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Abstract

The terminal Wiener index TW = TW (G) of a graph G is equal to the sum of dis-
tances between all pairs of pendent vertices of G . This distance–based molecular structure
descriptor was put forward quite recently [I. Gutman, B. Furtula, M. Petrović, J. Math.
Chem. 46 (2009) 522–531]. In this survey we outline the hitherto established properties of
TW . In particular, we describe a simple method for computing TW of trees, characterize
the trees with minimum and maximum TW , and provide a formula for calculating TW of
thorn graphs.

1. Introduction

Let G be a connected graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set

E(G) = {e1, e2, . . . , em} . The distance between the vertices vi and vj , vi, vj ∈ V(G) , is

equal to the length (= number of edges) of the shortest path starting at vi and ending at

vj (or vice versa) [1], and will be denoted by d(vi, vj |G) .

The oldest molecular structure descriptor (topological index) is the one put forward in

1947 by Harold Wiener [2], nowadays referred to as the Wiener index and denoted by W .

It is defined as the sum of distances between all pairs of vertices of a (molecular) graph:

W = W (G) =
∑

{u,v}⊆V(G)

d(u, v|G) =
∑

1≤i<j≤n

d(vi, vj |G) . (1)



Details on the chemical applications and mathematical properties of the Wiener index can

be found in the reviews [3–5].

The square matrix of order n whose (i, j)-entry is d(vi, vj |G) is called the distance

matrix of G . Also this matrix has been much studied by mathematical chemists, for details

see [6, 7]. From the distance matrix not only the Wiener index, but also numerous other

structure descriptors can be derived [8, 9].

In a number of recently published articles, the so-called terminal distance matrix [10, 11]

or reduced distance matrix [12] of trees was considered.

If an n-vertex graph G has k pendent vertices (= vertices of degree one), labeled by

v1, v2, . . . , vk , then its terminal distance matrix is the square matrix of order k whose (i, j)-

entry is d(vi, vj |G) . In what follows, we denote this matrix by TD = TD(G) .

Practically all researches on TD (and, eventually, on the terminal Wiener index) were

concerned with trees (= connected acyclic graphs). The reason for this is evident: It is easy

to envisage that in the case of non-tree graphs G , in the matrix TD(G) the information on

the structure of G may be almost completely missing.

In particular, if the graph G has no pendent vertices, then G has no terminal distance

matrix (i. e., the dimension of TD is zero). If G has a single pendent vertex, then TD(G)

has dimension one and its unique matrix element is zero. If G has two just two pendent

vertices, both adjacent to the same vertex, then irrespective of the actual structure of this

graph, TD(G) is of the form [
0 2
2 0

]
.

In the case of trees the situation is less pessimistic. Namely, any n-vertex tree has k

pendent vertices, and 2 ≤ k ≤ n− 1 . The unique n-vertex trees with k = 2 and k = n− 1

are, respectively, the path (Pn) and the star (Sn). It is important to know that the terminal

distance matrix of a tree T determines the entire distance matrix of T , and thus completely

determines the tree T itself [13].

Terminal distance matrices of trees were used for modeling amino acid sequences of

proteins and the genetic code [10, 11, 14], and were proposed to serve as a source of novel

molecular–structure descriptors [10, 11].

Motivated by the previous researches on the terminal distance matrix and on its chemical

applications, the present authors have conceived the terminal Wiener index TW (G) of a



graph G as the sum of the distances between all pairs of its pendent vertices [15].

Without loss of generality, we may assume that the graph G has n vertices of which

k vertices, labeled by v1, v2, . . . , vk , are pendent. Let thus V1(G) = {v1, v2, . . . , vk} be

the set of pendent vertices of G . In harmony with the previously introduced notation,

V1(G) ⊆ V(G) . Then, in analogy with Eq. (1), we define

TW = TW (G) =
∑

{u,v}⊆V1(G)

d(u, v|G) =
∑

1≤i<j≤k

d(vi, vj |G) . (2)

In order to illustrate the above definition, we show how the terminal Wiener index is

computed for the tree T1 depicted in Fig. 1. Here we directly apply Eq. (2).
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Fig. 1. A tree T1 whose terminal Wiener index is equal to 51.

