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In the theory of polycyclic conjugated molecules, several 
remarkable results are known relating the properties of a 
phenylene with the analogous properties of a benzenoid molecule 
that in a natural way is associated with PH, called the hexagonal 
squeeze (HS) (for details see Fig. 1 or ref. 2). In the present work, 
the relationships between the energy, E, and the Estrada index, 
EE, of phenylenes and their hexagonal squeezes are examined. 
Within sets of isomers, a good linear correlation exists between 
E(phenylene) and E(hexagonal squeeze), as well as between 
EE(phenylene) and EE(hexagonal squeeze). The details of these 
correlations are established. Results show that an earlier obtained 
relationship between E(phenylene) and E(hexagonal squeeze) 
needs to be modified. 

Phenylenes are polycyclic conjugated molecules, 
composed of four- and six-membered rings, such that 
every four-membered ring is adjacent to two six-
membered rings, and no two six-membered rings are 
mutually adjacent. A great step forward in the theory 
of phenylenes was made by the discovery that many 
π-electron properties of a phenylene (PH) are closely 
related to the analogous properties of a benzenoid 
molecule, called its hexagonal squeeze (HS). The way 
in which HS is associated to PH should be evident 
from the examples depicted in Fig. 1. 
 What was first discovered (initially on a particular 
example1, and then in the general case2) was that the 
algebraic structure count of a phenylene is equal to 
the number of Kekulé structures of the associated 
hexagonal squeeze; the fine details of this coincidence 
have been recently elaborated3,4. Guided by this 
unexpected connection between the two classes of 
polycyclic conjugated molecules, several other 
relationships between PH and HS have been found,  
e. g., for the total π-electron energy5,6, HOMO-LUMO 
separataion6, Wiener index7-9 and its analogs10, Randić 
index11, cyclic conjugation12-14, Narumi-Katayama 
index15, and PI index16. We report herein our findings 
on the analogous relations between energy and 
Estrada index. 

Methodology 
 If λ1, λ2, …., λn are the eigenvalues17 of G, a 
molecular graph, then its energy is defined as: 
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 The graph energy is a quantity closely related to 
total π-electron energy (for details see refs17-22).  
For some recent researches on graph energy,  
see earlier studies23-28 and the references cited therein. 
As explicated in the subsequent section, some  
earlier communicated results5 on the structure-
dependence of E of phenylenes are now seen to 
require modification. 
 The Estrada index of the molecular graph, G, is 
defined as: 
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 This recently proposed29 graph-spectrum-based 
molecular-structure-descriptor has already found a 
number of applications in biochemistry30,31, quantum 
chemistry32, statistical thermodynamic33, and 
elsewhere34. We have recently undertaken a 
systematic study of the mathematical properties and 
structure-dependence of EE, embracing acyclic and 
benzenoid systems. The present work reports results 
on the structure-dependence of EE in the case of 
phenylenes. 

 
 
Fig. 1 — Two phenylenes (PH1 and PH2) and the corresponding 
hexagonal squeezes (HS1 and HS2). Both PH1, PH2, HS1, and HS2 
have h = 6 hexagons. The phenylene PH2 is branched, whereas 
PH1 is unbranched. 
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Results and discussion 
 
Relation between energy of phenylenes and their hexagonal 
squeezes 
 In the earlier study5, the following approximate 
relation between the energy of a phenylene PH and its 
hexagonal squeeze HS was obtained: 
 

E(PH)≈E(HS)+ )1(8 −h  
 

where h is the number of hexagons (in both PH and 
HS). This formula has two consequences: 
 
(a) The expression [E(PH)−E(HS)]/(h−1) is nearly 

constant for all phenylenes, and is nearly equal to 
8 ≈2.83. 

(b) Within sets of isomers (for which h is constant), 
the correlation between E(PH) and E(HS) is 
linear. The regression lines have nearly constant 
slopes (independent of h), which are nearly equal 
to unity. 

