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ABSTRACT 

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric−arithmetic index 
of graphs, Iran. J. Math Chem., 1 (2010) 17−27, in this paper we present lower and upper 
bounds on the third geometric−arithmetic index GA3 and characterize the extremal graphs.  
Moreover, we give Nordhaus−Gaddum−type result for GA3. 
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1 INTRODUCTION 

In this work we are concerned with the third geometric—arithmetic index GA3(G), 
associated with the graph G. We use the same notation and terminology as in the preceding 
paper [1]. Thus, in particular, V(G) and E(G) denote the vertex and edge sets of G. 
Throughout this paper it is assumed that the graphs considered are connected.  

The first and the second geometric−arithmetic index, GA1 and GA2 were [3], 
respectively. Additional mathematical recently put forward in [2] and of GA1 and GA2 are 
discussed in [4,6] and [1,3], respectively.\  

A further molecular structure descriptor, belonging to the class of GA-indices, is the 
so-called third geometric−arithmetic index, denoted as GA3 [7]. In order to define it, some 
preparations need to be done. 
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Let ij ∈ E(G) be an edge of the graph G, connecting the vertices i and j. Let x ∈ 
V(G) be any vertex of G. The distance between x and ij is denoted by d(x,ij|G) and is 
defined as min{d(x,i|G), d(x,j|G)}. For ij ∈ E(G), let  

mi =|{f ∈ E(G): d(i,f|G) < d(j,f|G}|. 
It is immediate to see that in all cases mi ≥ 0 and mi + mj ≤ m − 1. 

It should be noted that mi is not a quantity that is in a unique manner associated with 
the vertex i of the graph G, but that it depends on the edge ij. Yet, this restriction is not 
relevant for the definition of GA3. 
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Then the third geometric−arithmetic index is defined as 
Similarly to GA2 (cf. [1]), the GA3-index is defined so as to be related to the recently 

conceived edge−Szeged index (Sze)[8] and edge−PI index (PIe)[9]. 
A pendent vertex is a vertex of degree one. An edge of a graph is said to be pendent 

if one of its vertices is a pendent vertex. 
Let Kn be the complete graph with n vertices, and let Cn be the cycle of length n. Let 

K1,n−1 and Pn be the star and the path with n vertices, respectively. A tree is said to be 
starlike if exactly one of its vertices has degree greater than two. By S(2r,s) (r ≥ 1, s ≥ 1), 
we denote the starlike tree with diameter less than or equal to 4, which has a vertex v1 of 
degree r + s and which has the property that S(2r,s) \ {v1} = 

. P ...   P   P   P  …   P   P
s

111

r

222 444 3444 21444 3444 21
∪∪∪∪∪∪∪  For additional details on S(2r,s) see [1]. 

For p,q ≥ 2, by S{p,q}we denote the (p + q) − vertex tree formed by adding an edge 
between the centers of the stars K1,p−1 and K1,q−1.  

This paper is organized as follows. In Section 2, we give lower and upper bounds on 
GA3(G) of connected graphs, and characterize the graphs for which these bounds are best 
possible. In Section 3, we present Nordhaus−Gaddum−type results for GA3. 
 

2 BOUNDS ON THIRD GEOMETRIC−ARITHMETIC INDEX  
In this section we obtain lower and upper bounds on GA3 of graphs. Recall that the 
edge−Szeged index of the graph G has been recently defined as [8]   . 
 

Recently, in [7], the following lower bound on GA3(G) was obtained: 
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                                                                 (2) 

with equality if and only if G ≅ , or G ≅ , , 2 ≤ p ≤ .  

We now offer another lower bound: 
 

Theorem 2.1. Let G be a connected graph of order n > 2, with m edges edges and p 
pendent vertices. Then √                                                                   (3) 

Equality holds in (3) if and only if G ≅ ,  or G ≅  or G ≅ S(2r,s), n=2r+s+1. 
 

Proof: For each pendent edge ij ∈ E(G), it is either 0 or = 0. Thus, 0.                                                                    4  

For each non−pendent edge ij ∈ E(G),  1 , 2             . . ,           1 2 2 . 
One can easily check that √ 2 1√ 2 

that is, 

√ .                                                                          (5) 

Moreover, the equality holds in (5)  if and only if  mi=m-2 and mj=1 for mi  ≥ mj. Since G 
has p pendent vertices, by (4) and(5), 2 2

,    ,                                         
2 √ 21 . 