The tree T1 has six pendent vertices - v1, v2, . . . , v6 . Therefore the summation on the

right–hand side of (2) contains
(

6
2

)
= 15 terms, and we have:

TW (T1) = d(v1, v2|T1) + d(v1, v3|T1) + d(v1, v4|T1) + d(v1, v5|T1) + d(v1, v6|T1)

+ d(v2, v3|T1) + d(v2, v4|T1) + d(v2, v5|T1) + d(v2, v6|T1) + d(v3, v4|T1)

+ d(v3, v5|T1) + d(v3, v6|T1) + d(v4, v5|T1) + d(v4, v6|T1) + d(v5, v6|T1)

= 3 + 4 + 2 + 5 + 3 + 3 + 3 + 4 + 2 + 4 + 3 + 3 + 5 + 3 + 4 = 51 .

2. Elementary properties of the terminal Wiener index

Directly from its definition, Eq. (2), the following properties of TW are immediate:

1. If the graph G has no pendent vertices (k = 0 , V1(G) = ∅), then TW (G) = 0 .

2. If the graph G has a single pendent vertex (k = 1 , V1(G) = {v1}), then TW (G) = 0 .



3. If the graph G has exactly two pendent vertices (k = 2 , V1(G) = {v1, v2}), then

TW (G) = d(v1, v2|G) .

4. In particular, if the two vertices from point 3 are adjacent to the same vertex of G ,

then TW (G) = 2 .

5. As a special case of point 3, TW (Pn) = n− 1 .

6. The star Sn has n− 1 pendent vertices, all adjacent to the same vertex. Therefore,

TW (Sn) =
(

n− 1
2

)
× 2 = (n− 1)(n− 2) .

The above listed properties of TW confirm the conclusions that it is purposeful to

restrict the considerations to trees.

3. A modified Wiener’s “first theorem”

In this section we are concerned with trees. Recall that any tree T with n vertices has

n− 1 edges, and has at least two pendent vertices.

The first question that should be asked in connection with the terminal Wiener index

is how it could be efficiently computed. For this a result that is fully analogous to Wiener’s

“first theorem” for the ordinary Wiener index [2, 16] was reported in [15].

In his seminal article [2] Wiener communicated the formula

W (T ) =
∑

e∈E(T )

n1(e) · n2(e) (3)

which holds for any tree T . This result may be viewed as the first theorem ever for the

Wiener index. In formula (3) e stands for an edge, whereas n1(e) and n2(e) are the number

of vertices lying on the two sides of e ; the summation in (3) goes over all edges of the

respective tree T . If T has n vertices, then n1(e) + n2(e) = n for all edges e .

In the paper [7] no proof of formula (3) was put forward. However, the proof of (3) is

easy [16]: Instead of summing the distances (= the number of edges in the shortest paths)

between all pairs of vertices in the tree T , we may count how many times a particular edge

e lies on the (unique) shortest path between two vertices, and then add these counts over



all edges of the underlying tree. The number of shortest paths that go through the edge e

is equal to n1(e) · n2(e) .

Using the same idea we obtain [15]:

Theorem 1. Let T be an n-vertex tree with k pendent vertices, and let e be its edge.

Denote by p1(e) and p2(e) the number of pendent vertices of T , lying on the two sides of

e . Then

TW (T ) =
∑

e∈E(T )

p1(e) · p2(e) (4)

with the summation embracing all the n− 1 edges of T .

Proof. Instead of summing the distances between all pairs of pendent vertices in the tree

T , we count how many times a particular edge e lies on the shortest path between two

pendent vertices, and then add these counts over all edges of the underlying tree. Such

shortest paths will start at p1(e) pendent vertices (those lying on one side of e) and end at

p2(e) pendent vertices (those lying on the other side of e). Thus their number is p1(e)·p2(e) ,

which leads to Eq. (4). ¥

It should be noted that for all edges of the tree T ,

p1(e) + p2(e) = k and p1(e), p2(e) ≥ 1 .

Consequently,

k − 1 ≤ p1(e) · p2(e) ≤
⌊

k

2

⌋⌈
k

2

⌉
.

If e is a pendent edge, then p1(e) · p2(e) = k − 1 .