 The property (a) was found to hold for a great 
variety of phenylenes, and no significant violation of 
it was observed5. On the other hand, the property (b) 
was not tested. We now establish that property (b) 
needs to be somewhat modified: 
(c) Within sets of isomers, the correlation between 

E(PH) and E(HS) is linear. The regression lines 
have nearly constant slopes (independent of h), 
which are nearly equal to 0.5. Data points 
pertaining to differently branched PH/HS pairs lie 
on different and nearly parallel lines. 

 
 A characteristic correlation between E(PH) and 
E(HS) is shown in Fig. 2. 
 In view of the fact that the energies of differently 
branched phenylenes and hexagonal squeezes are 
correlated is a slightly different manner (see Fig. 2), 
we restricted our studies to unbranched species. For 
h<8, the number of branched phenylenes is small and 
therefore the study of their correlations would not 
yield statistically reliable results. In Fig. 3, the 
correlation between the E-values of unbranched 
phenylenes with h=7 hexagons and of the 
corresponding hexagonal squeezes is shown. Data on 
the correlations between E(PH) and E(HS) for 
isomers with h=4, 5, 6, 7, 8 are given in Table 1. 
 From Table 1 we see that the slopes of the 
E(PH)/E(HS)-correlations are, indeed, almost 
independent of the number h of hexagons, and that 
their values are very close to. On the other hand, the 
coefficient b depends on h, and this dependence is 
almost perfectly linear. 

 
 
Fig. 2 — The energies E(PH) of 439 isomeric phenylenes with 8 
hexagons plotted versus the energies E(HS) of the corresponding 
hexagonal squeezes. The data points form three almost parallel 
lines, corresponding to unbranched (190), singly-branched (207), 
and two-fold branched (41) PH/HS pairs. The corresponding 
regression lines are E(PH)=(0.485±0.002) E(HS)+(44.6±0.1), 
E(PH)=(0.483±0.002) E(HS)+(44.7±0.1), and E(PH)=(0.480± 
0.006) E(HS)+(44.8±0.3), respectively, with correlation 
coefficients 0.9988 , 0.9985 and 0.9969, respectively. The data-
point in the upper right corner corresponds to the unique three-
fold-branched PH/HS pair. 
 

 
 
Fig. 3 — The energies E(PH) of 63 isomeric unbranched 
phenylenes with 7 hexagons versus the energies E(HS) of the 
corresponding hexagonal squeezes. For statistical data see Table 
1. The data-points are grouped according to the number b of bay 
regions; for details see text. 
 
 From Fig. 3 we see that the number of data-points 
is apparently much smaller than the number of 
isomers considered. This happens because for some 
distinct PH/HS pairs, the data points almost 
completely overlap. A detailed examination revealed 
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that the grouping of the E(PH)/E(HS) data points is 
based on the number b of bay regions, as indicated in 
Fig. 3. 
 The number of bay regions, b, was originally 
conceived within the theory of benzenoid molecules 
(for details see Fig. 4 and ref.35). In the case of both 
benzenoid systems and phenylenes, this quantity is 
defined as11 

 
b=B+2C+3F+4L 
 
where B, C, F, and L are respectively the number of 
proper bays, coves, fjords, and lagoons on the 
perimeter of the considered molecule (Fig. 4). 
 In the examples given in Fig. 1, for PH1 and HS1 
we have B=2, C=F=L=0, and therefore b=2, whereas 
for PH2 and HS2, B=2, C=1, F=L=0, and therefore 
b=4. 
 In the theory of benzenoid molecules, it was 
established long time ago36 that the two main factors 
causing energy differences between isomers are the 
number of Kekulé structures and the number of bay 
regions. In the case of phenylenes, instead of the 
Kekulé structure count one needs to consider the 
algebraic structure count. Since the algebraic structure 
count of a phenylene coincides with the Kekulé 
structure count of the corresponding hexagonal 
squeeze2, it follows that the (only) main factor 
influencing the position of the E(PH)/E(HS) data 
points should be the number b of bay regions. Our 
numerical studies fully corroborate this conclusion, 
which we formulate as: 
 
(d) Isomeric phenylenes with the same number of bay 

regions have nearly equal energies. The same 
holds for the hexagonal squeezes. Therefore, 
when E(PH) is plotted versus E(HS), the data 
points pertaining to species with equal h, but 
different b, form (almost) non-overlapping 
clusters. 

