Equiseparable chemical trees

IVAN GUTMAN, ${ }^{\text {ä }}$ BILJANA ARSIĆ ${ }^{b}$ and BORIS FURTULA ${ }^{\text {a }}$
${ }^{a}$ Faculty ov Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac and ${ }^{b}$ Faculty of Science, University of Niš, Višegradska 33, 18000 Niš, Serbia and Montenegro

(Received 21 February 2003)
Abstract: Let $n_{1}(e \mid T)$ and $n_{2}(e \mid T)$ denote the number of vertices of a tree T, lying on the two sides of the edge e. Let T_{1} and T_{2} be two trees with equal number of vertices, let e be an edge of T_{1} and f an edge of T_{2}. Then e and f are said to be equiseparable if either $n_{1}\left(e \mid T_{1}\right)=n_{1}\left(f \mid T_{2}\right)$ or $n_{1}\left(e \mid T_{1}\right)=n_{2}\left(f T_{2}\right)$. If all edges of T_{1} and T_{2} can be chosen so as to form equiseparable pairs, then T_{1} and T_{2} are equiseparable trees. A number of molecular structure-descriptors of equiseparable chemical trees coincide, implying that the corresponding alkane isomers must have similar physico-chemical properties. It is shown how equiseparable chemical trees can be constructed in a systematic manner.

Keywords: Wiener index, variable Wiener index, chemical trees, alkanes, equiseparability.

INTRODUCTION

As early as 1947 Wiener 1 discovered the formula

$$
\begin{equation*}
W=\sum_{e} n_{1}(e \mid T) n_{2}(e \mid T) \tag{1}
\end{equation*}
$$

by means of which the molecular structures descriptor W (nowadays known under the name "Wiener index") can be computed in the case of alkanes; more details on the Wiener index are found eslewhere. ${ }^{2,3}$ In Eq. (1) T stands for a chemical tree (= the molecular graph 2 of the alkane to which W pertains), e is an edge of T, whereas $n_{1}(e \mid T)$ and $n_{2}(e \mid T)$ are the number of vertices of T, lying on the two sides of e. The summation on the right-hand side of (1) goes over all edges of the tree T.

The numbers $n_{1}(e \mid T)$ and $n_{2}(e \mid T)$ may be viewed as the count of the vertices of the two fragments, obtained by deleting the edge e from T. In other words, the edge e separates T into two fragments, with $n_{1}(e \mid T)$ and $n_{2}(e \mid T)$ vertices. Clearly, if the tree T has n vertices, then for all of its edges,

$$
\begin{equation*}
n_{1}(e \mid T)+n_{2}(e \mid T)=n \tag{2}
\end{equation*}
$$

A few years ago, formula (1) was used for the definition of another structure-descriptor, named "modified Wiener index": 4

[^0]$$
W_{\mathrm{m}}=\sum_{\varepsilon}\left[v_{1}(\varepsilon \mid \mathrm{T}) v_{2}(\varepsilon \mid \mathrm{T})\right]^{-1}
$$
which then served as a motivation for introducing a whole class of "variable Wiener indices": 5
\[

$$
\begin{equation*}
W_{\mathrm{m}}(\lambda)=\sum_{\varepsilon}\left[\mathrm{v}_{1}(\varepsilon \mid \mathrm{T}) \mathrm{v}_{2}(\varepsilon \mid \mathrm{T})\right]^{-\lambda} \tag{3}
\end{equation*}
$$

\]

Recently, several mathematical ${ }^{5-8}$ and chemical ${ }^{9,10}$ properties of $W_{\mathrm{m}}(\lambda)$ were established.
In the work ${ }^{5}$ it was noticed that there exist pairs of isomeric alkanes whose variable Wiener indices coincide for all values of the parameter λ. The simplest such pair are the molecular graphs of 2,2-dimethylpentane and 2,3-dimethylpentane, cf. Fig. 1. These observations lead to the definition of equiseparable trees.

Definition 1. Let T_{1} and T_{2} be two trees with equal number of vertices. Let e be an edge of T_{1} and f and edge of T_{2}. The edges e and f are said to be equiseparable, $e \approx f$, if by deleting e from T_{1} and by deleting f from T_{2} fragments are obtained with equal number of vertices.

