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Examination of the structure-dependence of the total �-electron energy leads to the equation FðG; xÞ ¼ ln ZðGÞ,
where FðG; xÞ is the Coulson function (of the molecular graph G) and ZðGÞ is the corresponding topological index Z.
The (positive and unique) solution of this equation is called the Z-point of G and is denoted by xH. By the analysis of
the Z-points of trees and chemical trees the following generally valid regularities were established: (a) Not all trees have
a Z-point, but all chemical trees have a Z-point. (b) The Z-points of all chemical trees (irrespective of their size and other
structural features) are nearly equal; for all chemical trees, xH � 1:2.

The topological index Z was proposed1 in 1971 and soon
thereafter its numerous chemical applications were demonstrat-
ed.1–6 For details see the reviews.7,8 The mathematical proper-
ties of the topological index were also extensively exam-
ined.9–28 A comprehensive survey is found in a recent book.29

LetG be a molecular graph and let pðG; kÞ denote the number
of ways for choosing k disjoint (= mutually non-touching)
edges from G, with pðG; 0Þ being defined to be unity for all
graphs. Naturally pðG; 1Þ is equal to the number of edges of
G. Then the topological index Z is defined as

Z ¼ ZðGÞ ¼
X
k�0

pðG; kÞ: ð1Þ

As early as in 1972 it was noticed2 that Z is related to the
characteristic polynomial �ðxÞ of the molecular graph, which
implies that there must exist some relation between Z and the
total �-electron energy (E). The basic features of the relation
between E and Z were established10,30 in the 1970s, but its finer
details remained obscure until quite recently.31

In the study of the relation between E and molecular struc-
ture, the Coulson integral formulas play a crucial role. Namely,
in 1940 Coulson32 expressed the total �-electron energy of a
conjugated unsaturated hydrocarbon molecule as

E ¼ EðGÞ ¼
1

p

Z 1

�1
FðG; xÞdx ð2Þ

where the function FðG; xÞ is defined in terms of the respective
molecular graph G composed of n vertices as

FðG; xÞ ¼ n� ix�0ðG; ixÞ=�ðG; ixÞ: ð3Þ

The characteristic polynomial of G,�ðG; xÞ, is defined in terms
of the adjacency matrix, A, and the unit matrix, E, of the same
size, as

�ðG; xÞ ¼ ð�1Þn detðA� xEÞ: ð4Þ

In Eq. 3, �0ðG; xÞ stands for the first derivative of �ðG; xÞ and
i ¼

ffiffiffiffiffiffiffi
�1

p
.

Eventually, another graph-based function was discovered:33

F1ðG; xÞ ¼ x�2 ln jð�ixÞn�ðG; i=xÞj; ð5Þ

with the analogous property

E ¼
1

p

Z 1

�1
F1ðG; xÞdx: ð6Þ

If the graph G is acyclic, then its characteristic polynomial
conforms to the relation2

�ðG; xÞ ¼
X
k�0

ð�1ÞkpðG; kÞxn�2k ðG 2 treeÞ; ð7Þ

which leads to the following property,

�ðG; iÞ ¼ inZðGÞ ðG 2 treeÞ: ð8Þ

Then we have

F1ðG; 1Þ ¼ lnZðGÞ ðG 2 treeÞ: ð9Þ

Relation 9 has been used as the starting point for determining
the connection between the total �-electron energy and the
topological index.10,31,34 The idea was the following.31,34 In-
stead of F1ðG; xÞ, such a function F1

�ðG; xÞ was substituted into
Eq. 6; this function F1

�ðG; xÞ for near-zero x, very large x, and
at x ¼ 1 coincides with F1ðG; xÞ. Further, the function
F1

�ðG; xÞ is adjusted so that its integral can easily be calculat-
ed. Then the resultant expression becomes a reasonably good
approximation for E.

If one wishes to repeat the analogous approach with the orig-
inal Coulson function 3, one encounters a difficulty. Namely, a
formula of the type 9 does not hold for FðG; xÞ, and there seems
to be no direct relation between the topological index ZðGÞ and
the value of FðG; xÞ at x ¼ 1.

