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Abstract

The Chinese mathematicians Heping Zhang and Fuji Zhang conceived a combina-

torial polynomial associated with benzenoid molecules. This “Zhang–Zhang polyno-

mial” contains information on both Kekulé– and Clar–structure–based characteristics

of the underlying benzenoid molecule. We first explain the definition of the Zhang–

Zhang polynomial (and the theoretical concepts on which it is based), and then point

out some of its applications to resonance energies. A peculiar discovery made by

means of the Zhang–Zhang polynomial is that there are substantial differences be-

tween the structure dependence of the Dewar resonance energy and the topological

resonance energy.



142

INTRODUCTION

In the theoretical chemistry of benzenoid hydrocarbons [1] Kekulé structures play

an outstanding role. For details on this matter see the books [1,2] and the references

quoted therein. Another important direction in the theory of benzenoid molecules is

the diagrammatic approach put forward by Clar [3], in which so-called Clar aromatic

sextet formulas are used to describe the dominant modes of cyclic conjugation of

π-electrons [1,3,4].

The number of Kekulé structures and Clar formulas of a benzenoid system B will

be denoted by K = K(B) and C = C(B) , respectively. The number Cl of aromatic

sextets in (any of the) Clar formulas of a benzenoid system is said to be its Clar

number .

Recently, in the mathematical literature a combinatorial polynomial has been

proposed [5–7], from which K , C , Cl , C , and and many other Kekulé– and Clar–

structure–based properties of a benzenoid molecules can be directly deduced. Its

inventors are the Chinese mathematicians Heping Zhang and Fuji Zhang and therefore

we propose to call it the Zhang–Zhang polynomial .

The Zhang–Zhang polynomial (in the variable x), pertaining to the benzenoid

system B , will be denoted by ζ(B, x) or simply by ζ(x) .

In what follows we provide the definition of the Zhang–Zhang polynomial and

present its chemically most important properties. In order to do this we, however,

need some preparations which we do in the subsequent section. In that section the

concepts of Kekulé, Clar, and generalized Clar formulas are clarified. In the next

section we state the definition of the Zhang–Zhang polynomial, together with some

illustrative examples. In the fourth section we then show how the Zhang–Zhang

polynomial can be applied in the theory of resonance energy.

FROM THE THEORY OF BENZENOID HYDROCARBONS

Details on the theory of benzenoid hydrocarbons and, especially, on its Kekulé

and Clar structures, can be found in the book [1,2]. In what follows we explain some
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of the basic notions of this theory, needed for the definition of the Zhang–Zhang

polynomial.

A Kekulé structure of a benzenoid hydrocarbon is an arrangement of double bonds,

such that exactly one double bond ends at every carbon atom. The number of Kekulé

structures (= the Kekulé structure count) of a benzenoid system B will be denoted by

K = K(B) . In what follows we consider only Kekuléan benzenoids, i. e., benzenoid

species for which K > 0 . In Fig. 1 are depicted all the nine possible Kekulé structures

of benzo[a]pyrene (BAP ); thus, K(BAP ) = 9 .

In Clar theory a group of six π-electrons (the so-called aromatic sextet) is rep-

resented by a circle drawn in a hexagon. The Clar aromatic sextet formulas of a

benzenoid molecule are obtained by drawing circles in some hexagons, so that the

following three requirements are obeyed:

1◦ Circles must not be drawn in adjacent hexagons.

2◦ The part of the benzenoid system not covered by circles must have a Kekulé

structure.

3◦ As many as possible circles are drawn, taking care that conditions 1◦ and 2◦ are

not violated.

All Clar formulas of B possess an equal number of aromatic sextets, which is just

the Clar number Cl = Cl(B) .

In Fig. 2 the diagrams c1 , c2 , and c3 are the three Clar formulas of benzo[a]pyrene;

thus C(BAP ) = 3 and Cl(BAP ) = 2 .

