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The concept of geometric–arithmetic indices (GA) was introduced in the
chemical graph theory very recently. In spite of this, several papers have
already appeared dealing with these indices. The main goal of this survey
is to collect all hitherto obtained results on GA indices (both chemical
and mathematical).

1. Introduction

Molecular descriptors play a significant role in mathematical chemistry especially in

the QSPR/QSAR investigations. Among them, special place is reserved for so-called

topological descriptors. Nowadays, there exists a legion of topological indices that found

some applications in chemistry [1]. They can be classified by the structural properties

of graphs used for their calculation. Hence, probably the best known and widely used

Wiener index [2] is based on topological distance of vertices in the respective graph, the

Hosoya index [7] is calculated counting of non-incident edges in a graph, the energy [3]

and the Estrada index [4] are based on the spectrum of the graph, the Randić connectivity

index [5] and the Zagreb group indices [6] are calculated using the degrees of vertices,

etc.

Here, a new class of topological descriptors, based on some properties of vertices of

graph is presented. These indices are named as “geometric–arithmetic indices” (GAgeneral)

and their definition is as follows [9]:

GAgeneral = GAgeneral(G) =
∑

uv∈E(G)

√
Qu Qv

1
2
(Qu +Qv)

(1)

where Qu is some quantity that in a unique manner can be associated with the vertex u

of the graph G .



The name of this class of indices is evident from their definition. Namely, indices

belonging to this group are calculated as the ratio of geometric and arithmetic means of

some properties of adjacent vertices u and v (vertices u and v are connected by an edge).

Summation goes over all edges in a respective graph G . Three members of GA group

topological indices are put forward up to now.

The first member [8] is the so-called geometric–arithmetic index GA1 , defined as

GA1 = GA1(G) =
∑

uv∈E(G)

√
du dv

1
2
(du + dv)

(2)

where uv is an edge of the (molecular) graph G connecting the vertices u and v , where

du stands for the degree of the vertex u , and where the summation goes over all edges of

G .

In the rest of the text we are calling it as the “first geometric–arithmetic index”.

Another member of this class we denote by GA2 and is – tentatively – referred to as

the second geometric–arithmetic index . Whereas GA1 is defined so as to be related to

the famous Randić index [5], GA2 is constructed in such a manner that it is related with

Szeged [10] and vertex Padmakar–Ivan [11] indices (see below).

Let G be a connected graph with n vertices and m edges, with vertex set V (G) and

edge set E(G) . As usual [12], the distance d(x, y|G) between two vertices x, y ∈ V (G) is

defined as the length (= number of edges) of the shortest path that connects x and y .

Let e = uv be an edge of G , connecting the vertices u and v . Define the sets

N(e, u,G) = {x ∈ V (G) | d(x, u|G) < d(x, v|G) }

N(e, v,G) = {x ∈ V (G) | d(x, u|G) > d(x, v|G) } .

consisting, respectively, of vertices of G lying closer to u than to v , and lying closer to v

than to u . The number of such vertices is then

nu(e) = nu(e,G) = |N(e, u,G)| and nv(e) = nv(e) = |N(e, v,G)| . (3)

Note that vertices equidistant to u and v are not included into either N(e, u,G) or

N(e, v,G) . Such vertices exist only if the edge uv belongs to an odd-membered cycle.

Hence, in the case of bipartite graphs, N(e, u,G)∪N(e, v,G) = V (G) and, consequently,

nu(e,G) + nv(e,G) = n (4)



for all edges of the graph G .

It is also worth noting that u ∈ N(e, u,G) and v ∈ N(e, v,G) , which implies that

nu(e) ≥ 1 and nv(e) ≥ 1 .

Motivated by the expressions for calculation of Szeged (Sz) and recently introduced

vertex Padmakar–Ivan (PIv) indices, and in view of the general formula (1), the second

geometric–arithmetic index is defined as

GA2 = GA2(G) =
∑

uv∈E(G)

√
nu · nv

1
2
[nu + nv]

. (5)

Currently, the last introduced topological index belonging to the GA class is the so-

called the “third geometric–arithmetic index”, denoted as GA3 [13]. In order to define

the GA3 index, some preparation must be done.

Let x be a vertex and uv be an edge of the graph G . The distance between x and

uv is defined as d(x, uv|G) =min{d(x, u|G), d(x, v|G)} . For uv ∈ E(G), let mu = |{f ∈

E(G) : d(u, f |G) < d(v, f |G}| .

It should be noted thatmu is not a quantity that in a unique manner can be associated

with the vertex u of the graph G , but that it depends on the edge uv . Yet, this restriction

is not relevant for the definition of GA3 . Note that in all cases mu ≥ 0 and mu +mv ≤

m− 1 .

Then, incorporatingmu as vertex quantity into Eq. (1) the third geometric–arithmetic

index is defined as

GA3 = GA3(G) =
∑

uv∈E(G)

√
mu ·mv

1
2
[mu +mv]

. (6)

Similarly to GA2 , the third geometric–arithmetic index is defined as to be related

to the recently introduced edge Szeged (Sze) index [14] and edge Padmakar–Ivan (PIe)

index [15].