As outlined in detail in the subsequent section, the Coulson’s
function FðG; xÞ becomes equal to lnZðGÞ for some x ¼ xH. If
so, then the auxiliary function F�ðG; xÞ, defined as

F�ðG; xÞ ¼ n� n0 � ax2 for jxj � xH

2mðxþ bÞ�2 for jxj � xH

�
ð10Þ

coincides with FðG; xÞ for near-zero x, very large x, and at
x ¼ xH, provided that the parameters a and b are chosen as
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a ¼ ðn� n0 � lnZÞxH�2; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m= lnZ

p
� xH ð11Þ

where m is the number of edges of the graph G and n0 is the
number of its zero eigenvalues. Consequently, if one replaces
FðG; xÞ in the integral 2 by F�ðG; xÞ, the following approximate
expression for the total �-electron energy is obtained:

E� ¼
2

p
2

3
ðn� n0ÞxH þ

1

3
xH ln Z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m ln Z

p� �
: ð12Þ

In view of Eq. 12, in order to fully understand the dependen-
cy of the total �-electron energy on molecular structure, we
must possess some knowledge about the properties and struc-
ture-dependency of the quantity xH, which we name ‘‘the Z-
point’’ (of the respective molecular graph). Bearing this in
mind, we have undertaken a detailed examination of the Z-
points of trees and chemical trees. Some of the results obtained
are remarkable. Our main findings may be summarized as fol-
lows:

(a) Not all trees have a Z-point, but all chemical trees have a
Z-point.

(b) The Z-points of all chemical trees (irrespective of their
size and other structural features) are nearly equal; for all
chemical trees, xH � 1:2.

The Coulson Function and Its Z-Point

Strictly speaking, the Coulson function 3 and the integral
formula 2 might be applied only to molecular graphs of conju-
gated �-electron systems. However, the right-hand-sides of
Eqs. 2 and 3 are well defined for all graphs. Recently the con-
cept of ‘‘eigenvalue sum’’ was put forward,35,36 which is equal
to the half of the E-value, but applicable as a structure-descrip-
tor to all molecular graphs (chemical trees in particular). More
details are found elsewhere.31 In view of this we extend our
studies to all chemical trees (= trees in which no vertex degree
is greater than 4) and, for comparative purposes, to all trees.

The Coulson function 3 has been known for a very long
time32 and its analytical properties were examined by many au-
thors on many occasions. Yet a formal proof that for all graphs
G, possessing at least one edge, the (real part of the) function
FðG; xÞ is bell-shaped has been offered only quite recently.37

In Fig. 1, the forms of the Coulson function 3 of three iso-
meric trees with eight vertices are shown and compared respec-
tively with their lnZ values. They are (a) n-octane, (b) 2,2,3,3-
tetramethylbutane, and (c) non-chemical star S8 (See Fig. 2).
Note the following equality

FðG; 0Þ ¼ n� n0: ð13Þ

(See Eq. 10 and the discussion in Ref. 31).34,37

For reasons outlined above, we are interested in the value of
the variable x satisfying the following equation:28

FðG; xÞ ¼ lnZðGÞ; ð14Þ

which is an analogue of formula 9.
We call the positive solution of Eq. 14 the Z-point (of molec-

ular graph G) and denote it by xH as shown in Fig. 1. Note that
all the FðG; xÞ curves are bell-shaped (See also the enlarged
portion in Fig. 1a), and accordingly Eq. 14 has either one real
positive solution (¼ xH), or no such solution at all, as in the case
of Fig. 1c. In the case of a general tree xH need not exist (cf.
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Fig. 1. Coulson’s functions (Eq. 3) of (a) n-octane, (b)
2,2,3,3-tetramethylbutane, and (c) star S8, compared re-
spectively with their ln Z values. The xH values for (a)
and (b) are, respectively, maximum and minimum among
the 18 octane isomers. The star graph S8 does not have a
Z-point. For (a) the curve near the origin is enlarged to
show its bell-shape.

