
ar
X

iv
:1

11
2.

57
97

v5
  [

qu
an

t-
ph

] 
 2

9 
Ju

n 
20

12

Quantum Correlations Relativity for Continuous Variable Sys-

tems
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Abstract: It is shown that a choice of degrees of freedom of a bipartite
continuous variable system determines amount of non-classical correlations
(quantified by discord) in the system’s state. Non-classical correlations (that
include entanglement as a special kind of correlations) are ubiquitous for
such systems. For a quantum state, if there are not non-classical correla-
tions (quantum discord is zero) for one, there are in general non-classical
correlations (quantum discord is non-zero) for another set of the compos-
ite system’s degrees of freedom. The physical relevance of this ’quantum
correlations relativity’ is emphasized also in the more general context.
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1. Introduction

The promise of the quantum information processing is the promise of the
quantum-information resources [1]. To this end, some surprising results and
observations are possible and even expectable. The discovery of non-classical
(quantum) correlations not necessarily including entanglement, as quantified
by quantum discord [2, 3], opens a new avenue in quantum information pro-
cessing; for recent reviews see [4, 5, 6]. A search for quantum information
resources and the ways of their operational use is at the core of the cur-
rent theoretical and experimental research [4, 5, 6, 7, 8] (and the references
therein).

Entanglement Relativity is a corollary of the universally valid quantum
mechanics that states [9, 10, 11, 12, 13, 14, 15]: for a composite (e.g. bipar-
tite) system, there is entanglement for at least one structure (one set of the
degrees of freedom) of the composite system. The structures being mutually
related by the proper (e.g. the linear canonical) transformations of the com-
posite system’s degrees of freedom; paradigmatic are the composite system’s
center-of-mass and the ”relative (internal)” degrees of freedom. In practice,
it means: if a quantum state is separable (no entanglement), just change
the degrees of freedom and entanglement will appear [10, 12, 13]. Quantum
entanglement is ubiquitous as a quantum information resource.

In this paper we consider the continuous variable (CV), including open,
quantum systems with an emphasis on their bipartitions. Based on Entan-
glement Relativity, we point out relativity, i.e. structure (degrees of free-
dom) dependence, of the more general non-classical correlations quantified
by quantum discord. Likewise entanglement, the more general non-classical
(quantum) correlations are also structure-dependent and ubiquitous in quan-
tum systems.

So we conclude: There are non-classical correlations (not necessarily in-
cluding entanglement) for practically every quantum state of the systems
relative to some structures.

In Section 2, we briefly outline Entanglement Relativity. In Section 3 we
derive our main result. Section 4 is discussion placing our considerations in
a more general context and we conclude in Section 5.

2. Entanglement relativity

We consider a composite system C that can be decomposed as 1 + 2, or
A+B. The continuous degrees of freedom of the subsystems being mutually
related by the proper linear canonical transformations (LCTs) [10, 12, 13,
14]. Then, by a definition, the C’s Hilbert state space, HC , can be factorized
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as H1 ⊗ H2 as well as HA ⊗ HB; H1 ⊗ H2 = HC = HA ⊗ HB. The two
decompositions of C represent the two different ”structures” of C. There
is a one-to-one relation between the ”structure (decomposition)” and the
composite system’s state space factorization. In general, every subsystem (1
or 2, or A or B) can be of arbitrary number of the degrees of freedom.

Entanglement Relativity establishes [9, 10, 11, 12, 13, 14, 15]: if a (pure)
state is separable for one structure (one set of degrees of freedom), it typically
becomes entangled for another structure of the composite system:

|i〉1|j〉2 =
∑

α,β

C ij
αβ|α〉A|β〉B, Cαβ 6= aαbβ ,

∑

α,β

C ij
αβC

i′j′

αβ = δii′δjj′. (1)

The proof of Eq.(1) easily follows, cf. e.g. Ref. [13], with the use of the
covariance function Cf = 〈ÂA ⊗ B̂B〉 − 〈ÂA〉〈B̂B〉. Given a separable state

for 1 + 2 structure, e.g. |i〉1|j〉2, and for a pair of the observables ÂA, B̂B

of the subsystems A and B respectively, the condition Cf = 0 is necessary
in order the state can bear separable (tensor-product) form also for A + B
structure. The condition Cf = 0 is not yet sufficient for the separability.

The exceptions from Eq.(1) are known–there are the states of the separa-
ble form for both structures [13, 16]. Nevertheless, as the number of entan-
gled states is by far larger than the number of the tensor-product states, the
number of states satisfying Eq.(1) is incomparably larger than the number of
states not satisfying Eq.(1). This is the reason in practice these exceptional
cases are usually neglected.