Hosoya and Yamaguchi [8] proposed to abandon requirement 3◦ , which then re-

sults in the so-called generalized Clar formulas. The generalized Clar formulas may

thus possess Cl or fewer than Cl circles, including the case of the “empty” formula

without any circle. In Fig. 2 are depicted all the nine generalized Clar formulas of

benzo[a]pyrene, with c9 being the “empty” formula.

The fact that the number of generalized Clar formulas of benzo[a]pyrene is equal

to its Kekulé structure count (cf. Figs. 1 and 2) is the consequence of a deep–lying

connection between the two theories. A procedure for achieving a one–to–one corres-
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Fig. 1. The nine Kekulé structures of benzo[a]pyrene (BAP ). These have been
drawn in such a manner that the Kekulé structure ki corresponds to the generalized
Clar formula ci in Fig. 2, i = 1, 2, . . . , 9 . The correspondence is achieved by drawing
circles into the hexagons in which there are three double bonds with the vertical
double bond on the left–hand side, and leaving all other hexagons empty. (More
details on this correspondence are found in the book [2].)

pondence between the Kekulé and generalized Clar structures is described in the

caption of Fig. 1.

THE ZHANG–ZHANG POLYNOMIAL

The idea of the Zhang–Zhang polynomial relies on the observation that whereas

in ordinary Clar formulas the arrangement of the remaining double bonds (if any) is

uniquely determined, the generalized Clar formulas are compatible with several such

arrangements. Zhang and Zhang call these arrangements “Clar covers” [5–7].

In Fig. 3 we consider the example of benzo[a]pyrene. In diagrams cc11 , cc21 ,

and cc31 are indicated the positions of the double bonds in the Clar formulas c1 , c2 ,

and c3 , respectively (cf. Fig. 2). These arrangements are unique. In the case of

generalized Clar formulas with fewer than Cl aromatic sextets, several arrangements
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of the double bonds are possible: three for c4 and c8 , two for c5 and c7 and only

one for c6 , a total of 11 Clar covers with a single aromatic sextet. The “empty”

generalized Clar formula c9 (see Fig. 2) is compatible with all nine Kekulé structures

of benzo[a]pyrene, cf. Fig. 1.
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Fig. 2. The nine generalized Clar structures of BAP . The three diagrams c1 , c2 ,
and c3 are the ordinary Clar formulas, each possessing Cl = 2 aromatic sextets. There
are five diagrams with a single sextet (c4—c8) and a unique “empty” diagram (c9).

Let z(B, k) be the number of Clar covers of the benzenoid system B , possessing

exactly k aromatic sextets. Then the Zhang–Zhang polynomial of B is defined as

[5,9]

ζ(x) = ζ(B, x) =
∑

k≥0

z(B, k) xk .

An example illustrating the definition of the Zhang–Zhang polynomial is found in

the caption of Fig. 3. More examples can be found in the recent papers [10–12].

In the paper [12] we have shown how the Zhang–Zhang polynomial can easily be

calculated in a recursive manner. (The algorithm elaborated in [12] was earlier com-

municated by Zhang and Zhang [5], but in a style not easy to chemists to understand.)

Anyway, if ζ(B, x) is known, then we immediately know also the following:
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Fig. 3. The Clar covers of BAP pertaining to the generalized Clar structures c1–c8

from Fig. 2. The diagrams cc11 , cc21 , and c31 have two aromatic sextets whereas cc41 ,
cc42 , cc43 , cc51 , cc52 , cc61 , cc71 , cc72 , cc81 , cc82 , and cc83 have one sextet. The Clar
covers pertaining to the “empty” Clar formula c9 are just the nine Kekulé structures
depicted in Fig. 1, possessing no aromatic sextets. Thus benzo[a]pyrene has 9, 11, and
3 Clar covers with, respectively, 0, 1, and 2 aromatic sextets, i. e., z(BAP , 0) = 9 ,
z(BAP , 1) = 11 , and z(BAP , 2) = 3 , resulting in the Zhang–Zhang polynomial
ζ(BAP , x) = 9 + 11 x + 3 x2 .