Sn

Ek

Jk

Ck

Tk

k-1

k-1

k-1

k-1

×    ×
    ×

1

2

3

n–1

n

n

n–11

2

3
Pn

Fig. 2. Several selected series of tree graphs whose asymp-
totic values of xH and r were calculated as in Table 3.
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Table 2). Especially the star graphs Sn larger than S8 shown in
Fig. 1c do not have a real xH value. The graph S8 is the smallest
tree graph with this property. Among the 18 chemical isomers
of octane, n-octane and 2,2,3,3-tetramethylbutane, respective-
ly, have the maximum and minimum xH values (See Table 1).
Later in this paper we prove that all chemical trees do possess a
Z-point.

In order to gain information on the Z-points, their existence
and structure-dependence, we computed them for all chemical
trees and all trees up to 20 vertices. (Some of our preliminary
results were reported in an earlier paper.28) In Table 1 are given
the data pertaining to chemical trees and in Table 2 the analo-
gous data for general trees.

Inspection of Table 1 shows, as a kind of surprise, that the Z-
points of chemical trees are nearly constant, varying in a re-
markably narrow range, and are almost completely size-inde-

pendent. Then the value xH ¼ 1:2 seems to be a reasonably
good approximation for the Z-point of any chemical tree. Note
that for the series of chemical trees of n ¼ 4k þ 1 (type Tk in
Fig. 2) the value of ðxHÞmin in Table 1 rapidly converges to
ca. 0.993 and is distinctively smaller than the other isomers.

From Table 2 we see that also in the case of general trees the
variations in the values of the Z-point are not very large, al-
though these are somewhat greater than in the case of chemical
trees. Detailed examination reveals that the Z-points of only a
few trees are exceptionally small, a phenomenon caused by
the fact that for these trees ln ZðGÞ is only slightly smaller than
FðG; 0Þ, the maximum value of FðG; xÞ. For some (non-chemi-
cal) trees lnZðGÞ exceeds the value of FðG; 0Þ, resulting in the
nonexistence of the Z-point.

Then we define the ratio r as follows for judging if a graph
G has the Z-point or not:

r ¼ lnZðGÞ=FðG; 0Þ: ð15Þ

Those graphs with r larger than 1 do not have a Z-point.
We do not possess a satisfactory theoretical explanation for

the constancy of the xH value, but we can offer a qualitative ar-
gument corroborating this regularity. According to Eq. 2, EðGÞ
is proportional to the area between FðG; xÞ and the x-axis.
Therefore xH increases with increasing EðGÞ (assuming that
other structural parameters remain unchanged), cf. Fig. 1. On
the other hand, from Fig. 1 it is evident that xH will decrease
if the value of ZðGÞ increases (assuming that other structural
parameters remain unchanged). However, it is known10,31 that
EðGÞ is an increasing function of Z and, hence, the two effects
may cancel each other.

Asymptotic Behavior of Several Series of Tree Graphs

Besides the exhaustive checking of the xH values for all the
lower members of tree graphs, asymptotic behaviors of the xH
and r values toward infinitely large graphs of several selected
series shown in Fig. 2 were analyzed. In performing this analy-
sis, the operator technique was useful for deriving the recursion
formulas of the Z-index and characteristic polynomial �ðG; xÞ
of these larger graphs.38 The results are summarized in Table 3,
which is helpful for understanding the flow of logic in the proof
of the main theorem in this paper. Note here that the behavior of
the r value can rigorously be traced, while that of xH is difficult
to follow analytically.

On the Nonexistence of Z-Points

As seen from the data given in Table 2, there exist trees with-
out a Z-point. In view of the bell-shaped form of the Coulson
function (See Fig. 1), the necessary and sufficient condition
for the existence of the Z-point is FðG; 0Þ � lnZðGÞ, or
r � 1. The simplest example when this inequality is violated
is provided by the stars Sn for n > 7 (See Fig. 2). For these
graphs, pðSn; 1Þ ¼ n� 1 and pðSn; kÞ ¼ 0 for k > 1. Conse-
quently, ZðSnÞ ¼ n, FðSn; xÞ ¼ 2ðn� 1Þ=ðx2 þ n� 1Þ, and
FðSn; 0Þ ¼ 2.

