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On m-electron excess of rings of benzenoid molecules
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In a previous paper [Gutman I, Indian J Chem 43A (2004) 1615], the concept of n-electron excess of rings of
benzenoid hydrocarbons has been introduced, aimed at amending the s-electron contents of rings computed on the basis of
Pauling bond orders. We now show how a m-electron-content-like quantity can be computed from the Hosoya bond orders

and establish its close relation with the s-electron excess.

Randi¢ and Balaban'® have recently invented a
method for partitioning of the m-electrons of a
benzenoid hydrocarbon into its rings. This method
utilizes Kekulé structures and the respective electron
content of a ring R can be expressed in terms of
Pauling bond orders as":
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where the first summation goes over bonds rs that
belong solely to the ring R, whereas the second
summation is over bonds rs shared by the ring R and
another ring. However, the Pauling bond order of the
bond rs between the atoms r and s is defined as™®:

pP =K(B-r-s/K(B) =12

where K(B) stands for the Kekulé structure count of
the underlying benzenoid system B. K(B-r-s) denotes
the number of those Kekulé structures in which the
bond rs is double, i.e. K{B-r-s) is the number of
Kekulé structures of the subgraph B-r-s, obtained by
deleting from B the vertices r and 5. Some recent
applications of the Pauling bond orders are also
known*™”,
Theoretical

The success of Eq. (1) is based on the relation'":

23 pF =n .(3)
rs

in which the summation goes over all bonds rs and n
is the total number of w-clectrons of the conjugated

molecule considered. Eq. (3) may be interpreted as a
distribution of the m-electrons into the bonds of the

respective conjugated molecule, so that the term 2 pi

15 the m-electron content of the bond rs.
Bearing in mind the analogous relation for the

Coulson bond order p, , as reported earlier'”:
25 p& =E (4)
rs

where E is the total m-electron energy, we recently
conceived the energy content of a ring as'"'*:

ec(R)=23 pf; + T P .(5)

In view of relations (1) and (5), it is reasonable to
ask if other bond-order-like quantities may also be
employed in the analysis of the local m-electron
properties of conjugated molecules''*. We now focus
our attention to the Hosoya bond order'™"” and derive
a Hosoya-bond-order-based electron content of a ring,
ECy(R). Some recent applications of the Hosoya bond
orders can be found in the papers'®™. We can
generalize this approach by finding a connection
between ECge(R) and ECy(R), which sheds new light
on the recently introduced concept of m-electron
excess” .

Hosoya bond order and its physical interpretation
In an attempt to extend the applications of his
"topological index” (nowadays known under the name
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"Hosoya index’) to conjugated m-electron systems,

Hosoya defined a bond order p_.{j T el
pH =2(B-r-s)12(8) .(6)

where Z(G) stands for the Hosoya index of the graph
G. The analogy between Egs (2) and (6) is evident.
One should recall that Z{G) 1s equal to the total
number of matchings of the graph G, whereas K(G) is
equal to the number of its perfect matchings. The
main difference between the Pauling and Hosoya
bond orders is that in contrast with Eq. (3), the sum
(7)

gapf;' (1)

has no visible relation to the electron characteristics
of the underlying conjugated molecule.

We now offer a result that could fill this gap.

The Hosoya index of an;..-r graph G conforms to the
recurrence relation™
Z(Gj:Z{G_—e]+ZI{Gvr-4£} (8
where ¢ is an edge (any-adge} of &, and r and s are the

two end vertices of e. Further, if the graph & consists
of two disjoint components G, and G, then:

Z(G) = Z(G,) Z(G,) -8)

Let ey, e, ..., e4 be the edges of G, terminating at the
vertex r. Let s, 82, ..., 53 be, respectively, the other
end vertices of the edges e, e, . €1 Then by
applying relation (8) consecutively to all edges that
terminate at the vertex r, we get:

Z(G)=Z(G ¢, e, ~~e, +y,z<a res,)

The subgraph G-e;-ex-...-e4 = i5 ** disconnected,
consisting of G-r and an isolated venex Then, usmg
Eg.(9). we get ;

Z[G e, —e; wpimer)=hisg)

because the-Z-index of a smg‘la-\rr::rtex gmpl'r 18 equa']_ _

to unity.

Combining the above relations, we arrive at. .