2. The First Geometric–arithmetic Index

Investigations of topological indices based on end–vertex degrees of edges have been

conducted over 35 years. Among them, several indices are recognized to be useful tools in

chemical researches. Probably, the best know such descriptor is the Randić connectivity

index (χ) [5]. There are more than thousand papers and a couple of books dealing with

this molecular descriptor (for example see [16–18] and the references cited therein). Dur-

ing years of research, scientists were trying to improve the predictive power of the Randić

index. This led to the introduction of a number of modifications and new topological

descriptors resembling the original χ–index. The first geometric–arithmetic index (GA1)

may be viewed as one of the successors of the Randić connectivity index.

The GA1 index, defined by Eq. (2), has been introduced less than a year ago [8].

However, a few papers are appeared dealing with this quantity. In the subsequent section,

the results on GA1 will be summarized.

2.1. GA1 as a tool for QSAR/QSPR researches

The reason for introducing a new index is to gain prediction of target property (prop-

erties) of molecules somewhat better than obtained by already presented indices. There-

fore, a test study of predictive power of a new index must be done. As a “standard”

for testing new topological descriptors, the properties of octanes are commonly used. A

benchmark data sets can be found at www.moleculardescriptors.eu . This data set

contains 16 physico–chemical properties of octanes: boiling point (BP ), melting point

(MP ), heat capacity at V constant (CV ), heat capacity at P constant (CP ), Entropy

(S), density (DENS), enthalpy of vaporization (HV AP ), standard enthalpy of vapor-

ization (DHV AP ), enthalpy of formation (HFORM), standard enthalpy of formation

(DHFORM), motor octane number (MON), molar refraction (MR), acentric factor

(AcenFac), total surface area (TSA), octanol–water partition coefficient (LogP ), and

molar volume (MV ). The correlations between theGA1 index and these physico–chemical

properties are given on the following figures:
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In [8], the predictive ability of GA1 was compared with that of the Randić connec-

tivity index using the following physico–chemical properties of octanes: Boiling point

(BP ), Entropy (S), Enthalpy of vaporization (HV AP ), Standard enthalpy of vaporiza-

tion (DHV AP ), Enthalpy of formation (HFORM), and Acentric factor (AcenFac) .

The motivation for choosing just these physico–chemical properties is that both GA1

and the Randić connectivity indices give relatively good linear correlations, i. e., the re-

spective correlation coefficients are greater than 0.8 . The results are presented in Table

1.

Correlation coefficient (R)
1−RQR(%)

GA1 index Randić index
BP 0.823 0.821 0.562
S 0.912 0.906 2.942
HV AP 0.941 0.936 4.152
DHV AP 0.966 0.958 9.005
HFORM 0.858 0.850 2.494
AcenFac 0.912 0.904 4.051

Table 1. Correlation coefficients for GA1 and Randić index and some

physico–chemical properties of octanes. RQR is the ratio of quadratic

mean of residuals.

A superficial glance on R’s does not justify the introduction of the GA1 index because

(even though the GA1 gives better correlation coefficients than χ) the differences between

them are not significant. However, the predicting ability of the GA1 index compared with

Randić index is reasonably better, which is indicates by the ratio of quadratic mean of

residuals, RQR1(see Table 1).

Benzenoid hydrocarbons (B) belong to the most important polycyclic aromatic com-

pounds. They consist of fused benzene rings. Their characteristic physico–chemical

properties, especially their thermal stability, was subject to intensive research. Benzenoid

hydrocarbons found a number of applications in industry. They are also big pollutants

and some of them are carcinogenic chemicals. Nowadays, there are numerous published

researches, both experimental and theoretical, dealing with this class of molecules. More

information about them can be found in the book [24] and the references cited therein.

1The RQR value can be calculated using the following formula

RQR =

√∑n
i=1 [a(GA1)i + b− Expi]

2∑n
i=1 [a

′χi + b′ − Expi]
2 .



Whereas nowadays only ca. 1000 benzenoid hydrocarbons are known, the number of

possible benzenoid hydrocarbons is unimaginatively large. For instance, the number of

possible benzenoid hydrocarbons with 35 benzene rings is 5851000265625801806530 [25].

Therefore, the modeling of their physico–chemical properties is very important in order

to predict properties of currently unknown species.

Here, the heat of formation of 25 benzenoid hydrocarbons is modeled using the GA1

index. The data set, collected from the article [26], is given in Table 2.