For the tree T1 (see Fig. 1) we immediately get:

p1(e1) = 1 ; p2(e1) = 5 p1(e2) = 2 ; p2(e2) = 4

p1(e3) = 4 ; p2(e3) = 2 p1(e4) = 5 ; p2(e4) = 1

p1(e5) = 5 ; p2(e5) = 1 p1(e6) = 1 ; p2(e6) = 5

p1(e7) = 1 ; p2(e7) = 5 p1(e8) = 1 ; p2(e8) = 5

p1(e9) = 1 ; p2(e9) = 5



and therefore formula (4) yields:

TW (T1) = (1× 5) + (2× 4) + (4× 2) + (5× 1) + (1× 5)

+ (1× 5) + (1× 5) + (1× 5) + (1× 5) = 51 .

This example shows that the calculation of TW by means of formula (4) is somewhat

easier than by using the definition (2). However, the true value of formula (4) is in enabling

one to deduce a number of general properties of the terminal Wiener index of trees.

4. Variable terminal Wiener index

A generalization of the Wiener–index concept, based on Eq. (3), was proposed in 2004

by Vukičević, Žerovnik, and one of the present authors [17]. Thus, the variable Wiener

index was defined as

Wλ(T ) =
∑

e∈E(T )

[n1(e) · n2(e)]λ (5)

where λ is a real number. In full analogy to this, bearing in mind Eq. (4), Deng and Zhang

put forward the variable terminal Wiener index , defined as [18]

TWλ(T ) =
∑

e∈E(T )

[p1(e) · p2(e)]λ . (6)

Until now, there is no report on any chemical application of TWλ , and its only established

mathematical property is the one mentioned in the subsequent section.

Needless to say, for λ = 1 the variable Wiener and variable terminal Wiener indices

reduce to the ordinary Wiener and terminal Wiener indices, respectively.

5. Terminal–equiseparable trees

In this section it will be assumed that the quantities n1(e) and n2(e) , as well as p1(e)

and p2(e) , encountered in Section 3, are chosen so that n1(e) ≥ n2(e) and p1(e) ≥ p2(e) .

Let T ′ and T ′′ be two n-vertex trees, with edge sets E(T ′) = {e′1, e′2, . . . , e′n−1} and

E(T ′′) = {e′′1, e′′2, . . . , e′′n−1} . If it is possible to label the edges of T ′ and T ′′ so that n1(e′i) =

n1(e′′i ) holds for all i = 1, 2, . . . , n− 1 , then the trees T ′ and T ′′ are said to be equiseparable



[19]. Then, of course, also n2(e′i) = n2(e′′i ) holds for all i = 1, 2, . . . , n− 1 . Equiseparability

of trees has numerous intriguing mathematical and chemical consequences, for details see

[20–24]. For our considerations it suffices to note that for any value of the parameter λ , cf.

Eq. (5), equiseparable trees have equal variable Wiener indices. In particular, such trees

have also equal Wiener indices.

Equiseparability is a very frequent phenomenon among trees. Namely, it was shown

that [23],

lim
n→∞

#EST (n)
#T (n)

= 1 (7)

where #EST (n) is the number of n-vertex trees having an equiseparable mate, and #T (n) is

the total number of n-vertex trees. Eq. (7) means that almost all trees have an equiseparable

mate.

Deng and Zhang [18] extended the concept of equiseparability to terminal vertices. They

defined terminal–equiseparability as follows. If for two n-vertex trees T ′ and T ′′ , the equality

p1(e′i) = p1(e′′i ) holds for all i = 1, 2, . . . , n− 1 , then T ′ and T ′′ are terminal–equiseparable.

The same authors [18] described methods for constructing pairs of terminal–equiseparable

trees. This turned out to be easy, and fully analogous to what earlier was proposed for eq-

uiseparable trees [20]. We state here two simple results of this kind:

Theorem 2. All n-vertex trees with exactly 3 pendent vertices are mutually terminal–

equiseparable.

Proof. Since k = 3 , on one side of each edge there is one, and on the other side two

pendent vertices. Therefore, for any edge e of any tree with k = 3 , it is p1(e) = 2 and

p2(e) = 1 . ¥

Theorem 3. If the trees T ′ and T ′′ are terminal–equiseparable, then for all values of the

parameter λ , TWλ(T ′) = TWλ(T ′′) . In particular, TW (T ′) = TW (T ′′) .