ZIGY=Z(G-r+ LZ(G-r-3)
s—r

¥ indicates summation over all vertices s
5
that are adjacent to the vertex r. Summing Eq. (10}
over all n vertices of the graph G and bearing in mind
that every edge has two end vertices, we obtain the
identity

..(10)

where

rZIG) =FZ(G-Y+2FZ(G—r—135) o CELY
¥ rs

which can be rewritten as:

2¥ G —r—-sYZIGV+FYZG=-r)Z(G)=n...(12)
rs r

Applied to a benzenoid system B, this identity

becomes:

25 pH 43 pH =y (13)
rs r

where, in analogy to Eg. (6), we define
H

Prr =Z(G -/ Z(G).

Relation (13) should be compared with Eq. (3). It
immediately implies a natural interpretation of the
Hosoya bond order. Eq. (13) may be viewed as a
distribution of the m-electrons into the bonds and
atoms of the respective conjugated molecule, so that

the term 2 pg is the m-electron content of the bond

rs, and the term p f:}r the m-electron content of the

atom r.

Thus, we shall see that this Hosoya-bond-order-
based electron distribution pertains to the case when
the m-electron conjugation effects are (almost)

; comp]ete]y disregarded.

Hosoya-bond-order based n-electron content of rings

In full analogy with the Kekulé-structure-based n-
electron content of a ring, Eq. (1),"bearing in mind
Eq.(13) and its interpretation, we define the Hosoya-
index-based n-electron content as:

ECy(R)=2%pf +Zrk +Zpy %E d
e}
: _
+= % pl .(14)
3 ooo
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Table 1—} losoya-bond-order-based m-electron contents [ECy,. Eq. (14)] of rings of benzenoid hydrocarbons, dcp:cled in Fig. 1 [v is the
number of first neighbours of the ring considered. For comparative purposes also, the Kekulé-structure-based n-electron contents
[ECgp. Eqg. (1)] are given]

Molecule Ring ECy v ECpp
1 A 4979 1 4.750
B 4.041 2 4.500

9 A 5.030 1 5.200
B 31939 r 3.600

A 4.978 1 4,500

3 B 4.021 2 4.333
c 4.003 2 4.333

A 5.030 1 5.147

4 B 31,960 2 1794
C 4.000 2 4.088

D 3.998 2 3.941

5 A 4.335 2 4.667
g B 1.665 3 3.333
6 A 4.362 2 4,667
B 2.550 4 1.333

A 5.059 1 5.302

7 B 2887 3 2.1%1
C 3.035 i 3.619

@9@3

..-f’

%233
@ e@@

7

Fig. 1—Benzenoid systems encountered in Table | and the
labelling of their rings.

where sum ¥, X and ¥ indicate, respectively,
o o oo

summation over atoms belonging solely to the ring R,
shared by R and another ring, and shared by R and
two other rings.

In Table 1 are found the ECy-values of some
typical benzenoid hydrocarbons, whose formulas are
depicted in Fig. 1 and whose Clar formulas are
depicted in Fig. 2. For comparative reasons also the
respective ECpp-values are also given.

Fig. 2—Clar aromatic sextet formulas of the benzenoid systems
encountered in Table 1. Note that rings in which aromatic sextets
are located have increased EChg-values, relative to the EChy-
values of analogously annelated "empty” rings. This is not the
case with the ECy-values.

Comparing the data given in Table 1 with Fig. 2, it
is seen that the ECy-values do not reflect the -
electron distribution predicted by Clar theory. From
the same data, we also see that the main structural
factor determining ECu(R) is the number v of rings
adjacent to the ring R. In this respect, ECy resembles
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much the earlier introduced®’ "atom-based n-electron
content”, EC,. The reason for this coincidence will be
clarified in the subsequent discussions.

Because ECy = EC,, one may use the difference
ECyu-ECy for computing the n-electron excess of a
ring (discussed in detail elsewhere’'). Such an
approach to the concept of r-electron excess would be
theoretically justified, bearing in mind that ECy is
based on the consideration of all matchings of the
underlying molecular graph, whereas ECgp reflects
only the effects of the (chemically most relevant)
perfect matchings™*.