So, one may say: there is entanglement for all pure quantum states
relative to certain structure–i.e. entanglement is a matter of a composite-
system’s structure and is present for one structure, at least. Certainly, for a
fixed structure, a pure quantum state is either separable (tensor-product) or
entangled.

Now, it is natural to wonder if something analogous can be expected for
the mixed quantum states. Of course, now the question refers not only to
quantum entanglement, but also to the more general quantum, i.e. non-
classical, correlations as quantified by quantum discord [2,3]. In the next
section we provide a generalization of Entanglement Relativity that directly
includes open quantum systems: [likewise entanglement itself] the more gen-
eral non-classical correlations are subject to relativity, i.e. are ubiquitous
regarding the continuous variable bipartite systems.

3. Quantum correlations relativity

Quantum Discord is a common term for different measures of non-classical
correlations in composite (e.g. bipartite) quantum systems [1-8]. Historically
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the first and probably the best known is the so-called ”one-way” discord. For
completeness, we give the formal definitions of both one-way and two-way
discord.

One-way quantum discord for the S+S ′ system, DS = I(S : S ′)−JS ≥ 0,
and von Neumann entropy of a state ρ, S = −trρ ln ρ. Both the total
mutual information, I(S : S ′) = S(S) + S(S ′) − S(S, S ′), and the classical
correlations, JS = S(S) − inf{Π

S′i
}
∑

i |ci|
2S(ρS|Π

S′i
)–where ρS|Π

S′i
= IS ⊗

ΠS′iρIS ⊗ΠS′i is the state remaining after a selective quantum measurement
defined by the projectors ΠS′i–are non-negative. Two-way discord, D =
max{DS , DS′}, where DS′ is one-way discord referring to the S ′ system.

In this section, we proceed with considering the bipartite structures of
a composite system C with arbitrary number of the continuous degrees of
freedom.

3.1 Quantum correlations relativity

Let us consider the 1 + 2 structure of the composite system C. The one-
way discord D1 equals zero if and only if the composite system’s state, ρ̂C ,
is of the form [4, 5, 6]:

ρ̂C =
∑

k

pk|k〉1〈k| ⊗ ρ̂2k,
∑

k

pk = 1 (2)

and analogously for the other D2 discord. It is easy to prove for ρ̂C in Eq.(2)
that both the one-way discord D2 (in general) and the covariance function
Cf (Section 2) are nonzero. Of course, the later is a consequence of the clas-
sical correlations in 1 + 2 decomposition. Introducing ρ̂2k =

∑
l ω

k
l |χ

k
l 〉2〈χ

k
l |,∑

l ω
k
l = 1, ∀k into Eq.(2) gives

ρ̂C =
∑

k,l

pkω
k
l |k〉1〈k| ⊗ |χk

l 〉2〈χ
k
l |. (3)

Now, with the use of entanglement relativity Eq.(1), we introduce the
alternate structure, A+B, into considerations. Let us first, in disagreement
with Eq.(1), the states for both structures are tensor-product, |k〉1|χ

k
l 〉2 =

|k〉A|φ
k
l 〉B, ∀k. Then the form Eq.(2) of the composite system’s state is valid

also for the A+B structure:

ρ̂C =
∑

k

pk|k〉A〈k| ⊗ ρ̂Bk,
∑

k

pk = 1, (4)

i.e. the one-way discord DA = 0 (in general, DB 6= 0) while again Cf 6= 0.
However, Entanglement Relativity Eq.(1) leads to the following form of

Eq. (3):
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ρ̂C =
∑

k,l,α,β,β′

pkω
k
l C

kl
αβC

kl∗
αβ′ |α〉A〈α|⊗|β〉B〈β

′|+
∑

k,l,α6=α′,β,β′

pkω
k
l C

kl
αβC

kl∗
α′β′ |α〉A〈α

′|⊗|β〉B〈β
′|.

(5)
Clearly from Eq.(5): in order for some basis |α〉A to provide DA = 0, the

second term on the rhs of Eq.(5) must vanish. Due to the linear independence
of the terms |α〉A〈α

′| ⊗ |β〉B〈β
′|, this can happen only if:

∑

k,l

pkω
k
l C

kl
αβC

kl∗
α′β′ = 0, ∀α 6= α′, ∀β, β ′. (6)

Eq. (6) is actually a set of the simultaneously satisfied equalities. The
number of the equalities is equal to the number of the combinations for the
indices α 6= α′ and β and β ′. Clearly, for the continuous variable systems, this
number is infinite. On the other hand, there is some freedom in choice of pk
and ωk

l , as well as the normalization conditions (cf. Eq.(1)),
∑

α,β C
kl
αβC

k′l′∗
αβ =

δkk′δll′ . This may reduce the number of the expressions Eq.(6) that should
be simultaneously satisfied. So, we cannot exclude that there exist some
states of the form Eq.(4) for both structures, 1+ 2 and A+B. Nevertheless,
for every combination of the coefficients Ckl

αβ satisfying Eq.(6), there is the
infinite number of variations of the coefficients pk and ωk

l that do not satisfy
Eq.(6). In practice, it means one may forget about the states fulfilling Eq.(6),
i.e. bearing zero one-way discord for a pair of structures, 1 + 2 and A +B.