Suppose now that equality holds in (3). Then all the inequalities in the above 
argument are equalities. So we must have for each non−pendent edge ij ∈ E(G) , mi =m − 2 
and mj = 1 for mi ≥ mj. We need to consider two cases: (a) p = m and (b) p < m. 
 
Case (a): p = m. In this case all the edges are pendent and therefore G , . 
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Case (b): p < m. First we assume that p = 0. Thus all edges are non−pendent. Let g denote 
the girth in G. If g ≥ 5 then there exists an edge ij ∈ E(Cg), such that mi ≥ 2 and mj ≥ 2. This 
is a contradiction because of mi = 1 or mj = 1. If g = 4, then there exists an edge ij ∈ E(Cg), 
such that mi ∈ m − 3 and mj ∈ m − 3. This again is a contradiction, because mi = m − 2 or 
mj = m − 2. Remains the case g = 3. Since mi = m − 2 and mj = 1,  , for each edge 
ij ∈ E(G), we must have . 

Next we assume that p > 0. Since G is connected, a neighbor to a pendent vertex, 
say i, is adjacent to some non−pendent vertex k. Since ik is an non−pendent edge, it must be 
mi = 1 or mk =1. Now, we have di ≥ 2 and dk ≥ 2. If di = 2 and dk = 2, then G ≅ P4 or G ≅ P5 
as mi = m − 2 and mk = 1, mi ≥ mk for each non−pendent edge ik ∈ E(G). If di ≥ 3 and dk ≥ 
3, then mi > 1 and mk > 1 for each non−pendent edge ik ∈ E(G). This is a contradiction 
because mi = 1 or mk = 1 for any non−pendent edge ik ∈ E(G). Otherwise, either the vertex 
i or the vertex k is of degree greater than or equal to 3. If dk ≥ 3 and di = 2, then mk = m − 2 
and mi = 1 for the non−pendent edge ik ∈ E(G). Thus we have the neighbor of a pendent 
vertex, namely the vertex i, is of degree 2 and adjacent to the vertex k. Similarly, we can 
show that each neighbor of a pendent vertex is of degree 2 and is adjacent to the vertex k. 
Also because mu = 0 or mv = 0 for each pendent edge uv ∈ E(G),the remaining pendent 
vertices must be adjacent to vertex k. Hence G is isomorphic to a graph S(2r,s), n = 2r + s 
+ 1. 

The other possible case is dk = 2 and di ≥ 3. Then k must be a neighbor of a pendent 
vertex and all the remaining pendent vertices are adjacent to vertex i. Hence G ≅ S(2,s), n = 
s + 3. 

Conversely, one can easily see that equality in (10) holds for the star ,  or the 
complete graph  or S(2r,s) , n = 2 r + s + 1.                                                                        
 

Directly from Theorem 2.1 we get:  
 

Corollary 2.2. [7] The star ,  is the connected n−vertex graph with minimum third 
geometric−arithmetic index.  
 
Corollary 2.3. Let T be a tree of order n > 2 with p pendent vertices. Then  
  2 n p 1 √ 32                                              6  

 

with equality in (6) if and only if  T   ,  or T  S(2r,s) , n = 2 r + s + 1. 
 

Now we give one more lower bound on .  
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Theorem 2.4. Let G be a connected graph of order  n > 2 with m edges, p  pendent 
vertices, and minimum non-pendent vertex degree . Then 
                          Sz G m p m p 1 δ 1             7    
 

where Sz G  is the edge−Szeged index of G. Moreover, the equality holds in (7) if and 
only if G   ,  or G    or G   , , 2   p   1 /2  . 
 
Proof: We have  2 m   mm  m     E G

2 m   mm  m     E G ,  ,                                        
              ∑         E G ,  ,   ∑          ,   E G ,  , , ,    

                 4 S G δ                                                                                  8  

Because  1 for  ∈   and  1  for all i .   
Suppose now that equality holds in (7). Then all the inequalities in the above 

rgument are equalities. We need to consider two cases: (a) p = m and (b) p < m.  
 
Case (a): p = m. In this case all edges are pendent. Thus both sides of (7) are equal to zero 
and hence G   ,  . 
 
