
Kragujevac J. Sci. 24 (2004) 00–00.

FAMILIES OF EQUISEPARABLE TREES AND

CHEMICAL TREES

Ivan Gutman, Boris Furtula, Olga Miljković
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ABSTRACT. Let T be an n-vertex tree and e its edge. By n1(e|T ) and n2(e|T ) are de-
noted the number of vertices of T lying on the two sides of e ; n1(e|T ) + n2(e|T ) = n .
Conventionally, n1(e|T ) ≤ n2(e|T ) . If T ′ and T ′′ are two trees with the same number n
of vertices, and if their edges e′1, e′2, . . . , e′n−1 and e′′1, e′′2, . . . , e′′n−1 can be labeled so that
n1(e′i|T ′) = n1(e′′i |T ′′) holds for all i = 1, 2, . . . , n− 1 , then T ′ and T ′′ are said to be equi-
separable. There exist large families of equiseparable trees. We report here the results of a
systematic study of these families for 7 ≤ n ≤ 20 .

INTRODUCTION

Let T be an n-vertex tree and e = (xy) its edge. By n1(e|T ) and n2(e|T ) we

denote the number of vertices of T , lying on the two sides of the edge e . Then, of

course, n1(e|T ) + n2(e|T ) = n .

More formally, n1(e|T ) and n2(e|T ) are the number of vertices of T , lying closer

to vertex x than to vertex y , and closer to vertex y than to vertex x , respec-

tively. Still more formally, n1(e|T ) and n2(e|T ) are the cardinalities of the sets

{u ∈ V (T ) ; d(u, x) < d(v, x)} and {u ∈ V (T ) ; d(u, x) > d(v, x)} , respectively,

where V (T ) is the vertex set of T and where d(r, s) stands for the distance between

the vertices r and s .



In what follows the numbers n1(e|T ) and n2(e|T ) will be selected so that n1(e|T ) ≤
n2(e|T ) . This convention does not influence the generality of our considerations.

The quantities n1(e|T ) and n2(e|T ) have been encountered already in the 1947

paper by Harold Wiener [1], where he mentions that the sum of distances between all

pairs of vertices of a chemical tree:

W (T ) =
∑
r<s

d(r, s)

can be computed by means of the formula

W (T ) =
∑
e

n1(e|T ) · n2(e|T ) . (1)

Nowadays W is called the Wiener index .

The first formal proof of Eq. (1) was given in the book [2]. Eventually, Eq. (1)

was much studied; for details see the review [3]. The extension of the right–hand side

of (1) to all graphs was named the Szeged index ; for details see the review [4] and the

book [5].

Motivated by Eq. (1), in 2001 the modified Wiener index was defined as [6]

mW (T ) =
∑
e

[n1(e|T ) · n2(e|T )]−1 . (2)

Somewhat more recently, also the variable Wiener index was put forward [7, 8], viz.:

Wλ(T ) =
∑
e

[n1(e|T ) · n2(e|T )]λ (3)

with λ being an adjustable parameter. For λ = +1 and λ = −1 , the variable Wiener

index reduces, respectively, to the ordinary and to the modified Wiener index.

A further structure–descriptor U , proposed by Zenkevich [9], can be expressed in

terms of the numbers n1(e|T ) and n2(e|T ) as [10]:

U(T ) =
∑
e

√√√√ (C + 2H)n + 2H

[(C + 2H)n1(e|T ) + H] [(C + 2H)n2(e|T ) + H]
(4)

where C ≈ 12.0 and H ≈ 1.0 are the relative atomic masses of carbon and hydrogen,

respectively.

In Eqs. (1)–(4) the summation goes over all edges of the tree T .



Studies of the above mentioned structure–descriptors lead to the concept of equi-

separable trees [11]. Two trees T ′ and T ′′ of equal number n of vertices are said to

be equiseparable if their edges e′1, e
′
2, . . . , e

′
n−1 and e′′1, e

′′
2, . . . , e

′′
n−1 can be labeled so

that the equality n1(e
′
i|T ′) = n1(e

′′
i |T ′′) holds for all i = 1, 2, . . . , n − 1 . From the

inspection of Eqs. (1)–(4) we see that equiseparable trees have equal Wiener indices,

Wλ-values (for all λ), as well as Zenkevich indices U .

