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The McClelland number of a conjugated hydrocarbon is the integer k, satisfying the condition

2–(1/2)k 2nm � E < 2–(1/2)k+1
2nm , where E is the HMO total �-electron energy, n the number

of carbon atoms, and m the number of carbon-carbon bonds. If k = 3, then the respective conju-

gated system is said to be energy-regular. If k � 2 and k � 4, then one speaks of energy-poor and

energy-rich �-electron systems, respectively. We found that all polycyclic Kekuléan hydrocar-

bons, possessing condensed rings, are energy-regular, with only three exceptions: naphthalene,

phenanthrene, and triphenylene (which are energy-rich). Energy-poor �-electron systems are

some (but not all) non-Kekuléans, whereas many of the polycyclic Kekuléan hydrocarbons with

non-condensed rings (polyphenyls, phenyl-substituted polyenes and similar) are energy-rich.
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INTRODUCTION

In the theory of conjugated molecules the total �-elec-

tron energy plays an outstanding role.1-4 In this paper we

are concerned with the total �-electron energy of conju-

gated hydrocarbons, as computed by means of the Hückel

molecular-orbital (HMO) model. In what follows, this

quantity is denoted by E; as usual,1–4 E is expressed in the

units of the HMO carbon-carbon resonance integral �.

An important result on E was obtained by McClel-

land,5 who showed that

E � 2nm (1)

where n is the number of carbon atoms and m the num-

ber of carbon-carbon bonds of the underlying conjugated

hydrocarbons (Recall that the formula of this hydrocar-

bon is CnH3n–2m).

The importance of McClelland’s upper bound (1) lies

in the fact that it provides a reliable approximate expres-

sion for E, namely

E = a 2nm (2)

with a � 0.9. The high quality of the approximation (2)

was confirmed by means of several extensive compara-

tive studies.4,6,7

From the inequality (1) itself, the approximation (2)

cannot be deduced. To arrive at (2) one would need also

McClelland-type lower bounds for E, namely a lower

bound of the form: E � g 2nm with g being some con-

stant. Initially,8 it was found that g = 16 27/ � 0.77 holds

for benzenoid hydrocarbons. This result was later im-

proved. First, one of the present authors9 arrived at g =

1/2, and then the other present author10 showed that

g = 4 15/ � 0.52 if n � 2, g = 3 10/ � 0.55 if n � 3,



g = 8 25/ � 0.57 if n � 4, and g = 1 3/ � 0.58 if n � 5.

These g-values hold provided the number of three-mem-

bered rings plus twice the number of four-membered rings

is less than the number of carbon atoms, a condition sat-

isfied by all chemically sound �-electron species. Addi-

tional improvements were: g = 32 81/ � 0.63, valid for

all conjugated molecules,11 and g = 32 49/ � 0.70, valid

for conjugated molecules with no four-membered rings.12

In what follows we employ the simplest among these

McClelland-type lower bounds,9 i.e.,

E �
1

2
2nm (3)

A METHOD FOR SHARPENING
THE McCLELLAND ESTIMATES

As explained in the preceding section, the HMO total �-

electron energy is estimated by McClelland-type expres-

sions as

1

2
2nm � E � 2nm (4)

Formula (4) is, of course, just a combination of (1)

and (3).

We now show how the estimates (4) can be improved.

Construct a sequence E0,E1,E2,…in the following

manner. Let E0 =
1

2
2nm and let Ei, i = 1,2,... , be recur-

sively defined as Ei = E nmi�1 2 . In other words, Ei is

equal to the geometric mean of Ei-1 and the McClelland

upper bound (1). As a consequence of this, it must be

E0 < E1 < E2 < E3 < � (5)

and

lim
i

iE
��

= 2nm (6)

By direct calculation we obtain

Ei = 2–(1/2)i 2nm (7)

Bearing in mind (4), the relations (5) and (6) imply

that there must exist an integer k, such that Ek � E < Ek+1,

i. e., by taking into account relation (7),

2–(1/2)k 2nm � E < 2–(1/2)k+1
2nm (8)

Evidently, the estimates (8) are better (narrower) than

the starting estimates (4), and their quality increases with

the increasing value of k. Furthermore,

E(G) � E Ek k	1 = 8–(1/2)k+1
2nm (9)

should be a reasonably good approximation for the total

�-electron energy, especially if k is large enough.