Proof. Take into account Eq. (6). ¥

Without proof we state the much less easy:



Theorem 4. [18]

lim
n→∞

#TEST (n)
#T (n)

= 1

where #TEST (n) is the number of n-vertex trees having a terminal–equiseparable mate,

and #T (n) is the total number of n-vertex trees. Therefore, almost all trees have a terminal–

equiseparable mate.

6. Tree with minimal terminal Wiener index

For the considerations that follow one should recall that the summation on the right–

hand side of Eq. (4) goes over n− 1 (non-zero) terms.

Because 1 is the minimal possible value for the product p1(e) · p2(e) , it immediately

follows that n−1 is the minimal possible value that the terminal Wiener index may assume

for n-vertex trees. Because any tree different from Pn possesses at least one edge e for which

p1(e) · p2(e) ≥ 2 , we conclude that TW (T ) > n− 1 holds for all n-vertex trees T 6∼= Pn . By

this, as a straightforward consequence of Eq. (4) we obtained:

Theorem 5. [15] For any n-vertex tree, TW (T ) ≥ n− 1 . Equality TW (T ) = n− 1 holds

if and only if T ∼= Pn . ¥

Thus the path is the tree with minimal terminal Wiener index. The finding of the tree(s)

with maximal TW is less easy and will be achieved in the subsequent two sections.

7. Trees with fixed number of pendent vertices having

minimal and maximal terminal Wiener index

In this section we restrict our consideration to n-vertex trees having a fixed number k

of pendent vertices. Such trees have also k pendent edges, and, consequently, k summands

on the right–hand side of Eq. (4) are equal to k − 1 . Formula (4) can thus be rewritten as

TW (T ) = k(k − 1) +
∑

e′
p1(e′) · p2(e′) (8)

where e′ are the non-pendent edges of T . Note that there exist n− 1− k such edges.



The only n-vertex tree with k = 2 is the path Pn . Therefore, in what follows, we assume

that 3 ≤ k ≤ n− 1 .

In view of the fact that p1(e′)+p2(e′) = k , the minimal value of the product p1(e′)·p2(e′)

is k − 1 . Therefore, if for all non-pendent edges e′ the product p1(e′) · p2(e′) is equal to

k − 1 , then the respective tree will have minimal possible TW -value. Such trees do exist.

A tree is said to be starlike of degree k if exactly one of its vertices has degree greater

than two, and this degree is equal to k , k ≥ 3 . In Fig. 2 are depicted all 12-vertex starlike

trees of degree 4.

Fig. 2. The 12-vertex starlike trees of degree 4. Among 12-vertex trees with 4 pendent
vertices these all have minimal terminal Wiener index, equal to 33.

Theorem 6. [15] Among n-vertex trees with a fixed number k of pendent vertices, k ≥ 3 ,

the starlike trees of degree k have minimal terminal Wiener index. All n-vertex starlike

trees of degree k have TW = (n− 1)(k − 1) .

Proof. It is easy to see that among trees, only the starlike trees have the property that

either p1(e) = 1 or p2(e) = 1 holds for any edge e . ¥

From Theorem 6 we see that TW = 33 holds for all the eleven trees depicted in Fig. 2.



From this example one concludes that there are numerous non-isomorphic trees having the

same TW -value. In other words, the isomer–discriminating power of the terminal Wiener

index is very low. In particular, all trees with 3 pendent vertices are starlike, and thus all

such trees with same number n of vertices have same TW -values, equal to 2(n− 1) . (The

same conclusion would follow also from Theorems 2 and 3.)

We now begin the search for trees with k pendent vertices and maximal TW . For reason

just explained, we are not interested in the case k = 3 .

In Section 3 it has been explained that the maximal possible value of the product

p1(e′) · p2(e′) is bk/2c · dk/2e . Then from Eq. (8) we conclude that the maximal possible

value of TW is k(k − 1) + (n− 1− k)bk/2cdk/2e , provided that there exist n-vertex trees

with k pendent vertices, for which all non-pendent edges e′ have the property

p1(e′) · p2(e′) =
⌊

k

2

⌋⌈
k

2

⌉
. (9)

Indeed, such trees do exist (see below). We thus arrive at:

Theorem 7. [15] Among n-vertex trees with a fixed number k of pendent vertices, k ≥ 4 ,

the trees whose all non-terminal edges e′ satisfy condition (9) have maximal terminal Wiener

index. All such trees have

TW = k(k − 1) + (n− 1− k)
⌊

k

2

⌋⌈
k

2

⌉
. (10)

Proof. We have already seen that the right–hand side of Eq. (10) is the maximal possible

value that TW may assume. What remains is to demonstrate that there are trees satisfying

Eq. (10). The construction of such trees proceeds as follows:

(a) If k is even, 4 ≤ k < n − 1 , then the required tree is obtained from the path Pn−k by

attaching to each of its terminal vertices k/2 new pendent vertices. This tree is unique.

