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Abstract

The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenval-
ues of G . Two graphs Ga and Gb are said to be equienergetic if E(Ga) = E(Gb) . Numerous
families of non-cospectral equienergetic graphs have been reported so far. However, until
now it was not noticed that there exist pairs of graphs whose energies differ insignificantly.
We refer to such graphs as almost–equienergetic. A detailed study of almost–equienergetic
trees is provided.

INTRODUCTION

Let G be a graph on n vertices and let λ1, λ2, . . . , λn be its eigenvalues (or more

precisely: the eigenvalues of the adjacency matrix of G) [1, 2]. Then the energy of G

is defined as

E(G) =
n∑

i=1

|λi| .

For details on graph energy and its chemical applications see the books [2, 3], the

reviews [4–6], and the references cited therein.

The concept of equienergetic graphs was introduced in 2004, independently by

Balakrishnan [7] and Brankov et al. [8]. Two graphs Ga and Gb are said to be
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equienergetic if E(Ga) = E(Gb) . For obvious reasons one is interested only in non-

cospectral equienergetic graphs.

Equienergetic graphs attracted recently much attention [9–23] and several con-

structions of such graphs have been put forward. Equienergetic trees were considered

already in the paper [8], but until now no general method for their construction is

known. The only procedure by which pairs (or greater families) of non-cospectral

equienergetic trees could be detected is computer–aided search, using the computed

values of the energy. When a pair of non-cospectral trees is found to have energies

equal within the accuracy of the applied numerical procedure, then these trees need

to be further examined in order to prove the true equality of their energies.

We illustrate this on the triplet of trees T1, T2, T3 , depicted in Fig. 1, whose

energies (calculated up to four decimal places) were found to be equal to E = 21.4205 .

T T

T

1 2

3

Fig. 1. Three trees whose equienergeticity can be exactly proven.

Using standard recursive techniques [1, 3], we can compute the characteristic

polynomials of these trees:

φ(T1, λ) = λ18 − 17 λ16 + 117 λ14 − 421 λ12 + 853 λ10 − 973 λ8 + 588 λ6

− 164 λ4 + 16 λ2

φ(T2, λ) = λ18 − 17 λ16 + 117 λ14 − 421 λ12 + 853 λ10 − 973 λ8 + 588 λ6

− 164 λ4 + 16 λ2
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φ(T3, λ) = λ18 − 17 λ16 + 111 λ14 − 359 λ12 + 632 λ10 − 632 λ8 + 359 λ6

− 111 λ4 + 17 λ2 − 1 .

Because the coefficients of the characteristic polynomial are integers, the above ex-

pressions are exact. We immediately see that φ(T1, λ) ≡ φ(T2, λ) , implying that T1

and T2 are cospectral and therefore, in a trivial manner, equienergetic. On the other

hand, φ(T3, λ) differs from the characteristic polynomials of T1 and T2 . Consequently,

T1 and T3 are not cospectral.

By elementary algebraic reasoning it can be shown that the polynomials φ(T1, λ)

and φ(T3, λ) can be factorized as:

φ(T1, λ) = λ2 (λ2 − 1)(λ2 − 2)2 (λ2 − 4)(λ4 − 3 λ2 + 1)(λ4 − 5 λ2 + 1)

φ(T3, λ) = (λ2 − 1)3 (λ4 − 3 λ2 + 1)(λ4 − 5 λ2 + 1)(λ4 − 6 λ2 + 1)

from which the spectra of these two trees are readily computed:

Sp(T1) =
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√

2 , ±
√

2 , ±2 , ±
√

3 ±√
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2
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The respective energies are then:

E(T1) = 6 + 4
√

2 + 2

⎛⎝√3 +
√

5

2
+

√
3 −√
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+
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2
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√
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2

⎞⎠

E(T3) = 6 + 2
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√

5

2
+

√
3 −√

5

2
+

√
5 +

√
21

2
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In order to verify that the right–hand sides of the above two expressions are equal,

we recall the identity√
x +

√
x2 − 4

2
+

√
x −√

x2 − 4

2
=

√
x + 2
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the application of which readily renders

E(T1) = E(T3) = 6 + 4
√

2 + 2
√

5 + 2
√

7 .

Thus we have completed the proof that T1, T2, T3 form a family of equienergetic

trees of the type 2 + 1 (cf. Table 1).

There exist pairs of trees for which the above described procedure is not easy to

be accomplished, but which nevertheless seem to be exactly equienergetic. Such are,

for instance, the trees T4 and T5 , depicted in Fig. 2.

T

T

4

5

Fig. 2. Two trees believed to be exactly equienergetic, but whose equienergeticity
is difficult to be be exactly proven.

The energies of T4 and T5 agree up to the first 50 decimal places (as computed by

Mathematica):

E(T4) = 19.02872890844516985936794290989136493329753629030132 · · ·
E(T5) = 19.02872890844516985936794290989136493329753629030132 · · · .

Their characteristic polynomials may be factorized as:

φ(T4, λ) = λ2 (λ2 − 3)(λ4 − 5 λ2 + 5)(λ8 − 7 λ6 + 14 λ4 − 8 λ2 + 1)

φ(T5, λ) = (λ8 − 8 λ6 + 14 λ4 − 7 λ2 + 1)(λ8 − 7 λ6 + 14 λ4 − 8 λ2 + 1)
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which makes the proof of the validity of the equality E(T4) = E(T5) very difficult

(yet not impossible).

The smallest two non-cospectral equienergetic trees have n = 9 vertices and were

first reported in [8]. In [8] is shown that for n = 9 this pair is unique.