More formally, $e \approx f$ if either $n_{1}\left(e \mid T_{1}\right)=n_{1}\left(f \mid T_{2}\right)$ [which because of relation (2) is tantamount to $\left.n_{2}\left(e \mid T_{1}\right)=n_{2}\left(f \mid T_{2}\right)\right]$, or $n_{1}\left(e \mid T_{1}\right)=n_{2}\left(f T_{2}\right)$ [which is tantamount to $\left.n_{2}\left(e \mid T_{1}\right)=n_{1}\left(f \mid T_{2}\right)\right]$.

Definition 2. Let T_{1} and T_{2} be two trees with equal number of vertices. The trees T_{1} and T_{2} are said to be equiseparable, $T_{1} \approx T_{2}$, if all their edges can be chosen so as to form equiseparable pairs.

More formally, if $e_{1}, e_{2}, \ldots, e_{m}$ are the edges of T_{1} and $f_{1}, f_{2}, \ldots, f_{m}$ the edges of T_{2}, then $T_{1} \approx T_{2}$ if one can label the edges so that $e_{i} \approx f_{i}$ holds for all $i=1,2, \ldots, m$.

It is evident from Eq. (3) that equiseparable trees have the same variable Wiener indices, for any value of the parameter λ. This implies that any physico-chemical property that correlates with $W_{m}(\lambda)$, must have similar values for all members of an equiseparable family of alkanes. An example supporting this conclusion is found in Fig. 4. More interestingly, equiseparable alkanes have nearly equal internal energies ${ }^{9}$ and nearly equal frequencies of the stretching carbon-carbon vibrations. ${ }^{11,12}$

In what follows it will be shown how families of equiseparable chemical trees can be constructed.

AN EXAMPLE: EQUISEPARABLE DIMETHYL ALKANES

The smallest pair of equiseparable molecular graphs, pertaining to 2,2-dimethyl- and 2,3-dimethylpentane, is depicted in Fig. 1.

Examining this pair one can arrieve at the following generalization: a pair of isomeric dimethyl alkanes with n carbon atoms, one possessing two methyl groups in position i, the other possessing a methyl group in position i and another in position $j, j>i$, see Fig. 1 .

Now the condition that the parameters i, j, and n must satisfy, in order that the respective chemical trees T_{1} and T_{2} be equiseparable is established.

In order to simplify the formalism, the edge of T_{1}, connecting the vertices u and v, is denoted by $e_{u v}$. The analogous edge of T_{2} will be denoted by $f_{u v}$. The labeling of the verti-

Fig. 1. The two smallest equiseparable trees and their generalizations T_{1} and T_{2}. The trees T_{1} and T_{2} are found to be equiseparable whenever $i+j=n-2$, e.g., for $n=7, i=2, j=3$.
ces of T_{1} and T_{2} is indicated in Fig. 1.
The edges lying left from vertex i and right from vertex j are obviously equiseparable, namely: $e_{t, t+1} \approx f_{t, t+1}$ for $t=1,2, \ldots, i-1$ and $t=j, j+1, \ldots, n-3$. Also, $e_{i, n-1} \approx f_{i, n-1}$ and $e_{i, n} \approx$ $f_{j, n}$. What remains to be examined are the edges lying between the vertices i and j.

Because the molecules pertaining to T_{1} and T_{2} have one and two methyl groups in position i respectively, it follow that

$$
\begin{gathered}
e_{i, i+1} \approx f_{i+1, i+2} \\
e_{i+1, i+2} \approx f_{i+2, i+3} \\
\ldots \\
\ldots \\
e_{j-2, j-1} \approx \approx_{j-1, j}
\end{gathered}
$$

The only two edges that remain to be examined are $e_{j-1, j}$ and $f_{i, i+1}$. Now, by inspecting Fig. 1, if can be seen that: $n_{1}\left(e_{j-1, j} \mid T_{1}\right)=j+1, n_{2}\left(e_{j-1 . j} \mid T_{1}\right)=n-j-1, n_{1}\left(f_{i, i+1} \mid T_{2}\right)=i+1$, $n_{2}\left(e_{i, i+1} \mid T_{2}\right)=n-i-1$. It cannot be $n_{1}\left(e_{j-1, j} \mid T_{1}\right)=n_{1}\left(f_{i, i+1} \mid T_{2}\right)$. Therefore, in order that $T_{1} \approx$ T_{2}, it must be that $n_{1}\left(e_{j-1 . j} \mid T_{1}\right)=n_{2}\left(f_{i, i+1} \mid T_{2}\right), i . e ., j+1=n-i-1, i . e ., i+j=n-2$.