For obvious reasons we call the parameter k the Mc-

Clelland number. Because the actual value of k depends

on the conjugated system considered, we speak of the

McClelland number of a particular conjugated molecule.

Each conjugated molecule has its McClelland number.

Numerical values of the multipliers 2–(1/2)k and 8–(1/2)k+2

for the first few values of k are given in Table I.

ENERGY-REGULAR, ENERGY-POOR, AND
ENERGY-RICH CONJUGATED HYDROCARBONS

As explained in the subsequent section, the McClelland

number of practically all polycyclic conjugated molecules

that are of interest in both experimental and theoretical

chemistry is equal to 3. This means that the respective

HMO total �-electron energies may be reproduced by

means of the expression (2) for some value of the multi-

plier a belonging to the narrow interval (0.9170,0.9576).

We refer to these molecules as energy-regular.

If the McClelland number is less than 3, then the pa-

rameter a in Eq. (2) is less than 0.917 and, consequently,

the respective conjugated systems have E-values smaller

than their »regular« mates. Such conjugated systems may

be classified as energy-poor.

In a fully analogous manner, if the McClelland num-

ber of a conjugated molecules is greater than 3, we may

include this molecule into the class of energy-rich �-

electron species.

NUMERICAL WORK

In order to be able to apply the estimates (8) and the ap-

proximation (9) to a particular conjugated hydrocarbon,
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TABLE 1. The multipliers occurring in the lower bound in (8) and
in the approximate formula (9), pertaining to the McClelland
number k. Note that the multiplier in the upper bound in (8) is
equal to the lower-bound-multiplier for k+1.

k 2–(1/2)k 8–(1/2)k+2

0 0.5000 0.5946

1 0.7071 0.7711

2 0.8409 0.8781

3 0.9170 0.9371

4 0.9576 0.9680

5 0.9786 0.9839

6 0.9892 0.9919

7 0.9946 0.9959

… … …

� 1.0000 1.0000



one must know the actual value of the corresponding

McClelland number k. In the general case, various con-

jugated species have different values of the McClelland

number. In view of this, for the practical applicability of

Eqs. (8) and (9) it is essential that all (or, at least, the

majority) of conjugated molecules have equal McClelland

numbers. In order to test this requirement, we have under-

taken extensive numerical studies.

We computed the McClelland numbers of all benze-

noid hydrocarbons from the books,13,14 all catacondens-

ed benzenoid hydrocarbons with 8 and fewer hexagons

(employed in the paper15), all pericondensed benzenoids

with 7 and fewer hexagons (from the book16), all phenyle-

nes with 8 and fewer hexagons (also from the paper15),

all non-alternant hydrocarbons from the book,17 all acyclic

polyenes with 10 and fewer carbon atoms, the maximal-

energy uni-, bi-, tri-, and tetracyclic conjugated hydro-

carbons,18 as well as a variety of other polycyclic conju-

gated species. Thus a total of about 2000 conjugated �-

electron systems was examined.

The main result of our quest is surprisingly simple:

Rule 1. All, except three, polycyclic Kekuléan conju-

gated hydrocarbons, the rings of which are condensed,

are energy-regular. There exist only three exceptions: naph-

thalene, phenanthrene, and triphenylene, whose McClelland

numbers are equal to 4.

Rule 2. All Kekuléan acyclic polyenes are energy-re-

gular.

With regard to the conjugated species having McClel-

land numbers different from 3, we have established the

following:

Rule 3a. Some, but far not all, polycyclic non-Keku-

léan conjugated hydrocarbons, the rings of which are con-

densed, are energy-poor (with McClelland numbers usu-

ally equal to 2).

Rule 3b. Some, but not all, non-Kekuléan acyclic poly-

enes are energy-poor (usually having McClelland num-

bers equal to 2).