(b) If k is odd, 5 ≤ k < n − 1 , then the required tree is obtained from the path Pn−k by

attaching to each of its terminal vertices (k − 1)/2 new pendent vertices, and by attaching

one more pendent vertex to some vertex of Pn−k . There exist d(n− k)/2e distinct trees of

this kind.

(c) If k = n− 1 , then the respective tree is the star, having no non-pendent edges at all.



It can easily be verified that the above described trees have n vertices, k pendent vertices

and that their non-pendent edges satisfy condition (9). It is also straightforward to see that

these are the only trees with such properties. ¥

The trees with 12 vertices and various number of pendent vertices, having maximal

terminal Wiener index are shown in Fig. 3.

k=4

k=5

k=6

k=7

k=8

k=9

k=10 k=11

Fig. 3. Trees with n = 12 vertices and k pendent vertices, having maximal terminal
Wiener index. For even values of k such trees are unique. For odd values of k there exist
d(n− k)/2e distinct trees of this kind; in particular, 4, 3, 2, and 1 for k = 5 , k = 7 , k = 9 ,
and k = 11 , respectively.



8. Trees with maximal terminal Wiener index

In the preceding section we determined the n-vertex trees with a fixed number k of

pendent vertices, for which TW is maximal.

In Fig. 4 are depicted all n-vertex trees with maximal terminal Wiener index, for

9 ≤ n ≤ 16 . These may give an idea which value of k needs to be chosen in order to get a

maximum TW -value.

n=9 n=10 n=11

n=12 n=13

n=14 n=15

n=16

Fig. 4. The n-vertex trees with maximal terminal Wiener index, for n = 9, 10, . . . , 16.

In order to find the n-vertex tree(s) for which TW is maximal we only have to determine

the value of k for which the right–hand side of Eq. (10) is maximal. The solution of this

not quite easy mathematical problem was found in [15]. We state it without proof.

Theorem 8. [15] Within the class of all trees with n vertices the following holds.

(a) If 3 ≤ n ≤ 9 , then the star Sn has maximal terminal Wiener index, equal to (n−1)(n−2) .

(b) If n = 3s , s = 4, 5, 6, . . . , then the tree with k = 2s + 2 pendent vertices (specified in

the proof of Theorem 4) has maximal terminal Wiener index, equal to s3 + 3 s2 + s − 1 .



This tree is unique.

(c) If n = 3s + 1 , s = 3, 4, 5, . . . , then the trees with k = 2s + 2 and k = 2s + 3 pendent

vertices (specified in the proof of Theorem 4) have maximal terminal Wiener indices, all

equal to s3 + 4 s2 + 3s . There are ds/2e distinct trees of this kind.

(d) If n = 3s+2 , s = 3, 4, 5, . . . , then the trees with k = 2s+3 pendent vertices (specified in

the proof of Theorem 4) have maximal terminal Wiener indices, all equal to s3+5 s2+6s+2 .

There are d(s− 1)/2e distinct trees of this kind.

9. Terminal Wiener index of thorn graphs

Let G a connected n-vertex graph with vertex set V(G) = {v1, v2, . . . , vn} , and let

a = (a1, a2, . . . , an) be an n-tuple of non-negative integers. The thorn graph G(a) is the

graph obtained by attaching ai pendent vertices to the vertex vi of G for i = 1, 2, . . . , n .

The ai pendent vertices attached to the vertex vi will be called the thorns of vi .

Theorem 9. [25] If ai > 0 for all i = 1, 2, . . . , n , then

TW (G(a)) = 2
n∑

i=1

(
ai

2

)
+

∑

1≤i<j≤n

ai aj [d(vi, vj |G) + 2] . (11)

Proof. We obtain formula (11) by applying Eq. (2). Consider first the thorns attached

to a given vertex vi . Each of these are at distance 2, and therefore their contribution to

TW (G(a)) is
(

ai

2

)
× 2 . This leads to the first term on the right–hand side of (11).