There will be no Z-point whenever lnZðGÞ > FðG; 0Þ, or
r > 1. In the case of stars this condition reads ln n > 2, i.e.,
n > e2 ¼ 7:389. Hence, stars with 8 or more vertices have no
Z-point, as noted before. Other trees without Z-point are also
highly branched and, hence, are not molecular graphs.

Table 2. Average, Minimal, and Maximal Values of the
Z-Point of Trees with n Vertices

n ðxHÞaver ðxHÞmin ðxHÞmax n:t:aÞ n:e:bÞ

6 1.139 0.762 1.254 6 0
7 1.120 0.408 1.252 11 0
8 1.176 1.035 1.244 23 1
9 1.166 0.971 1.248 47 1
10 1.161 0.895 1.239 106 1
11 1.159 0.777 1.247 235 1
12 1.158 0.639 1.239 551 1
13 1.158 0.441 1.248 1301 1
14 1.158 0.212 1.240 3159 2
15 1.159 0.124 1.250 7741 6
16 1.159 0.285 1.243 19320 9
17 1.159 0.184 1.252 48629 11
18 1.159 0.369 1.246 123867 13
19 1.159 0.280 1.255 317955 14
20 1.158 0.162 1.249 823065 15

a) n:t: is the number of distinct n-vertex trees. b) n:e: is the
number of trees for which the Z-point does not exist.

Table 1. Average, Minimal, and Maximal Values of the
Z-Point of Chemical Trees with n Vertices

n ðxHÞaver ðxHÞmin ðxHÞmax n:c:t:aÞ

6 1.214 1.166 1.254 5
7 1.201 1.134 1.252 9
8 1.195 1.074 1.244 18
9 1.192 0.991 1.248 35
10 1.192 1.091 1.239 75
11 1.190 1.086 1.239 159
12 1.189 1.047 1.237 355
13 1.187 0.993 1.235 802
14 1.186 1.057 1.237 1858
15 1.185 1.056 1.233 4347
16 1.185 1.032 1.234 10359
17 1.184 0.993 1.232 24894
18 1.183 1.037 1.231 60523
19 1.183 1.040 1.231 148284
20 1.182 1.022 1.229 366319

a) n:c:t: is the number of distinct n-vertex chemical trees for
which existence of the Z-point was examined.
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All Chemical Trees Have a Z-Point

We now show that the inequality FðG; 0Þ > lnZðGÞ is
obeyed by all chemical trees. In order to accomplish this task
we find a lower bound for FðG; 0Þ and an upper bound for
lnZðGÞ, and then demonstrate that the lower bound for
FðG; 0Þ is greater than the upper bound for ln ZðGÞ.

A Lower Bound for FðG; 0Þ. For x ¼ 0 the Coulson func-
tion is equal to34,37 n� n0, where n is the number of vertices of
the graph G and n0 is the number of zero eigenvalues31 of G.
Therefore, for fixed n, the graphs with maximum number of
zero eigenvalues will have the smallest values of FðG; 0Þ.

We thus have to find the chemical trees with a fixed number
(n) of vertices and with maximum n0. For the first few values of
n, these trees are identified by direct checking (See Fig. 3). For
n ¼ 9 the respective tree T2 (representing 2,2,4,4-tetramethyl-
pentane) has vertices of degree 4, 2, and 1, and no vertex of de-
gree 3. Further, the vertex of degree 2 is adjacent to the two ver-
tices of degree 4.