ALMOST–EQUIENERGETIC TREES

Intending to accomplish a detailed and complete search for families of equiener-

getic non-cospectral n-vertex trees, for n as large as technically possible, we en-

countered unexpected computational difficulties. After much stray we realized that

in addition to strictly equienergetic non-cospectral trees, there also exist trees whose

energies are different, but remarkably close. These we refer to as almost–equienergetic

trees.

A pair of almost–equienergetic trees, T6, T7 , that appears to be smallest, is de-

picted in Fig. 3. Their energies (calculated by means of Mathematics) are

E(T6) = 18.090756640280765 · · ·
E(T7) = 18.090756641775140 · · ·

which means that |E(T6) − E(T7)| ≈ 1.5 · 10−9 .

T T6 7

Fig. 3. A pair of almost–equienergetic trees on 16 vertices. Provided the criterion
for almost–equienergeticity is given by Eq. (1), this seems to be the smallest pair of
almost–equienergetic trees.

What “remarkably close” means for the energy of two graphs is a theme for debate.

Based on our numerical experience, we tentatively and to a great degree arbitrarily
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call two graphs Ga and Gb almost–equienergetic if

0 < |E(Ga) − E(Gb)| < 10−8 . (1)

By accepting this convention we examined all n-vertex trees with 9 ≤ n ≤ 22 ,

searching for families whose energies differ by less than 10−8 . By this we embraced

both the class of equienergetic and almost–equienergetic trees. Except in a few cases,

no attempt was made to recognize which of these families pertain to equienergetic

and which to almost–equienergetic species. The main results obtained are presented

in Table 1. Additional results can be obtained from the authors, upon request.

One of the greatest families detected, is depicted in Fig. 4. It consists of 7 trees

T8, T9, . . . , T14 (all with n = 22). The trees T8 and T9 are cospectral, T10, T11, T12 , and

T13 are cospectral (but not cospectral with T8, T9), whereas T14 has spectrum different

from all other members of this family. The respective energies are

E(T8) = 24.413174626708173677374016999829 · · ·
E(T10) = 24.413174625652754496385602383841 · · ·
E(T14) = 24.413174628345991390665163085679 · · ·

ALMOST–LAPLACIAN–EQUIENERGETIC TREES

The Laplacian energy of a graph G is defined as [24, 25]

LE(G) =
n∑

i=1

∣∣∣∣μi − 2m

n

∣∣∣∣
where n is the number of vertices, m the number of edges, and μi , i = 1, 2, . . . , n ,

are the Laplacian eigenvalues (or more precisely: the eigenvalues of the Laplacian

matrix of G). In full analogy with energy, if the conditions

LE(Ga) = LE(Gb) and 0 < |LE(Ga) − LE(Gb)| < 10−8

are satisfied, we speak of Laplacian– equienergetic and Laplacian–almost–equienerge-

tic graphs, respectively.
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n #fam size type
9 1 2 1 + 1
10 0
11 0
12 0
13 1 2 1 + 1
14 1 2 1 + 1
15 4 2 1 + 1
16 8 2 1 + 1

1 3 2 + 1
17 3 2 1 + 1

1 3 2 + 1
18 20 2 1 + 1

4 3 2 + 1
19 86 2 1 + 1

25 3 2 + 1
7 4 3 + 1
2 4 2 + 2
1 5 2 + 3
1 6 3 + 3
1 7 2 + 5

20 487 2 1 + 1
136 3 2 + 1

8 4 3 + 1
10 4 2 + 2
3 5 3 + 2
1 5 4 + 1
1 6 5 + 1
1 8 5 + 3

21 3176 2 1 + 1
678 3 2 + 1

4 3 1 + 1 + 1
95 4 3 + 1
47 4 2 + 2
2 4 2 + 1 + 1

n #fam size type
21 16 5 3 + 2

24 5 4 + 1
1 5 3 + 1 + 1
8 6 5 + 1
1 6 3 + 3
1 6 4 + 2
1 7 6 + 1
1 7 4 + 3
2 7 5 + 2
1 8 6 + 2
1 9 5 + 4

22 22929 2 1 + 1
3952 3 2 + 1
101 3 1 + 1 + 1
566 4 3 + 1
193 4 2 + 2
28 4 2 + 1 + 1

109 5 4 + 1
54 5 3 + 2
6 5 2 + 2 + 1
1 5 3 + 1 + 1

30 6 5 + 1
3 6 3 + 2 + 1

10 6 4 + 2
6 6 3 + 3
1 6 4 + 1 + 1
5 7 6 + 1
2 7 4 + 3
1 7 5 + 2
1 7 4 + 2 + 1
1 8 7 + 1
1 8 5 + 3
1 9 6 + 3

Table 1. Families of n-vertex trees whose energies differ by less than 10−8 . For n ≤ 8
there are no such families. #fam is the number of families of a given size and a given
type. Type x + y indicates that x members of the family are mutually cospectral,
and y other members are also mutually cospectral, but not cospectral with the former
group; the meaning of type x + y + z is analogous.
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Fig. 4. A seven–membered family of (type 4 + 2 + 1 ) of almost–equienergetic
22-vertex trees (cf. Table 1).

The results of our computer–based search for trees of this kind are presented in

Table 2. We mention here that we were not able to identify a single pair of Laplacian–

equienergetic trees (which, however, does not mean that such trees do not exist). More

details on this matter can be found in the subsequent paper [26].
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n #fam size type
16 1 2 1+1
17 1 2 1+1
18 22 2 1+1
19 119 2 1+1
20 694 2 1+1

42 3 2+1
1 4 2+2

21 4905 2 1+1
6 3 1+1+1
3 3 2+1

22 32674 2 1+1
6 3 2+1

147 3 1+1+1

Table 2. Families of n-vertex trees whose Laplacian energies differ by less than
10−8Ḟor n ≤ 15 there are no such families. Other details are same as in Table 1.
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