• the Kekulé structure count — since K(B) is the first coefficient of ζ(B, x) , i. e.,

K(B) = ζ(B, 0) = z(B, 0) ;

• the Clar number — since Cl(B) is equal to the degree of the polynomial ζ(B, x) ;
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• the Clar structure count — since C(B) is equal to the coefficient of the greatest–

power term of ζ(B, x) , i. e., C(B) = z(B,Cl) .

In addition to this, the second coefficient of the Zhang–Zhang polynomial, i. e.,

z(B, 1) , is equal to the number of greatest off-diagonal matrix elements in Herndon’s

resonance–theoretical approach [1,13,14]. The sum of all coefficients of the Zhang–

Zhang polynomial, i. e., ζ(B, 1) , was recently shown to be related to the resonance

energy of the underlying benzenoid molecule [10,11].

ON RESONANCE ENERGY

In the 1970s theoretical chemists were much interested in so-called “resonance

energies”, quantities aimed at measuring the “aromaticity” (or “antiaromaticity”)

of polycyclic conjugated π-electron systems. The breakthrough in this direction was

achieved by Dewar, who recognized that aromaticity/antiaromaticity is a consequence

of thermodynamic stabilization/destabilization caused by cyclic conjugation of π-

electrons. In order to measure this effect, a new resonance energy was conceived [15]

in which the reference was chosen so that the resonance energy of acyclic polyenes is

nil. Eventually, this quantity was named “Dewar resonance energy” (DRE) [16,17].

The original Dewar–de Llano version of of DRE [15] was computed by means of a

complicated (and at that time advanced) semiempirical SCF-MO method. In 1971

Hess and Schaad showed [18,19] that equally good results are obtained when DRE

is calculated by the simple Hückel molecular orbital (HMO) model. Somewhat later,

using the mathematical apparatus of graph spectral theory, the same idea (again

within the HMO scheme) was put in an algebraically more pleasing form, resulting

in the “topological resonance energy” (TRE). The discovery of TRE was made by

Gutman, Milun and Trinajstić [20,21] and independently by Aihara [22,23]. For more

details on the DRE and TRE concepts, as well for comparative studies of these and

other resonance energies, see the books [24,25], the reviews [4,26], and the references

quoted therein.

From the very beginning it was anticipated that DRE and TRE reflect one and

the same physico–chemical feature of polycyclic conjugated molecules. This viewpoint
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was believed to be satisfactorily and completely verified by the finding of a (not very

good) linear correlation between DRE and TRE [21] and by establishing a simple

(yet approximate) mathematical relation between the two resonance energies [27].

In Fig. 4 we illustrate the correlation between DRE and TRE in the case of

isomeric benzenoid hydrocarbons. This correlation is linear, having a very small (and

statistically insignificant) curvilinearity.

Also in the 1970s, approaching the problem from a different direction, Herndon

proposed a resonance–energy–concept, based on Kekulé structures [13,28,29]. As a

non-surprising result he could show [30] that in the case of benzenoid hydrocarbons,

DRE is proportional to ln K , where K is the Kekulé structure count. It is interesting,

however, that neither Herndon nor anybody else ever checked if DRE of benzenoid

molecules is really proportional to the logarithm of the Kekulé structure count.

Because DRE strongly depends on the size of a benzenoid molecule, it is purpose-

ful to examine the DRE /K correlation within sets of isomers. In Figs. 5 and 6 we

show a characteristic example, corroborating the logarithmic dependence of DRE on

K .