Thus the following has been proved:
Rule 1. The molecular graphs of the (i,i)-dimethyl alkane and (i,j)-dimethyl alkane with n carbon atoms are equiseparable if $i+j=n-2$.

THE METHYL-SHIFT RULE

When deducing Rule 1 , it should be noticed that the edges lying left from vertex i and right from vertex j play no role in determining the conditions for equiseparability of T_{1} and
T_{2}. The same is true for edges lying between i and j, except the edge of T_{1} incident to vertex j, and edge of T_{2} incident to vertex i. Bearing this in mind the general case depicted in Fig. 2 may be considered.

T
Fig. 2. The chemical trees T_{1} and T_{2} correspond to alkane molecules differing in the position of a single methyl group. Hence the transformation $T_{1} \rightarrow T_{2}$ corresponds to the shift of a methyl group from position 1 to position k. The trees T_{1} and T_{2} are equiseparable if the fragments X and Y have equal number of vertices; otherwise the structure of X and Y may be arbitrary and the parameter k may assume any value greater than unity.

As before

$$
\begin{gathered}
e_{1,2} \approx f_{2,3} \\
e_{2,3} \approx f_{4,5} \\
\ldots \\
e_{k-2, k-1} \approx f_{k-1, k}
\end{gathered}
$$

Consequently, $T_{1} \approx T_{2}$ will be if $e_{k-1, k} \approx f_{12}$.
Denote the number of vertices of X and Y by x and y, respectively. Then the edge $e_{k-1, k-1}$ separates T_{1} into fragments with $x+k$ and y vertices, whereas the edge $f_{1,2}$ separates T_{2} into fragments with x and $y+k$ vertices. In order to have $e_{k-1, k} \approx f_{12}$ either $x+k=x$ must be (which is impossible), or $x+k=y+k$ (which implies $x=y$). Thus the following is arrived at:

Rule 2. (Methyl-Shift) The chemical trees T_{1} and T_{2} depicted in Fig. 2 are equiseparable if the fragments X and Y have equal number of vetices. The parameter k may be any integer greater than unity.

MORE EQUISEPARABLE CHEMICAL TREES

In an analogous, but significantly more complicated way Rule 3 can be deduced:
Rule 3. (Ethyl-Shift) Let T_{1} and T_{2} be chemical tree analogous to those depicted in Fig. 2, but differing in the position of an ethyl group. T_{1} and T_{2} are equiseparable if the fragments X and Y have equal number of vertices, for any value of the parameter $k \geq 2$.

Both the methyl- and ethyl-shift rules are special cases of a more general results, that can be formulated as:

Rule 4. The chemical trees T_{1} and T_{2} depicted in Fig. 3 are equiseparable if the fragments X and Y have equal number of vertices. The parameter k may be any integer greater than unity and the fragment Z may be arbitrary.

Fig. 3. The chemical trees used in the formulation of Rule 4. These are equiseparable if X and Y have equal number of vertices, irrespective of the value of $k \geq 2$ and the nature of the substituent Z.

Suprisingly, the proof of Rule 4 is quite simple.
Again, only the edges lying between vertices 1 and k need to be considered. Bearing in mind the structure of the trees T_{1} and T_{2}, shown in Fig. 3, and the way in which their vertices are labeled, the results shown in Table I are obtained. The number of vertices of the fragment Z is denoted by z.

TABLE I. Data needed for the proof of Rule 4

t	$\# 1$	$\# 2$	$\# 3$	$\# 4$
	$n_{1}\left(e_{t, t+1} \mid T_{1}\right.$	$n_{2}\left(e_{t, t+1} \mid T_{1}\right)$	$n_{1}\left(f_{t, t+1} \mid T_{2}\right)$	$n_{1}\left(f_{t, t+1} \mid T_{2}\right)$
1	$x+z+1$	$y+k-1$	$x+k-1$	$y+z+1$
2	$x+z+2$	$y+k-2$	$x+k-2$	$y+z+2$
3	$x+z+3$	$y+k-3$	$x+k-3$	$y+z+3$
\ldots	\ldots	\ldots	\ldots	\ldots
t	$x+z+t$	$y+k-t$	$x+k-t$	$y+z+t$
\ldots	\ldots	\ldots	\ldots	\ldots
$k-2$	$x+z+k-2$	$y+2$	$x+2$	$y+z+k-2$
$k-1$	$x+z+k-1$	$y+1$	$x+1$	$y+z+k-1$

The conditions under which $e_{t, t+1} \approx f_{t, t+1}$ will hold for all $t=1,2, \ldots, k-1$ have to be found.