It is known [12] that the Wiener index measures the van der Waals surface area

of an alkane molecule, which explains the correlations found between W and a great

variety of physico–chemical properties of alkanes (for details see the review [13] and

the book [14]). The Zenkevich index provides a measure of the internal (vibrational)

energy of the underlying alkane molecule [10, 15]. Consequently, the molecules rep-

resented by equiseparable chemical trees are expected to have many similar physico–

chemical properties.

General procedures for constructing pairs of equiseparable trees were developed

[11, 16], and it gradually became evident [17] that equiseparable trees and chemical

trees occur in large families. In order to gain information on the frequency of the

occurrence of equiseparable trees, we examined all trees with up to 20 vertices. A

preliminary account of our findings was reported in [17]. Here we give a more detailed

account.

SEPARATION SEQUENCE AND SEPARATION NUMBER

Let T be an n-vertex tree and e1, e2, . . . , en−1 its edges. We are interested in the

sequence of numbers

{n1(e1|T ) , n1(e2|T ) , . . . , n1(en−1|T )} . (5)

Because the form of the sequence (5) depends on the labeling of the edges of T , we

have to find another labeling–independent representation. This is achieved by means

of the separation sequence.

Because of n1(ei|T ) + n2(ei|T ) = n and n1(ei|T ) ≤ n2(ei|T ) , each of the numbers

n1(ei|T ) , i = 1, 2, . . . , n− 1 , is an integer satisfying the inequality

1 ≤ n1(ei|T ) ≤ bn/2c .



Let ki(T ) among the numbers n1(ei|T ) , i = 1, 2, . . . , n− 1 , be equal to i . Then the

ordered (bn/2c)-tuple

σ(T ) =
{
k1(T ) , k2(T ) , . . . , kbn/2c(T )

}
(6)

is independent of the labeling of the edges of T . We refer to σ(T ) as to the separation

sequence of the tree T . Clearly, two trees are equiseparable if and only if their

separation sequences coincide.

It is worth noting that
bn/2c∑

i=1

ki(T ) = n− 1 . (7)

Consequently, only trees with equal number of vertices can have coinciding separation

sequences.

Our initial idea was to compute the separation sequence of all n-vertex trees and

to find among them those which coincide. This task can, however, be made somewhat

simpler.

First, because of the relation (7), if n is fixed and known, we don’t need to compute

all bn/2c distinct ki(T )-values. Namely, if we know bn/2c − 1 distinct ki(T )’s, then

the missing one can be determined from the relation (7). In particular, it is sufficient

to compute ki(T ) , i = 2, 3, . . . , bn/2c .

Second, it can be shown that for i > 1 , the maximum possible ki(T )-value is equal

to b(n − 1)/2c . This maximum value is achieved for i = 2 , for the tree T †
n whose

structure is the following. If n is odd, then T †
n is obtained by joining a vertex with

the end vertices of (n − 1)/2 disjoint copies of P2 . If n is even, then T †
n is obtained

by joining a vertex of P2 with the end vertices of (n− 2)/2 disjoint copies of P2 .

Therefore, if we restrict our considerations to trees with 20 or fewer vertices, then

it will be ki(T ) ≤ 9 for all i > 1 and all T .

In view of this, we define the separation number as

SN(T ) =
bn/2c∑

i=2

ki(T ) 10bn/2c−i

which is an integer whose decade form is be written with at most bn/2c − 1 digits .

Thus, if n ≤ 20 , then, in the worst case, SN(T ) is a 9-digit integer.



Two trees with equal number of vertices are equiseparable if and only if their SN -

values are equal. (Note that trees with different number of vertices may have equal

separation numbers. For instance, for the star Sn we have SN(Sn) = 0 , irrespective

of the number n of vertices.)

