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Abstract

Based on the results of the preceding paper [H. Hua, MATCH Commun. Math. Com-

put. Chem. 58 (2007) 57–73], by means of an appropriate computer search, the bipartite

unicyclic n-vertex graphs with greatest, second–greatest, and third–greatest energy are de-

termined for all values of n .



INTRODUCTION

Let G be a graph on n vertices, and let λ1, λ2, . . . , λn be its eigenvalues. Then the

energy of G is defined as [1, 2]

E = E(G) =
n∑

i=1

|λi| . (1)

A fundamental (and mathematically most obvious) problem encountered within the

study of graph energy is the characterization of the graphs that belong to a given

class of graphs having maximal or minimal E-values. Numerous results along these

lines have been obtained, the first seems to be the finding of the n-vertex trees with

maximal, second–maximal, minimal, and second–minimal energy [3]. More details

can be found in the review [2], papers [4–6], and in the references quoted therein. For

the most recent research in this area see [7–18].

The maximal–energy bipartite unicyclic graphs were examined by Hou and one

of the present authors [19, 20], and recently in [21]. In order to state the results

obtained in [19–21] as well as the results of this work, we need to define a few special

unicyclic graphs.

Let, as usual, Pn and Cn be the path and the cycle, respectively, on n vertices.

The vertices of Pn are assumed to be labelled consecutively by 1, 2, . . . , n .

For n ≥ 7 , by Bn is denoted the graph obtained by joining (by means of a new

edge) a vertex of C6 to the vertex 1 of Pn−6 . For n ≥ 9 , Dn is the graph obtained

by joining a vertex of C6 to the vertex 3 of Pn−6 . For n ≥ 11 , Xn is the graph

obtained by joining a vertex of C6 to the vertex 5 of Pn−6 . For n ≥ 12 , by Yn we

denote the graph obtained by joining the terminal vertex of Bn−5 to the vertex 3 of

P5 . The structure of the graphs Bn , Dn , Xn , Yn , and Cn should be evident from

the examples depicted in Fig. 1. All these graphs are unicyclic. For any value of n ,

Bn , Dn , Xn , and Yn are bipartite, whereas Cn is bipartite only if n is even.
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Fig. 1. Examples of the graphs Bn , Cn , Dn , Xn , and Yn for n = 16 .

Denote by BUn the set of all bipartite unicyclic graphs on n vertices. In the papers

[19, 21] the following two results have been proven:

Theorem 1 [19]. If n is odd, n ≥ 7 , then Bn has maximal energy in BUn . If n is

even, n ≥ 8 , then the element of BUn that has maximal energy is either Bn or Cn .

Theorem 2 [21]. For n ≥ 13 , the element of BUn \ {Bn, Cn} that has maximal

energy is Dn .

In [19] by numerical calculations the following result has also been obtained:

Claim 3. For n = 10 , the cycle Cn has maximal energy in BUn . For all other values

of n , n ≥ 7 , the element of BUn that has maximal energy is Bn .

Although the validity of Claim 3 is out of doubt, a satisfactory proof of it has not

been achieved so far. The solution of this seemingly simple problem remains a task

for the future and a challenge for mathematicians.
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FINDING THE ELEMENTS OF BUn WITH SECOND– AND

THIRD–MAXIMAL ENERGY

Combining Theorems 1 and 2 and Claim 3 we arrive at the following conclusions,

valid for n ≥ 13 :

(a) The n-vertex bipartite unicyclic graph with maximal energy is Bn .

(b) If n is odd, then the n-vertex bipartite unicyclic graph with second–maximal

energy is Dn . If n is even, then the n-vertex bipartite unicyclic graph with

second–maximal energy is either Cn or Dn .

(c) From the results of the papers [19–21] it cannot be concluded which n-vertex

bipartite unicyclic graph has third–maximal energy.

In view of this, we have undertaken a computer–aided search aimed at filling all

the missing gaps, and thus determining the n-vertex bipartite unicyclic graphs with

maximal, second–maximal, and third–maximal energy for all values of n .

For n < 4 there are no bipartite unicyclic graphs, BUn = ∅ . For n = 4 and

n = 5 , the set BUn has just a single element. Only for n ≥ 6 there are more than

three different n-vertex bipartite unicyclic graphs, making our search meaningful.

The results obtained for 6 ≤ n ≤ 12 are shown in Fig. 2.

For n ≥ 13 , where the results of the work [21] can be applied, the graphs en-

countered are always some among the above defined Bn , Cn , Dn , Xn , and Yn . The

maximum–energy graph is, of course, Bn . Which graphs have the second–maximal

and third–maximal energy is seen from Table 1.

In summary, our results can be formulated as follows:

Claim 4. For all n ≥ 11 , the n-vertex bipartite unicyclic graph with maximal energy

is Bn . For all n ≥ 23 , the n-vertex bipartite unicyclic graph with second–maximal

energy is Dn . For all n ≥ 27 , the n-vertex bipartite unicyclic graph with third–

maximal energy is Xn . For the other (smaller) values of n the graphs with maximal,

second–maximal, and third–maximal energies are those specified in Fig. 2 and Table

1.
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Fig. 2. Bipartite unicyclic graphs on n vertices, n = 6, 7, . . . , 12 , with maximal,
second–maximal, and third–maximal energies (from left to right). Note that in the
case n = 9 there are two graphs with third–maximal energy; these graphs are cospec-
tral and, consequently, equienergetic.
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n max1 E max2 E max3 E
13 Bn 16.5597 Dn 16.5063 Yn 16.4987
14 Bn 17.9935 Cn 17.9758 Dn 17.9357
15 Bn 19.1255 Dn 19.0704 Xn 19.0640
16 Bn 20.5319 Dn 20.4750 Yn 20.4647
17 Bn 21.6855 Dn 21.6299 Xn 21.6216
18 Bn 23.0726 Cn 23.0351 Dn 23.0160
19 Bn 24.2420 Dn 24.1861 Xn 24.1772
20 Bn 25.6147 Dn 25.5582 Yn 25.5483
21 Bn 26.7963 Dn 26.7402 Xn 26.7310
22 Bn 28.1577 Cn 28.1067 Dn 28.1013
23 Bn 29.3489 Dn 29.2928 Xn 29.2834
24 Bn 30.7014 Dn 30.6451 Yn 30.6353
25 Bn 31.9004 Dn 31.8442 Xn 31.8347
26 Bn 33.2456 Dn 33.1893 Cn 33.1849
27 Bn 34.4510 Dn 34.3948 Xn 34.3853
28 Bn 35.7902 Dn 35.7339 Xn 35.7242
28 Bn 37.0010 Dn 36.9448 Xn 36.9352
39 Bn 38.3351 Dn 38.2788 Xn 38.2691
31 Bn 39.5504 Dn 39.4942 Xn 39.4846
32 Bn 40.8802 Dn 40.8239 Xn 40.8142
33 Bn 42.0995 Dn 42.0433 Xn 42.0337
34 Bn 43.4254 Dn 43.3692 Xn 43.3595
35 Bn 44.6482 Dn 44.5920 Xn 44.5824

Table 1. The n-vertex bipartite unicyclic graphs, 13 ≤ n ≤ 35 , with maximal
(max1), second–maximal (max2), and third–maximal (max3) energies, and the re-
spective energies.

Those parts of Claim 4 that are new relative to Theorems 1 and 2 are lacking a

rigorous mathematical proof. Therefore these should be considered as conjectures,

awaiting for a proof or (what we deem to be highly unlikely) refutation.
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