The general construction proceeds as follows:
Step 0: Start with an n-vertex tree Xn ¼ Tk with n ¼ 4k þ 1

(k > 1) possessing vertices of degree 1, 2, and 4, but no vertex
of degree 3, such that each vertex of degree 2 is adjacent to two
vertices of degree 4 and no two vertices of degree 4 are mutu-
ally adjacent. Such trees have maximum n0 among all n-vertex
chemical trees. This, for instance, may be Tk (¼ Xn) as depicted
in Fig. 2.

Step 1: Construct a tree Xnþ1 by attaching a vertex of de-
gree 1 to a vertex of degree 2 of Xn. This tree has maximum
n0 among all (nþ 1)-vertex chemical trees, and n0ðXnþ1Þ ¼
n0ðXnÞ � 1.

Step 2: Construct a tree Xnþ2 by attaching a vertex of de-
gree 1 to the (unique) vertex of degree 3 of Xnþ1. This tree
has maximum n0 among all (nþ 2)-vertex chemical trees,
and n0ðXnþ2Þ ¼ n0ðXnÞ.

Step 3: Construct a tree Xnþ3 by inserting a vertex of degree

2 between two adjacent vertices of degree 4 of Xnþ2. This tree
has maximum n0 among all (nþ 3)-vertex chemical trees, and
n0ðXnþ3Þ ¼ n0ðXnÞ þ 1.

Step 4: Construct a tree Xnþ4 by inserting a vertex of degree
2 between two adjacent vertices of degree 4 of Xnþ3. This tree
has maximum n0 among all (nþ 4)-vertex chemical trees, and
n0ðXnþ4Þ ¼ n0ðXnÞ þ 2. Note that Xnþ4 is Tkþ1 and again a tree
possessing the structural features required in Step 0. Therefore
we may now repeat Step 1, etc.

The above described construction of chemical trees with
maximum n0 is illustrated in Fig. 4.

Table 3. Asymptotic Behavior of Typical Series of Tree Graphs

Type n n� n0 Z lim
n!1

r lim
n!1

xH
¼ FðG; 0Þ r ¼ ln Z=FðG; 0Þ (estimated)

Pn n 2½n=2� Zn ¼ f�nþ1 � �nþ1g=
ffiffiffi
5

p
lnfð1þ

ffiffiffi
5

p
Þ=2g �1:22

� ¼ ð1þ
ffiffiffi
5

p
Þ=2 � ¼ ð1�

ffiffiffi
5

p
Þ=2 ¼ 0:4812

¼ 1:6180 ¼ �0:6180

Ek 2k þ 2 2k Zk ¼ f��þ1 þ ��þ1g=2 flnð1þ
ffiffiffi
2

p
Þg=2 �1:18

� ¼ 1þ
ffiffiffi
2

p
� ¼ 1�

ffiffiffi
2

p
¼ 0:4407

¼ 2:4142 ¼ �0:4142

Jk 3k þ 1 2k Zk ¼ f��þ1 � ��þ1g=2
ffiffiffi
3

p
flnð2þ

ffiffiffi
3

p
Þg=2 �1:14

� ¼ 2þ
ffiffiffi
3

p
� ¼ 2�

ffiffiffi
3

p
¼ 0:6585

¼ 3:7321 ¼ 0:2679

Ck 3k þ 2 2k Zk ¼ fð
ffiffiffiffiffi
13

p
þ 2Þ�� þ ð

ffiffiffiffiffi
13

p
� 2Þ��g=

ffiffiffiffiffi
13

p
flnð3þ

ffiffiffiffiffi
13

p
Þ=2g=2 �1:11

� ¼ ð3þ
ffiffiffiffiffi
13

p
Þ=2 � ¼ ð3�

ffiffiffiffiffi
13

p
Þ=2 ¼ 0:5974

¼ 3:3028 ¼ �0:3028

Tk 4k þ 1 2k Zk ¼ f��þ1 � ��þ1g=
ffiffiffiffiffi
21

p
flnð5þ

ffiffiffiffiffi
21

p
Þ=2g=2 �0:995

� ¼ ð5þ
ffiffiffiffiffi
21

p
Þ=2 � ¼ ð5�

ffiffiffiffiffi
21

p
Þ=2 ¼ 0:7834

¼ 4:7913 ¼ 0:2087

Sn n 2 Zn ¼ n 1 —

The types of graphs are given in Fig. 2.