As an illustration, consider the tree T ∗ depicted in Fig. 1. This is the molecular

graph of 2,4-dimethyl-4-etyl-6-isopropylnonane. Its edges are (deliberately) labeled by

e1, e2, . . . , e15 in an unorderly manner. By direct calculation (or simply, by inspection)

we obtain: n1(e1|T ∗) = 3 , n1(e2|T ∗) = 3 , n1(e3|T ∗) = 6 , n1(e4|T ∗) = 1 , n1(e5|T ∗) =

1 , n1(e6|T ∗) = 2 , n1(e7|T ∗) = 1 , n1(e8|T ∗) = 2 , n1(e9|T ∗) = 1 , n1(e10|T ∗) = 1 ,

n1(e11|T ∗) = 1 , n1(e12|T ∗) = 3 , n1(e13|T ∗) = 1 , n1(e14|T ∗) = 4 , and n1(e15|T ∗) = 8 .

Therefore, k1(T
∗) = 7 , k2(T

∗) = 2 , k3(T
∗) = 3 , k4(T

∗) = 1 , k5(T
∗) = 0 , k6(T

∗) =

1 , k7(T
∗) = 0 , and k8(T

∗) = 1 , Consequently, the separation sequence and the

separation number of T ∗ are equal to σ(T ∗) = (7, 2, 3, 1, 0, 1, 0, 1) and SN = 2310101 .

Figure 1. The molecular graph of 2,4-dimethyl-4-etyl-6-isopropylnonane. Its sepa-
ration sequence is (7, 2, 3, 1, 0, 1, 0, 1) and its separation number is 2310101 .



NUMERICAL WORK

Calculations were performed on all trees with 7 ≤ n ≤ 20 vertices. For each

particular value of n , the structures of all n-vertex trees were available in appropri-

ate coded forms. From these codes the adjacency matrix was reconstructed, and the

numbers n1(ei|T ) , the separation sequences, and the separation numbers determined.

This was sequentially done for all n-vertex trees, and a list of SN -number was cre-

ated. From this list the recognition of families of equiseparable trees is achieved by

comparing and ordering integers.

Chemical trees were detected by computing the vertex degrees (i. e., summing

the rows of the adjacency matrix). Whenever, a computed vertex degree exceeded 4,

the respective tree was discarded. If no vertex was found to have degree greater than

4, the respective tree was recognized as a chemical tree. Its SN -value was recorded

in a separate list, which eventually was processed in the same manner as the list of

SN -values of all n-vertex trees.

RESULTS

Our main results are summarized in the Tables 1 & 3 (for trees) and 2 & 4 (for

chemical trees).

From Tables 1–4 we see that there exist very large families of equiseparable trees

and chemical trees, and that only a relatively small number of trees have no equi-

separable mate. A typical family of equiseparable chemical trees is depicted in Fig.

2.

The large number and the increasing size of the families of equiseparable trees

and chemical trees suggests that almost all trees have an equiseparable mate. More

precisely: the ratio of the number of n-vertex trees having no equiseparable mate,

and the total number of n-vertex trees tends to zero as n → ∞ . A formal proof of

this result will be communicated separately [18].



F n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
1 9 17 22 47 57 106
2 1 3 9 18 35 73
3 – – 1 3 9 20
4 – – 1 1 7 12
5 – – – 2 6 16
6 – – – – 1 8
7 – – – – – 1
8 – – – – 1 3
9 – – – – 1 1

10 – – – – – –
11 – – – – – 1
12 – – – – – 1
13 – – – – – –
F n = 13 n = 14 n = 15 n = 16 n = 17 n = 18 n = 19 n = 20
1 147 275 316 670 805 1539 1923 3695
2 108 215 329 625 892 1752 2466 4783
3 50 98 149 339 501 961 1385 2747
4 34 66 136 259 466 896 1508 2904
5 23 62 97 205 309 688 940 1896
6 17 44 83 192 335 660 1127 2262
7 6 18 48 76 142 302 492 1036
8 7 21 64 106 234 481 904 1801
9 11 22 34 104 152 317 501 955

10 5 9 30 79 169 333 618 1284
11 1 6 18 31 81 171 283 552
12 4 8 26 71 142 340 601 1327
13 1 3 17 26 44 115 182 413
14 2 6 12 40 116 252 454 1036
15 1 7 12 42 71 132 278 488
16 1 3 7 24 66 144 348 693
17 1 2 14 20 48 121 183 407
18 – 1 11 26 72 159 320 674
19 – 2 3 16 27 78 148 303
20 2 3 11 23 60 137 266 618

Table 1. Number of families of equiseparable n-vertex trees of small size (F ). The

case F = 1 pertains to trees having no equiseparable mate.