Regarding the two-way discord (D) for the 1+ 2 structure, the condition
D = 0 (i.e. D1 = 0 = D2) can be satisfied if and only if the composite
system’s state can be written as [4, 5, 6]:

ρ̂C =
∑

kl

pkl|k〉1〈k| ⊗ |l〉2〈l|,
∑

k,l

pkl = 1. (7)

Such states are now commonly termed classical-classical (CC) states. The
presence of only classical correlations in CC states [3] is revealed by Cf 6= 0,
which is straightforward to show for Eq.(7). Again, assuming non-validity of
Eq. (1), i.e. assuming equality |k〉1|l〉2 = |k〉A|l〉B, ∀k, l, gives directly rise to
the form Eq.(7) also for the structure A +B, i.e. DA = 0 = DB.

However, substitution of Eq.(1) for |k〉1|l〉2 into Eq.(7) gives rise to:

ρ̂C =
∑

k,l,α,β

pkl|C
kl
αβ|

2|α〉A〈α|⊗|β〉B〈β|+
∑

k,l,α6=α′,β 6=β′

pklC
kl
αβC

kl∗
α′β′ |α〉A〈α

′|⊗|β〉B〈β
′|.

(8)
In order Eq.(8) to be a CC state–i.e. to be of the form Eq.(7)–also for

the A +B structure, the following conditions should be satisfied:
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∑

k,l

pklC
kl
αβC

kl∗
α′β′ = 0, ∀α 6= α′, ∀β 6= β ′. (9)

The coefficients pkω
k
l in Eq.(6) are variants of the more general form pkl

appearing in Eq.(9). In other words: Eq. (6) is a variant of the more general
and more stringent equation Eq.(9). So, likewise for Eq.(6), the number of
states satisfying Eq.(9) is negligible compared to the number of states not
fulfilling Eq.(9). Likewise for the one-way discord, one may practically ignore
the possible existence of the states bearing zero two-way discord for a pair
of structures, 1 + 2 and A+B.

Thereby, the number of the possible solutions to Eq.(6) as well as to Eq.
(9) is by far negligible compared to the number of the states not fulfilling
Eq.(6) i.e. Eq.(9). This observation clearly emphasizes Quantum Correla-
tions Relativity (QCR) as a new corollary of the universally valid quantum
mechanics: non-classical correlations are ubiquitous for quantum systems. If
there are not correlations (quantum discord is zero) for one structure (for one
set of the composite system’s degrees of freedom), there are certainly non-
classical correlations (non-zero discord) for an alternative structure (for an
alternative set of the degrees of freedom) of the composite system. Formally,
QCR is presented by the following equality:

∑

k

pk|k〉1〈k| ⊗ |k〉2〈k| =
∑

k,l,α,β

pkl|C
kl
αβ|

2|α〉A〈α| ⊗ |β〉B〈β|

+
∑

k,l,α6=α′,β 6=β′

pklC
kl
αβC

kl∗
α′β′|α〉A〈α

′| ⊗ |β〉B〈β
′|, (10)

and analogously for the one-way discord(s).
So one can say: ”non-classical correlations” is not a characteristic of a

composite system, but is a characteristic of a composite system’s structure.

3.2 Comments

From the previous section we learn: adding a new structure into consider-
ations reduces the number of states bearing the form Eq.(4) for all the struc-
tures. Thereby we conclude, although not rigorously prove: every quantum
state bears non-classical (quantum) correlations, for at least one structure of
the composite system. The lack of the rigorous proof is in intimate relation
to the following more general considerations.

While the variables transformations is a universal physical method, we
have only recently started to understand its importance in the quantum
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mechanical context. This may be a consequence of the fact that the following,
easily formulated, task is open in the quantum mechanical formalism:

(T) Starting from the left-hand (right-hand) side to obtain the right-hand
(left-hand) side of Eq. (1) i.e. of Eq. (10).