 
Relation between Estrada index of phenylenes and their 
hexagonal squeezes 
 We have studied the correlation between EE(PH) 
and EE(HS) for sets of isomeric phenylenes with h=4, 
5, 6, 7, and 8 hexagons. The correlations are linear, 
and in contrast to what was observed in the case of 
energy (cf. Fig. 2), no separation between the data 
points pertaining to unbranched and branched 
phenylenes is observed. An illustrative example is 
given in Fig. 5. Bearing this in mind, we examined the 
EE(PH)/EE(HS)-correlations for the sets consisting of 
all isomeric phenylenes (both unbranched and 
branched). The statistical data on these correlations 
are given in Table 2. 
 From Table 2 we see that in the case of the Estrada 
index also, the correlation is linear. In fact, the 

Table 1 — Statistical data for the correlations of the form 
E(PH)≈aE(HS)+b for unbranched phenylenes (PH) and their 
hexagonal squeezes (HS) with h hexagons. N.I. = number of 
isomers, R = correlation coefficient. 
 

h N.I. a b R 
 

4 4 0.507±0.008 20.9±0.2 0.99975 
5 10 0.497±0.005 26.8±0.2 0.99961 
6 25 0.490±0.004 32.8±0.1 0.99942 
7 69 0.486±0.002 38.7±0.1 0.99931 
8 190 0.485±0.002 44.6±0.1 0.99880 

 

 
 
Fig. 4 — Various features on the perimeter of a phenylene and its 
hexagonal squeeze, contributing to the number of bay regions (for 
details see text). 
 
 

 
 
Fig. 5 — The Estrada indices EE(PH) of the same phenylenes as 
in Fig. 2, versus the Estrada indices EE(HS) of the corresponding 
hexagonal squeezes. The data-points are grouped according to the 
number b of bay regions (for details see text). The statistical data 
for this correlation, as well as those for isomers with h<8, are 
given in Table 2. 
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correlations found for the Estrada index are somewhat 
better than the analogous correlations for energy. As 
in the case of energy, the slopes of the regression lines 
are almost independent of the number h of hexagons, 
although their values are close to. The coefficient b 
varies with h in a linear manner. 
 Also, in the case of the Estrada index, the data 
points are grouped according to the number of bay 
regions. However, this grouping is much more exact 
than in the case of energy (see Fig. 5).  
 The Estrada indices of isomeric phenylenes with 
equal b values do not differ significantly. The same is 
true for the corresponding hexagonal squeezes. Yet, a 
closer examination of the relation between EE(PH) 
and EE(HS) for isomeric species with equal b, 
revealed some interesting peculiarities. This is 
illustrated in Fig. 6 for the case, h=8, and, b=6. 
 In Fig. 6, the EE(PH)/EE(HS) data points are 
shown for the isomers with h=8 and b=6. As can be 
seen, the data points form three almost-horizontal 
lines. It was found that the bottom line pertains to 
unbranched, the middle line to singly-branched, and 
the top line to two-fold-branched phenylenes. This 
shows that the EE(PH) values depend on the number 
of branching hexagons of a phenylene, but are 
practically independent of the actual nature of the 
bay-type features. The EE(HS) values also depend 
slightly on the structure of the bay-type features: the 
data-points on the left hand ends of the horizontal 
lines correspond to phenylenes with maximal number 
of proper bays (B), whereas those on the right hand 
ends have minimal B values. 
 We summarize our findings on the correlation 
between the Estrada indices of phenylenes and their 
hexagonal squeezes in the following rules: 
 
(e) Within sets of isomers, the correlation between 

EE(PH) and EE(HS) is linear. The regression 
lines have nearly constant slopes (independent of 
h), which are nearly equal to 1.13. Data points 

pertaining to differently branched PH/HS pairs lie 
on the same line. 

(f) Isomeric phenylenes with the same number of bay 
regions have nearly equal Estrada indices. The 
same holds for the hexagonal squeezes. 
Therefore, when EE(PH) is plotted versus 
EE(HS), the data-points pertaining to species with 
equal h and b almost perfectly overlap. 
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