ; cf. Fig. I. 
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Fig . 9- The greatest 'eigenvalue ()' I) vs. the connectivity index (X) 
for 30 random ly selected 50-vertex chemical trees with II) + 3 
/14= 15 (triang les), II ) + 3 /14=20 (squares) and 11) + 3 /14=25 
(c ircles); cf. Fig. 2 . 
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Fig. 10-The Wiener index (W) vs. the reciprocal value of the 
sma llest positi ve Laplacian e igenvalue (P,,_I ) fo r 30 randomly 
selected 50-vertex chemical trees; cf. Fig. 3. The respecti ve 
correlation coefficient is R=0.90 1 . 
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Fig. 12-T he Zenkev ich index (U) vs. the Wi ener index (W) for 
30 randomly selected 50-vertex chemical trees with 11 1=13 
(circles), r/ I= 18 (squares) and II 1=23 (triangles) ; cf. Fig . 5. 
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Fig. 13-The hyper-Wiener index (WW) vs. the Wiener index (W) 
fo r 30 randomly selected 50-vertex chemical trees; cf. Fig. 6. The 
correlation coefficient is R=0.9963 . 

2. 

3. 

Regul arities (a), (d) and (e) hold also for very 
large chemical trees. There is, however, a much 
more pronounced di spersion of the data points 
and, consequently, near- lying clusters partially 
overlap. In order to make the clustering of the 
data points easier to envisage, in Figs 8 and 12 we 
have included data fo r chemical trees with only 
three di stinct va lues of the clustering parameters, 
that differ as much as possible . 
Even with such a special selection of chemical 
trees, the clustering of the data points in the case 
(b) is no more visib le at n=50, meaning that the 
earlier reported7 correlation between AI and X 
disappears when the number of vertices is 
sufficiently large. 

In summary, we established that regularities (c) and 
(f) hold equally well in the case of very large 
chemical trees, that regularities (a), (d) and (e) are 
applicable, but with somewhat reduced accuracy, 
while regularity (b) vanishes. 
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