Bearing in mind the (now established) logarithmic dependence of DRE on K , and

the (almost) linear correlation between DRE and TRE , it was reasonable to expect

that also TRE depends on K in a linear manner. However, this conclusion happens

to be false, as will be demonstrated later in this paper. The fact is that the structure–

dependencies of DRE and TRE are significantly different. These differences can be

best envisaged by using the Zhang–Zhang polynomial. Namely, the Zhang–Zhang

polynomial makes it possible to shed new light on the structure–dependence of DRE

and TRE [10,11], as outlined in due detail in the subsequent section.
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Fig. 4. Correlation between TRE and DRE for the (complete) set of 118 isomeric
heptacyclic catacondensed benzenoid hydrocarbons C30H18 . The correlation is linear.
By a careful inspection a slight curvilinearity can be observed. However, by means
of F -test, this curvilinearity is found to be statistically not significant at a 90% (or
higher) confidence level.
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Fig. 5. Correlation between DRE and K for the (complete) set of 118 isomeric hep-
tacyclic catacondensed benzenoid hydrocarbons C30H18 . The correlation is evidently
curvilinear.
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Fig. 6 Correlation between DRE and ln K for the same benzenoid molecules as in
Fig. 5. The correlation is linear; correlation coefficient R = 0.996 ; if any curvilinear-
ity exists at all, it is statistically insignificant (at 99% confidence level, as checked by
F -test). This result verifies that the dependence of the Dewar resonance energy on
the Kekulé structure count is logarithmic.

ZHANG–ZHANG POLYNOMIAL AND RESONANCE ENERGY

As explained above the logarithm of the Kekulé structure count K was believed

to be related to various resonance energies. Bearing in mind that K is equal to the

Zhang–Zhang polynomial at x = 0 , an approximation of the form

RE ≈ a ln ζ(x) + b (1)

comes readily to mind [10,31]. In formula (1) the variable x may be viewed as an

adjustable parameter, not necessarily equal to zero. On the other hand, it looked

reasonable to expect that the optimal value of x in Eq. (1) will be the same (or

at least nearly same) for all Dewar–type resonance energies, in particular for DRE

and TRE . We, however, found that this is not the case, revealing a concealed,

but significant, difference between the structure–dependence of these two variants

of Dewar resonance energy. Whereas for DRE , in harmony with earlier studies,
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the optimal value of x is near to zero, TRE is found to be best reproduced by the

logarithm of ζ(1) .

In this work we report the results of the examination the dependence of the preci-

sion of the approximation (1) on the variable x for catacondensed benzenoid isomers.

As well known [1], a catacondensed benzenoid hydrocarbon with h six-membered

rings has 4h + 2 carbon and 2h + 4 hydrogen atoms, i. e., its formula is C4h+2H2h+4 .

Consequently, all catacondensed benzenoid systems with the same h-value are isomers.

Four sets of catacondensed benzenoid isomers were studied, each consisting of all

possible isomers: those with h = 4 (5 isomers), h = 5 (12 isomers), h = 6 (36 isomers),

and h = 7 (118 isomers). In all examined cases there is some “optimal” value of x

at which the correlation coefficient is maximal, and an equal or near–lying value of

x at which the average relative error is minimal. However, these optimal values of x

significantly differ for DRE and TRE. The respective results are collected in Tables

1 and 2.

In the case of DRE the optimal value of x is remarkably close to zero. In the

case of TRE this optimal value is much larger, and does not significantly differ from

unity.

Such great differences between the behavior of DRE and TRE call for an expla-

nation. This explanation (found by us by performing numerous – in most cases un-

successful – computer experiments) is remarkably simple: Whereas DRE is, TRE is

not a logarithmic function of the Kekulé structure count K . Indeed, TRE was found

to be an almost perfect linear function of K , implying that in the case RE = TRE

instead of Eq. (1) one should use

RE ≈ a ζ(x) + b . (2)

In Figs. 7 and 8 we illustrate the fact that the correlation between TRE is linear

(Fig. 7), and by no means logarithmic (Fig. 8). More data on this newly discovered

regularity will be communicated elsewhere. Some preliminary result are collected in