Case (b): p < m. First we assume that p = 0. In this case all the edges are non-pendent. 
From equality in (8) it follows  1 and   1 ,   1  for 
each edge ij  E(G). Therefore   = (m + 1)/2. If n = 3, then one can easily see that G   

. Otherwise, n   4. Now,  2m  d     n m 1 /2 

i. e., 4m    n(m + 1) , which is a contradiction as n   4.  
Next we assume that  m > p > 0. If there is only one non−pendent edge in G, then G 

is isomorphic to ,  , 2  p   1 /2   and both sides of (7) are equal. 
Otherwise, G has at least two non−pendent edges. Then  1 and   1 ,   1, for each non−pendent edge ij  E(G). Again we have  = (m + 1)/2 and 
hence each non−pendent vertex degree is greater than or equal to (m + 1)/2. Suppose that ij 
is a non-pendent edge of G. Then,   ,   1 /2 . 

Since   , 1, all edges of G must be incident either to vertex i or to vertex 
j as ij  E(G). Also we have some common neighbor between vertices i and j, since there 
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are at least two non−pendent edges. If k is the common neighbor between vertices i and j, 
then because of p > 0 it must be   1 /2, which is a contradiction.  

Conversely, one can see easily that the equality in (7) holds for ,   or   or ,  , 2  p   1 /2  .                                                                                           
 
Remark 2.5. The lower bound (7) is better than (2).  
 

Recently the following upper bound on  was obtained [7]: 
    Sz G m m 1                            9  
 
with equality if and only if G is a triangle or a quadrangle.  
 

Let Γ  be the class of graphs  = ( , ), such that  is connected graph with   for each edge ij  E( ). For example, ,   Γ . Denote by  , an unicyclic 
graph of order n and cycle length k, such that each vertex in the cycle is adjacent to one 
pendent vertex, n = 2k. Let Γ  be the class of graphs =( , ), such that  is connected 
graph with   for each non−pendent edge ij  E( ). For example,   Γ . Now 
we are ready to state an upper bound on .   
 
Theorem 2.6. Let G be a connected graph of order n>2 with m edges and p pendent 
vertices. Then    .                                                   10  
 
Equality holds in (10) if and only if  G   ,  or   or   . 
 
Proof: For each pendent edge ij  E(G) it is  1 and 0, . For each 
non−pendent edge ij  E(G),  2 m mm m 1.                                                        11  
From (11) inequality (10) follows straightforwardly. 

Suppose now that equality holds in (10). From equality in (11), we get that  
holds for each non-pendent edge ij  E(G).  

We need to consider two cases: (a) p = 0 and (b) p > 0.  
 
Case (a): p = 0. In this case all edges are non−pendent. We have  for each edge 
ij  E(G). Hence  Γ  . 
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Case (b): p > 0. First we assume that p = m. Then all edges are pendent and hence , . 
Next we assume that p < m. Then  for each non−pendent edge ij  E(G), 

implying that  Γ . 
Conversely, one can easily see that the equality in (10) holds for the star , . Let  Γ . Then p = 0 and . Finally, let Γ . Then .           

 
Directly from Theorem 2.6 we obtain:  

 
Corollary2.7. [3] Let G be a connected graph with m edges. Then     .                                                   12  
 
with equality in (12) if and only if  Γ . 
 
Remark 2.8. The upper bound (10) is better than (9). This is because 1  
which, evidently, is always obeyed since . 
 
 

2 NORDHAUS−GADDUM−TYPE RESULTS FOR THE THIRD 
GEOMETRIC−ARITHMETIC INDEX 

 
In [1] a brief survey can be found on the the work of Nordhaus and Gaddum [10] pertaining 
to properties of a graph G and its complement . This work served as a motivation for 
obtaining analogous statements for . 
 
Theorem 3.1. Let G be a connected graph on n vertices with a connected complement . 
Then 2 m p √m 2m 1 2  √ 21 . 
where p,  and m,  are the number of pendent vertices and edges in G and , 
respectively.  
 

Proof: Theorem 3.1 is an immediate consequence of inequality (3).                                     
 
Theorem 3.2. Let G be a connected graph on n vertices with a connected complement . 
Then    n2 p                                     13  
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Proof: By (10),    m p  
 
One arrives at (13) by noting that m  .                                                                   
 

Directly from Theorem 3.2. follows:  
 
Corollary 3.3. Let G be a connected graph on n vertices with a connected complement . 
Then    n2 .                                               14  
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