The numbers in column \#1 in Table I increase, whereas those in column \#3 decrease with increasing t. Therefore, it is not possible to establish equality between them, that would hold for all t. On the other hand, the numbers in column \#4 also increase and the entire column \#4 will become equal to column \#1 if $x=y$. Under the very same conditions, column \#2 will become equal to column \#3.

Rule 4 follows.

Fig. 4. A family of equiseparable chemical trees: 3,4,4-trimethylheptane, 3-ethyl-2,2-dimethylhexane, 3-ethyl-2,4-dimethylhexane, and 4-ethyl-2,4-dimethylhexane. Their boiling points (at standard atmospheric pressure) are $434,429,433$, and 434 K , respectively. Their heats of evaporation (at 298 K) are 46.7, 45.6 ,
$46.5,45.2 \mathrm{~kJ} / \mathrm{mol}$, their standard heats of formation (in the gaseous state, at 298 K) are $-257.1,-252.5$, -246.3 , and $-256.4 \mathrm{~kJ} / \mathrm{mol}$, their standard entropies (in the gaseous state, at 298 K) are $501.8,503.8,516.7$, and $497.6 \mathrm{~J} /(\mathrm{K} \mathrm{mol}$), their heat capacities (in the gaseous state, at 298 K) are 234.2, 226.5, 230.0, and 233.6 $\mathrm{J} /(\mathrm{K} \mathrm{mol})$, respectively.

By means of a systematic search many more equiseparable families of chemical trees were discovered, many of which cannot be rationalized by means of Rule 4 (or by its species cases, Rules 1-3). A characteristic example is shown in Fig. 4.

ИЗВ О Д

ЕКВИСЕПАРАБИЛНА ХЕМИЈСКА СТАБЛА
ИВАН ГУТМАН ${ }^{\text {a }}$, БИЉАНА АРСИЋ ${ }^{\text {б }}$ и БОРИС ФУРТУЛА ${ }^{\text {a }}$

Нека $n_{1}(e \mid T)$ и $n_{2}(e \mid T)$ означавају број чворова стабла T, који леже са две стране гране e. Нека су T_{1} и T_{2} два стабла са истим бројем чворова, нека је e грана стабла T_{1}, а f грана стабла T_{2}. Тада за e и f кажемо да су еквисепарабилни ако важи $n_{1}\left(e \mid T_{1}\right)=n_{1}\left(f T_{2}\right)$ или $n_{1}\left(e \mid T_{1}\right)=n_{2}\left(f T_{2}\right)$. Ако се све гране стабала T_{1} и T_{2} могу изабрати тако да образују еквисепарабилне парове, тада су T_{1} и T_{2} еквисепарабилна стабла. Већи број молекулских структурних дескриптора имају исте вредности за еквисепарабилна хемијска стабла, из чега следи да одговарајући изомерни алкани морају имати сличне физичко-хемијске особине. Показано је како се еквисепарабилна хемијска стабла могу систематски конструисати.

REFERENCES

1. H. Wiener, J. Am. Chem. Soc. 69 (1947) 17
2. I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986
3. I. Gutman, J. H. Potgieter, J. Serb. Chem. Soc. 62 (1997) 185
4. S. Nikolić, N. Trinajstić, M. Randić, Chem. Phys. Lett. 333 (2001) 319
5. I. Gutman, D. Vukičević, J. Žerovnik, Croat. Chem. Acta, in press
6. D. Vukičević, MATCH Commun. Math. Comput. Chem. 47 (2003) 87
7. D. Vukičević, I. Gutman, MATCH Commun. Math. Comput. Chem. 47 (2003) 107
8. D. Vukičević, J. Žerovnik, MATCH Commun. Math. Comput. Chem. 47 (2003) 119
9. I. Gutman, D. Vidović, B. Furtula, I. G. Zenkevich, J. Serb. Chem. Soc., 68 (2003) 401
10. B. Lučić, A. Miličević, S. Nikolić, N. Trinajstić, Indian J. Chem. 42A (2003) 1279
11. I. G. Zenkevich, Rus. J. Phys. Chem. 73 (1999) 797
12. I. Gutman, I. G. Zenkevich, Z. Naturforsch. 57a (2002) 824.

[^0]: \# Serbian Chemical Society active member.