n n0n n0

6 2

3

4

5

7

8

9

0

1

2

3

2

3

4

5

11 *

*

*

Fig. 3. The chemical tree graphs with the largest n0 values
among the isomers. The asterisked graphs for n ¼ 6{8

have the minimum xH values among their isomers. Observe
the periodic increase of n0 value with n as relevant to the
strategy for designing the tree graph with the largest n0
(See Fig. 4).
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In Fig. 4 is shown also an alternative construction of trees
with maximum n0.

The above described construction procedure leads directly to
the following result:

ðn0Þmax ¼

ðnþ 1Þ=2 for n ¼ 1, 5, 9, 13, 17, � � �
ðn� 2Þ=2 for n ¼ 2, 6, 10, 14, 18, � � �
ðn� 1Þ=2 for n ¼ 3, 7, 11, 15, 19, � � �
n=2 for n ¼ 4, 8, 12, 16, 20, � � �.

8>>><
>>>:

ð16Þ

Therefore, for any value of n,

ðn0Þmax � ðnþ 1Þ=2 ð17Þ

implying

FðG; 0Þ � ðn� 1Þ=2; ð18Þ

which is derived by using Eq. 13.
An Upper Bound for lnZðGÞ. Denote by Pn, the path

graph, or the n-vertex path (See Fig. 2). It has been shown1,9

that ZðPnÞ is just the n-th Fibonacci number. In view of this, us-
ing a well known formula for Fibonacci numbers,

ZðPnÞ ¼
1ffiffiffi
5

p
1þ

ffiffiffi
5

p

2

 !nþ1

�
1�

ffiffiffi
5

p

2

 !nþ1
2
4

3
5 ð19Þ

from which it follows

ZðPnÞ �
1ffiffiffi
5

p
1þ

ffiffiffi
5

p

2

 !nþ1

þ
1�

ffiffiffi
5

p

2

 !nþ1
2
4

3
5

¼
1þ

ffiffiffi
5

p

2

 !n
1þ

ffiffiffi
5

p

2
ffiffiffi
5

p

 !
ð1þ gnÞ

where

gn ¼
ffiffiffi
5

p
� 1ffiffiffi

5
p

þ 1

 !nþ1

¼ 0:3820nþ1:

For n ¼ 9 the term gn is equal to 0.0000252, and for larger n
one can safely use the approximation lnð1þ gnÞ � gn, and then

lnZðPnÞ � n ln
1þ

ffiffiffi
5

p

2
þ ln

1þ
ffiffiffi
5

p

2
ffiffiffi
5

p þ gn: ð20Þ

Further, for n � 10 the term gn is several orders of magni-
tude smaller than the other two terms occurring on the right-
hand side of Eq. 20 and may be neglected, resulting in the in-
equality

lnZðPnÞ � 0:4812n� 0:3235:

It has been shown11 that ZðPnÞ is greater than the topological
index Z of any other n-vertex tree. Bearing this in mind, we
conclude that the logarithm of the topological index Z of any
n-vertex tree is bounded from above as follows,

lnZðGÞ � 0:4812n� 0:3235 ð21Þ

which is just the required upper bound.
Completion of the Proof. The fact that all chemical trees

with 9 or fewer vertices have a Z-point can easily be verified by
direct checking. (In fact, we have verified this fact for all trees
with 20 or fewer vertices as seen in Table 1.)

If the inequality

ðn� 1Þ=2 > 0:4812n� 0:3235 ð22Þ

is satisfied, then in view of the relations 18 and 21, the inequal-
ity FðG; 0Þ > lnZðGÞ, or r < 1, will hold, implying the exis-
tence of the Z-point of the graph G. Now, inequality 22 is read-
ily solved, yielding n > 9:388. Consequently, all chemical
trees with 10 or more vertices have a Z-point. Then all chemical
trees have a Z-point.
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