A generalization: Relating ECgyg, ECy and EC,

Denote by m(G,k) the number of k-matchings™* of
the graph G (= the number of ways in which k
mutually non-touching edges can be selected in G).
By definition, m(G.0)=1 for all graphs, and m({G.1) =
the number of edges of G. If n is the number of
vertices of the graph G, then the polynomial a{G,A)
will be defined as:

G, = Em(G, BA" 2k
k=0

It immediately follows that:

a(G,0) = K(G) and (G 1) = Z(G) B by

It is easy to show™*' that the polynomial a(G,L)
obeys relations analogous to Eqs (8) and (9), viz.:

a(G. A =a(G-e,A)+a(G-r-s5,1) ...(16)

o(G,A) =a(G,, M) a(G,,A) (17

In fact, it can be shown® that &(G,A) is the
general solution of the system of recurrence relations:

HG)=H(G—-e)+ I(G—r-35) & I(G) = I(G,)) I(G,)

Starting with Egs (16) and (17) and following a
reasoning fully analogous to what was used for
deducing Eq. (12), we get:
2¥a(G—r—-s,A)/a(G,A)+ A

...(18
YoalG-r.AV alG,A)=n (18)

The multiplier ) before the second summation on
the left-hand side of (18) comes from the fact that the
a-polynomial of the single-vertex graph is A.

In view of relations (15), we easily conclude that
Egs (3) and (13) are special cases of Eq. (18), for A=0
and *=1, respectively. Bearing this in mind, we
introduce the following A-dependent bond-order like
quantities:

Prs(A)=0(G —r—s5,A)/a(G,A) ..(19)
and

p, (A =Aa(G-r,A)/a(G,A) ...(20)
and then identity (18) becomes,

25 Prs W+ ppr(A)=n Seh)

Based on this analogy, we now conceive a i-
dependent n-electron content of a ring R,

EC(R,A)=2F pps(A)+ L prs(A)+ X
* P 0 _"{22]
PrrM)+3 T ppr (M43 3 prr(A)
oo oo

where the notation is same as in Eqgs (1) and (14), and
which reduce to relations (1) and (14) for A=0 and
A=1, respectively.

By means of Eq. (22), we achieve a continuous
transformation of the Kekulé-structure-based -
electron content into the Hosoya-bond-order-based n-
electron content. However, we also get something
more.

The right-hand side of Eq. (19) is a ratio of a
polynomial of degree n-2 and a polynomial of degree
n. Therefore, with increasing A, the term p ¢ (A) will
rapidly tend to zero. On the other hand, the term
prr(A)in Egq. (20) is a ratio of two (monic)
polynomials of degree n. Consequently, with
increasing A, it will tend to unity. This means that in
the limit case A — o=, the m-electron distribution
described by means of Eq. (21) reduces to the earlier
studied”’ uniform electron distribution: one n-electron
on each carbon atom, and no m-electrons associated
with the carbon-carbon bonds. Therefore, the limit
value of EC()) is just the earlier studied®' atom-based
n-electron content EC,.

Numerical studies reveal that with increasing value
of the parameter A, the n-electron content EC(L) tends
to EC, very rapidly, and that already at L = 1, the
difference between EC(A) and EC, becomes
insignificant. A characteristic example is shown in
Fig. 3.




GUTMAN er al: n-ELECTRON EXCESS OF RINGS OF BENZENOID MOLECULES 351

tl
514 / A

5_[' ] '."“lll"“" BNy

Fig. 3—The A-dependence of the m-electron contents of the nngs
of anthracene (1) and phenanthrene (2), cf. Fig. 1. Note that
EC(-\=EC(}) and therefore only the case L = 0 needs to be
examined. The curves pertaining to rings B of both anthracene and
phenanthrene approach the same limit value, implying that this
limit value depends solely on the parameter v. The same is true for
the rings A.

Discussion

Extending the Randi¢-Balaban approach to the
calculation of the w-electron content of rings in
benzenoid hydrocarbons, and knowing the role which
the Pauling bond order plays in this approach, we put
forward a nowvel m-electron content, ECy, Eq. (14),
based on the Hosoya bond order. This quantity was,
however, found to be insensitive to effects of =n-
electron conjugation, and mainly determined by the
annelation mode of the respective ring. Therefore,
ECy could be used for determining the w-electron
excess of the ring”'.

Conclusions

The main results of our study are obtained by
utilizing the auxiliary m-electron content EC(L),
depending on a variable parameter .. By means of
EC()), it is possible to achieve a continuous
transformation of the Pauling-bond-order-based -
electron content (at 2=0) into its Hosoya-bond-order-

based variant (at A=1). By further increasing A, EC(%)
becomes equal to the earlier introduced”’ atom-based n-
electron content. By this, we get a better understanding
of the concept of n-electron excess, which is now seen
to be the difference between the n-electron content of a
ring calculated on the basis of perfect matchings, and
the analogous m-electron-like quantity, obtained by
considering all matchings of the underlying molecular

graph.
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