F n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
1 7 14 19 44 54 105
2 1 2 5 6 20 39
3 – – 2 5 9 22
4 – – – 1 5 11
5 – – – – 1 2
6 – – – – 1 5
7 – – – – 1 2
8 – – – – – 1
9 – – – – – –
F n = 13 n = 14 n = 15 n = 16 n = 17 n = 18 n = 19 n = 20
1 145 287 347 768 943 1876 2396 4783
2 81 157 269 502 823 1653 2495 4991
3 37 75 126 285 439 861 1347 2727
4 23 52 97 218 377 777 1393 2689
5 9 28 64 123 235 488 723 1542
6 9 29 61 131 256 533 942 1961
7 8 13 28 67 128 268 458 952
8 5 11 35 70 159 350 703 1381
9 2 6 14 40 89 175 368 716

10 2 6 25 49 106 256 468 1074
11 4 5 18 36 76 168 267 558
12 – 3 9 26 80 185 416 935
13 – 3 7 21 42 91 169 340
14 – 1 9 24 63 163 314 691
15 1 1 6 11 34 71 145 338
16 – – 4 13 33 97 229 499
17 – – 3 5 19 46 100 218
18 – 1 4 11 34 81 195 437
19 – – 1 8 20 45 104 216
20 – 2 2 10 25 58 173 408

Table 2. Number of families of equiseparable n-vertex chemical trees of small size

(F ). The case F = 1 pertains to chemical trees having no equiseparable mate.



n
7 2 1 1 1 1 1 1 1 1 1 – –
8 2 2 2 1 1 1 1 1 1 1 1 1
9 4 3 2 2 2 2 2 2 2 2 2 1

10 5 5 4 3 3 3 2 2 2 2 2 2
11 9 8 6 5 5 5 5 5 5 4 4 4
12 12 11 9 8 8 8 7 6 6 6 6 6
13 20 20 17 16 15 14 14 13 12 12 12 12
14 34 27 25 23 22 21 20 20 20 19 19 18
15 54 47 45 44 40 37 35 35 34 33 33 33
16 84 70 70 67 63 62 61 58 58 56 56 54
17 138 135 126 109 108 107 105 102 96 95 94 93
18 227 206 198 196 177 174 172 171 167 157 154 153
19 370 365 330 328 317 316 313 300 292 284 282 277
20 603 597 564 563 543 541 534 494 486 476 467 466

Table 3. Sizes of the twelve largest families of equiseparable n-vertex trees.

n
7 2 1 1 1 1 1 1 1 – – – –
8 2 2 1 1 1 1 1 1 1 1 1 1
9 3 3 2 2 2 2 2 1 1 1 1 1

10 4 3 3 3 3 3 2 2 2 2 2 2
11 7 6 5 4 4 4 4 4 3 3 3 3
12 8 7 7 6 6 6 6 6 5 5 4 4
13 15 11 11 11 11 10 10 9 9 8 8 8
14 20 20 18 15 14 13 13 13 12 12 12 11
15 35 31 27 27 25 24 23 22 22 21 21 21
16 49 42 40 40 37 35 35 33 31 30 30 30
17 80 75 69 68 67 63 61 56 56 55 55 54
18 123 116 112 104 93 91 91 87 87 83 80 79
19 203 181 180 170 162 161 154 151 147 146 146 138
20 314 295 291 286 252 251 244 228 222 218 211 203

Table 4. Sizes of the twelve largest families of equiseparable n-vertex chemical trees.



Figure 2. A characteristic 12-membered family of equiseparable trees. These have
n = 12 vertices. Among them the first 8 are chemical trees whereas the remaining 4
are not.
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[18] D. Vukičević, I. Gutman, Almost all trees have an equiseparable mate, in prepa-

ration.