Regarding Eq.(10), the task T reads: given a quantum state ρ̂C (e.g.
Eq.(7) for the 1 + 2 structure) to check if the state takes the separable form
Eq.(7) for the structure A+B. This is the task of the Quantum Separability
Problem (QUSEP) thoroughly investigated in the literature for the finite-
dimensional systems (see e.g. Gharibian [17] and the references therein).
Solving the equations (6) and (9) is clearly also an instance of the QUSEP
problem, which suggests that the general solutions to Eqs. (6) and (9) are
hardly expectable.

4. Discussion

”Quantum discord” is designed to capture all the kinds of non-classical
correlations, including ”entanglement”, in quantum systems. Therefore here
formulated Quantum Correlations Relativity (QCR) generalizes Entangle-
ment Relativity, Section 2.

In analogy with [18], QCR can be expressed as ”non-classical (quantum)
correlations for (practically) all quantum states relative to some structures”.
Thus we go beyond the ”almost all quantum states have nonclassical corre-
lations” of Ferraro et al [18]–this ”almost” is lost in our conclusion. In terms
of the result of Ferraro et al [18], QCR can be readily expressed as follows:
if a quantum state falls within the zero-discord set Ω◦ for one, it is highly
improbable to fall within the analogous Ω◦ set for virtually any other struc-
ture of the composite system. While the result of Ferraro et al [18] refers to
Markovian open systems, our finding bears universality.

It is worth emphasizing: quantum correlations relativity is not a con-
sequence of the reference-frame change or of the more general relativistic
considerations such as e.g. in [19, 20]. The degrees-of-freedom transforma-
tions implicit to our considerations cannot be written in a separable form for
the unitary operators, i.e. in the form U1 ⊗ U2 for the 1 + 2 structure–such
transformations are known to preserve discord [4, 5, 6] (and the references
therein). Interestingly enough, some formally trivial variables transforma-
tions exhibit QCR also for the finite-dimensional (e.g. qubit) systems.

To illustrate, consider a three-qubit system, C = 1+2+3, and its bipartite
structures, 1 + S1 and S2 + 3, where the bipartite systems S1 = 2 + 3 and
S2 = 1+2. As it is well known from quantum teleportation [21], the C’s state
|φ〉1|Φ

+〉S1
, where |Φ+〉S1

= (|0〉2|0〉3 + |1〉2|1〉3)/2
−1/2, can be re-written as∑

i |χi〉S2
|i〉3/2, where the S2’s states represent the Bell states [1] for the pair
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1 + 2. The point is that for the 1 + S1 structure, the state is tensor-product
and therefore not bearing any correlations between the 1 and S1 systems,
while there is entanglement in the S2 + 3 structure.

In our considerations, entanglement relativity (Section 2) is basic to the
more general correlations relativity, Section 3. Not surprisingly, as we use
entanglement relativity for the pure quantum states, which are the building
blocks of the mixed states. The inverse, however, is not in general correct:
entanglement relativity (even for the mixed states) does not in general follow
from the more-general-correlations relativity.

To see this, let us consider a structure 1 + 2 for which D1 = 0. Then
the quantum state is of the form ρ =

∑
i pi|i〉1〈i| ⊗ ρ2i;

∑
i pi = 1. Now, the

correlation relativity suggests there is a structure A + B for which |i〉1〈i| ⊗
ρ2i =

∑
j ω

i
jρAj ⊗ ρBj ;

∑
j ω

i
j = 1, ∀i. Now, by substituting the later into the

initial form for ρ gives rise to ρ =
∑

j λjρAj⊗ρBj ; λj ≡
∑

i ω
i
j, and

∑
j λj = 1.

Certainly, for this one easily obtains DA 6= 0, DB 6= 0, Cf 6= 0, but there is
not entanglement for A +B structure.

To support intuition, we express our main result on QCR in ”operational”
terms: In order to use a composite system’s non-classical correlations as in-
formation theoretic resource, one need not specifically prepare the system’a
state. Rather, even if the initial state is short of the non-classical correla-
tions, one can manage by targeting the alternative variables (e.g. degrees of
freedom) without any additional/intermediate operations. Some details in
this regard can be found e.g. in [12].

5. Conclusion

Non-classical (quantum) correlations are a matter of the composite sys-
tems’s structure, rather than that of the composite systems itself. This
Quantum Correlations Relativity is a new corollary of quantum mechanics
that is here rigorously established for the continuous variable systems and
illustrated for a typical example for a qubits system. Physically, we realize
that the quantum information resources are ubiquitous in the bipartitions
of the composite quantum systems. From the operational perspective, our
observation suggests the quantum information resources can be directly used
without specific state preparation.
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