Table 3.
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h maximal R minimal ARE
4 0.9996 (at x = −0.03) 0.23% (at x = 0.03)
5 0.997 (at x = −0.05) 0.58% (at x = −0.16)
6 0.997 (at x = 0.14) 0.49% (at x = 0.13)
7 0.996 (at x = 0.27) 0.41% (at x = 0.19)

R (at x = 0.0) ARE (at x = 0.0)
4 0.9996 0.24%
5 0.997 0.59%
6 0.997 0.49%
7 0.996 0.44%

R (at x = 1.0) ARE (at x = 1.0)
4 0.995 0.88%
5 0.994 0.79%
6 0.994 0.73%
7 0.994 0.59%

Table 1. Statistical data (obtained by least–squares fitting) for the approximation (1)
for RE = DRE and for the sets of isomeric catacondensed benzenoid hydrocarbons
with h = 4 , 5, 6, and 7 hexagons. The results for x = 0 practically coincide with
the optimal ones. The results for x = 1 are significantly weaker, relative to those for
optimal x or x = 0 .

h maximal R minimal ARE
4 0.998 (at x = 0.92) 0.53% (at x = 0.71)
5 0.993 (at x = 0.78) 0.79% (at x = 0.71)
6 0.990 (at x = 0.81) 0.78% (at x = 0.67)
7 0.989 (at x = 0.82) 0.71% (at x = 0.76)

R (at x = 0.0) ARE (at x = 0.0)
4 0.994 0.98%
5 0.991 0.90%
6 0.986 0.99%
7 0.984 0.87%

R (at x = 1.0) ARE (at x = 1.0)
4 0.998 0.54%
5 0.993 0.80%
6 0.990 0.80%
7 0.989 0.72%

Table 2. Same data as in Table 1 for RE = TRE . In this case the results for x = 1
only slightly differ from the optimal ones. For x = 0 considerably weaker correlations
are obtained.
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Fig. 7. Correlation between TRE and K for the same benzenoid molecules as in
Fig. 5. The correlation appears to be linear; correlation coefficient R = 0.993 ; if
any curvilinearity exists at all, it is statistically insignificant (at 99% confidence level,
as checked by F -test). This result verifies that the dependence of the topological
resonance energy on the Kekulé structure count is essentially linear and by no means
logarithmic.
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Fig. 8. Correlation between TRE and ln K for the same benzenoid molecules as in
Fig. 5. This correlation is evidently curvilinear.
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h maximal R minimal ARE
4 0.999985 (at x = 0.21) 0.04% (at x = 0.21)
5 0.998 (at x = 0.12) 0.39% (at x = −0.03)
6 0.996 (at x = −0.03) 0.49% (at x = 0.03)
7 0.993 (at x = −0.07) 0.55% (at x = 0.01)

R (at x = 0.0) ARE (at x = 0.0)
4 0.9994 0.28%
5 0.998 0.39%
6 0.996 0.50%
7 0.993 0.55%

R (at x = 1.0) ARE (at x = 1.0)
4 0.9992 0.36%
5 0.997 0.47%
6 0.992 0.64%
7 0.988 0.64%

Table 3. Statistical data (obtained by least–squares fitting) for the approximation (2)
for RE = TRE and for the sets of isomeric catacondensed benzenoid hydrocarbons
with h = 4 , 5, 6, and 7 hexagons. The results for x = 0 practically coincide with
the optimal ones. The results for x = 1 are significantly weaker, relative to those for
optimal x or x = 0 .
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ZHANG–ZHANGOV POLINOM

I NEKE NJEGOVE PRIMENE

Sabina Gojak, Sonja Stanković, Ivan Gutman i Boris Furtula

IZVOD

Zhang–Zhangov polinom je nedavno uvedeni kombinatorni objekt koji u sebi sadrži

sve osnovne kvantitativne pokazatelje o Kekuléovim strukturama i Clarovim formu-

lama benzenoidnih jedinjenja. Ovaj polinom koncipirali su kineski matematičari Hep-

ing Zhang i Fuji Zhang i u nizu radova ustanovili njegove osnovne osobine. Ti radovi

su, med-utim, objavljeni u matematičkim časopisima i hemičari na njih do sasvim

nedavno nisu obratili potrebnu pažnju.