Consider a thorn attached to vertex vi and a thorn attached to vertex vj , i 6= j . Their

distance is by two greater than the distance between vi and vj . Since there are ai×aj pairs

of thorns of this kind, their contribution to TW (G(a)) is equal to ai aj [d(vi, vj |G) + 2] .

This leads to the second terms on the right–hand side of (11). ¥

Corollary 9.1. Formula (11) remains valid also if some ai’s are equal to zero, provided

that the corresponding vertices of the graph G are not pendent.

Corollary 9.2. If a1 = a2 = · · · = an = a > 0 , then

TW (G(a)) = a2 W (G) + an(an− 1) . (12)



Proof. Start with Eq. (11) and apply the definition (1) of the Wiener index of the graph

G . This yields

TW (G(a)) = na(a− 1) + a2 [W (G)− n(n− 1)]

which is then easily transformed into Eq. (12). ¥

Theorem 10. [25] Let G be a connected n-vertex graph, and let v1, v2, . . . , vk be its pendent

vertices. Choose the n-tuple a so that

ai =

{
a for i = 1, 2, . . . , k

0 for i = k + 1, . . . , n

and let a > 0 . Then

TW (G(a)) = a2 TW (G) + ak(ak − 1) . (13)

Proof. Start with Eq. (11) and apply the definition (2) of the terminal Wiener index of

the graph G . This yields

TW (G(a)) = ka(a− 1) + a2 [TW (G)− k(k − 1)]

which is then easily transformed into Eq. (13). ¥

Note that if in the above theorem a = 0 , then TW (G(a)) ≡ TW (G) .

By means of Theorem 10 it is possible to recursively compute the terminal Wiener

indices of certain dendrimers. An example of a dendrimer series to which formula (13) is

applicable is shown in Fig. 5.

Let D0 , D1 , D2 , . . . be a series of dendrimer graphs. Let for h = 1, 2, . . . , the dendrimer

graph Dh be obtained so that a pendent vertices are attached to each pendent vertex of

Dh−1 . For an illustration see Fig. 5.

Let kh be the number of pendent vertices of Dh . Then from Theorem 10 we get the

recurrence relations:

TW (Dh+1) = a2 TW (Dh) + a kh(a kh − 1)

kh+1 = a kh .

In the examples depicted in Fig. 5, a = 2 . It is easy to check that TW (D0) = 12 and



k0 = 3 . Then

TW (D1) = a2 TW (D0) + a k0(a k0 − 1) = 22 · 12 + 2 · 3 · (2 · 3− 1) = 78

k1 = a k0 = 2 · 3 = 6

TW (D2) = a2 TW (D1) + a k1(a k1 − 1) = 22 · 78 + 2 · 6 · (2 · 6− 1) = 444

k2 = a k1 = 2 · 6 = 12

TW (D3) = a2 TW (D2) + a k2(a k2 − 1) = 22 · 444 + 2 · 12 · (2 · 12− 1) = 2328

k3 = a k2 = 2 · 12 = 24

TW (D4) = a2 TW (D3) + a k3(a k3 − 1) = 22 · 2328 + 2 · 24 · (2 · 24− 1) = 11568

k4 = a k3 = 2 · 24 = 48

etc.

D D D

D

1 2

3

0

Fig. 5. The first four members of a series of dendrimer graphs. Their terminal Wiener
indices are calculated recursively as TW (D0) = 12 , TW (D1) = 78 , TW (D2) = 444 ,
TW (D3) = 2328 , . . . ; for details see text.



10. Concluding remarks

As already mentioned, the terminal Wiener index is a very new molecular–structure

descriptor. Only a limited number of its mathematical properties were established so far;

practically all of these are outlined in the present survey.

Until now no attempt was reported to find some chemical application of TW or, at

least, to investigate how TW is correlated with the usually employed physico–chemical

properties of alkanes (octane isomers, in particular). The readers of this survey are invited

and encouraged to help filling this gap.

The variable terminal Wiener index, Eq. (6), was introduced ad hoc [18], and practically

nothing is known about it. What first would have to be done is to find a convincing

argument (either chemical or mathematical) why such a quantity should be considered at

all. Otherwise, the idea should better be abandoned.
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