Rule 4. Some, but not all, polycyclic Kekuléan hydro-

carbons with non-condensed rings (polyphenyls, phenyl-

substituted polyenes and similar) are energy-rich (usually

having McClelland numbers equal to 4). To these belong

also the monocyclic conjugated species, including ben-

zene.

In Figure 1 are depicted some characteristic repre-

sentatives of energy-poor and energy-rich conjugated hy-

drocarbons, as well as the three exceptions mentioned in

Rule 1.

DISCUSSION

The fact that all (except three) chemically sound poly-

cyclic conjugated hydrocarbons, and in particular, all (ex-

cept three) Kekuléan benzenoid hydrocarbons, have the

same McClelland numbers, shows that the McClelland-

number-concept was well chosen. At this moment our

main discovery, formulated above as Rules 1 and 2, is

based only on an extensive numerical testing. It remains

a task for the future to find a mathematically rigorous

proof of these Rules or, perhaps, to show that they can

be violated.

The classification of conjugated hydrocarbons as en-

ergy-regular, energy-poor, and energy-reach is not some-

thing that deserves great attention. Namely, almost all

polycyclic conjugated hydrocarbons belong to the energy-

-regular category (which, thus, embraces both »aromatic«,

»non-aromatic« and »anti-aromatic«species). The major-

ity of conjugated molecules classified as energy-rich are

non-planar and neither their HMO total �-electron ener-

gies nor their McClelland numbers should be considered

as physically meaningful. The majority (or all?) of con-

jugated molecules classified as energy-poor are non-Ke-

kuléans or have zero algebraic structure count. Such �-

electron systems are known to be non-existent (at least

in a planar or nearly-planar conformation).

Bearing the above in mind, one of the interesting con-

clusions that follow from our considerations is that the

three benzenoid hydrocarbons mentioned in Rule 1 (plus,

if one prefers, benzene) are the true and unique chemi-

cally realistic conjugated hydrocarbons that are not ener-

gy-regular, i. e., that have a truly exceptional energetics.

The present version of the McClelland-number-con-

cept is applicable only to conjugated hydrocarbons. Its

extension to heteroconjugated molecules is possible and

we intend to do it in the future.

THE McCLELLAND NUMBER OF CONJUGATED HYDROCARBONS 487

Croat. Chem. Acta 78 (4) 485–488 (2005)

1
2 3

4 5 6

7 8 9

Figure 1. Examples of energy-poor (1-3) and energy-rich (4-9)
conjugated hydrocarbons. The energy-poor systems 1 and 3 are
non-Kekuléan. The Kekulé structure count of 2 is equal to four,
but its algebraic structure count1 is zero. Compounds 5 and 6 are
characteristic representatives of energy-rich conjugated hydrocar-
bons. These have highly non-planar geometries and are therefore
not suitable for the application of HMO theory (including the Mc-
Clelland-number-concept). Compounds 7- 9 seem to be the only
stable planar polycyclic conjugated hydrocarbons with McClelland
number different from 3.
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McClellandov broj konjugiranih ugljikovodika

Ivan Gutman, Lemi Türker, Boris Furtula i Veselin Vu~kovi}

McClellandov broj konjugiranoga ugljikovodika cijeli je broj k, koji zadovoljava uvjet 2–(1/2)k 2nm � E <

2–(1/2)k+1
2nm, gdje je E ukupna HMO �-elektronska energija, n broj ugljikovih atoma, a m broj ugljik-ugljik

veza. Ako je k = 3, onda se za odgovaraju}i konjugirani sustav ka`e da je energijski regularan. Ako je k � 2

odn. k � 4, onda govorimo o energijski siroma{nome odn. energijski bogatome �-elektronskom sustavu. Na{li

smo da su svi policikli~ki Kekuléovski ugljikovodici s kondenziranim prstenima energijski regularni, uz jedina

tri izuzetka: naftalen, fenantren i trifenilen (koji su energijski bogati). Energijski siroma{ni su neki (ali ne svi)

ne-Kekuléovski �-elektronski sustavi, dok su mnogi policikli~ki Kekuléovski ugljikovodici bez kondenziranih

prstenova (polifenili, fenil-substituirani polieni i sli~ni) energijski bogati.
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