U članku je navedena definicija Zhang–Zhangovog polinoma, i ilustrovana jednim

detaljno razrad-enim primerom (Slike 1, 2 i 3). Pre toga opisani su osnovni pojmovi

teorije benzenoidnih sistema koji su potrebni za definisanje Zhang–Zhangovog poli-

noma.

Za benzenoidni sistem B , Zhang–Zhangov polinom ζ(B, x) je definisan na sledeći

način:

ζ(x) = ζ(B, x) =
∑

k≥0

z(B, k) xk

gde z(B, k) predstavlja broj Clarovih prekrivanja sistema B , koji sadrže tačno k

aromatičnih seksteta. (Za primer koji ilustruje ove pojmove videti Sliku 3.)

Jedna od osnovnih osobina Zhang–Zhangovog polinoma jeste da je njena vrednost

za x = 0 jednaka broju Kekuléovih struktura K . Na toj osobini zasnivaju se primene

Zhang–Zhangovog polinoma koje su u ovom radu razmatrane.

Naime, broj Kekuléovih struktura K je jedna od najbolje proučenih i najčešće

primenjivanih kvantitativnih strukurnih karakteristika benzenoidnih ugljovodonika.

Ako se neka osobina benzenoidnog sistema B može prikazati (kao vǐse ili manje dobra

aproksimacija) u obliku f(K(B)) , onda se ta ista osobina može aproksimirati i kao

f(ζ(B, x)) za neku vrednost promenljive x , koja može ali ne mora biti jednaka nuli.
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U radu smo proučavali dve energije rezonancije koje se od sedamdesetih godina

prošlog veka mnogo primenjuju u teoriji benzenoidnih jedinjenja, za opisivanje njihove

takozvane “aromatičnosti”. To su Dewarova energija rezonancije DRE i topološka

energija rezonancije TRE . Obe su zamǐsljene da opisuju jednu te istu elektronsku

karakteristiku benzenoidnih jedinjenja, i zato ne iznenad-juje da med-u njima postoji

veoma dobra (skoro potpuno linearna) korelacija. Ona je, na primeru izomernih

heptacikličnih katakondenzovanih ugljovodonika, prikazana na Slici 4.

Budući da je od ranije bila u upotrebi aproksimacija

RE ≈ a ln K + b

za RE = DRE , mi smo ispitali formule

RE ≈ a ln ζ(x) + b

kako za RE = DRE tako i za RE = TRE . Dobiveni rezultati prikazani su u

Tabelama 1 i 2. Iz ovih tabela se vidi da je u slučaju DRE optimalna vrednost

za x bliska nuli, dok je u slučaju TRE ova optimalna vrednost znatno veća i bliža

je jedinici. Tako velika razlika u zavisnosti ovih energija rezonancije od molekulske

strukture ukazuje da u slučaju TRE upotreba logaritamske zavisnosti nije legitimna.

Dalja istraživanja su pokazala da DRE zaista ima logaritamsku zavisnost od K (Slike

5 i 6), ali da je zavisnost TRE od K u suštini linearna (Slike 7 i 8). Iz toga sledi da

se u slučaju TRE ne smeju primenjivati gore pomenute aproksimacije, nego

RE ≈ aK + b

i

RE ≈ a ζ(x) + b .

Rezultati nad-eni za linearnu zavisnost TRE of ζ(x) prikazani su u Tabeli 3. Nad-ene

optimalne vrednosti za promenljivu x sada su veoma bliske nuli.