Name n ∆Hf (g) (kJ/mol) GA1

benzene 6 82.9 6.000
naphthalene 10 150.6 10.919
anthracene 14 227.7 15.838
phenanthrene 14 207.1 15.879
pyrene 16 225.7 18.838
benzo[a]anthracene 18 291.0 20.798
benzo[c]phenathrene 18 302.4 20.838
chrysene 18 262.8 20.838
napthacene 18 291.4 20.758
triphenylene 18 269.8 20.879
benzo[a]pyrene 20 301.0 23.798
benzo[e]pyrene 20 304.0 23.838
perylene 20 324.0 23.838
benzo[b]chrysene 22 346.0 25.758
benzo[c]chrysene 22 334.0 25.798
benzo[g ]chrysene 22 333.0 25.838
benzo[a]napthacene 22 359.0 25.717
dibenzo[a,c]anthracene 22 345.0 25.798
dibenzo[a,h]antharacene 22 343.0 25.758
dibenzo[a,j ]antharcene 22 343.0 25.758
dibenzo[b,g ]phenanthrene 22 347.0 25.758
dibenzo[c,g ]phenanthrene 22 335.0 25.798
pentacene 22 374.5 25.677
pentaphene 22 359.0 25.717
picene 22 334.0 25.798

Table 2. Heat of formation and the GA1 index of some benzenoid

hydrocarbons

The correlation graphic between the GA1 indices and heat of formation of the 25

benzenoid hydrocarbons from Table 2is shown in Fig. 1. It is evident from this graphic

that between GA1 and the heat of formation of benzenoid hydrocarbons there exists a

good linear correlation. The respective correlation coefficient is equal to 0.972 .
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Figure 1. Heat of formation vs. GA1 for the 25 benzenoid hydrocarbons

from Table 2.

However, it is well known that the heat of formation roughly depends on the number

of atoms in the molecule, and therefore the correlation shown in Fig. 1 may, in fact,

look unrealistically good. In order to overcome this problem, the examination of corre-

lation between heat of formation and GA1 index should be limited to isomers. Among

experimental results given in Table 1 there are all twelve catacondensed2 benzenoid hy-

drocarbons with 5 benzene rings (i. e., 22 carbon atoms). The correlation between the

GA1 index and heat of formation for the 12 catacondensed benzenoid hydrocarbons with

5 benzene rings is shown in Fig. 2.
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Figure 2. Correlation between GA1 and the heat of formation for all

catacondensed benzenoid hydrocarbons with 5 hexagons (i. e., with 22

carbon atoms)

2Benzenoid hydrocarbons containing no internal carbons atoms (carbons atoms belonging to three
sic-membered rings) are said to be “catacondensed”.



The correlation coefficient is −0.939 . It should be noted from Fig. 2 that two outliers

exist. By inspecting the data set of twelve catacondensed benzenoid hydrocarbons with

5 benzene rings, we determined which molecules correspond to these two outliers. These

are benzo[g ]chrysene and dibenz[a,c]anthracene, the only two branched catacondensed

benzenoid hydrocarbons in this data set. This observation leads to the conclusion that

for the modeling of the heat of formation of benzenoid hydrocarbons, other structural

details should be incorporated beside the GA1 index.

2.2. Mathematical properties of the GA1 index

In this subsection, the mathematical results on the first geometric–arithmetic index

are presented. All results apply to simple graphs, i. e., to graphs without loops, multiple

edges, and directed edges.

2.2.1. Lower and upper bounds for GA1

Knowing the fact that the geometric mean is less than or equal to the arithmetic

mean, it is obvious that all indices belonging to the GA class satisfy GAgeneral ≤ m .

In addition, it is evident from Eq. (1) that GAgeneral is equal to 0 for an empty graph.

Taking that into account we get for all simple graphs

0 ≤ GAgeneral(G) ≤ m ≤
(
n

2

)
. (7)

The equality on the righthand side of (7) is attained if and only if G is a regular graph

with
(
n
2

)
edges. The only such graph is the complete graph (Kn).

Eq. (7) applied to GA1 yields the first inequality for that index [8]:

0 = GA1(Kn) ≤ GA1(G) ≤
(
n

2

)
= GA1(Kn)

where Kn is the complement graph of the complete graph Kn . In other words, this is

the empty graph with n vertices.

In [8], the following inequality is obtained for all connected simple graphs with n

vertices:
2(n− 1)3/2

n
= GA1(Sn) ≤ GA1(G) ≤

(
n

2

)
= GA1(Kn) .

The lower bond is achieved if and only if G is the star (Sn) and the upper bound is the

same as for all graphs.



The authors of [19] found for triangle-free graphs with n vertices and m edges the

inequality

GA1(G) ≥
(
2m

n

)2

,

with equality attained if and only if G is the regular complete bipartite graph.

In the paper [20], a lower bound for GA1 of a simple graph G with m edges, in terms

of maximum vertex degree (∆) and minimum vertex degree (δ) was presented.

GA1(G) ≥ 2m
√
∆ · δ

∆+ δ
.

Equality holds if and only if G is a regular graph or G is a bipartite semi–regular graph.

Also, in [20] a lower and an upper bound for GA1 was reported in following terms:

δ1 – minimum non-pendent vertex degree

d1, d2, . . . , dn – degree sequence

M2(G) – second Zagreb index

p – number of pendent vertices

m− p = µ – number of non-pendent edges

2p
√
∆

∆+ 1
+

√√√√µ2 − µ

4δ21

[
n∑

i=1

d3i − 2M2(G)− p (δ1 − 1)2
]
− µ2

4

(
1− 2

√
∆δ1

∆+ δ1

)2

≤ GA1(G) ≤

2p
√
δ1

δ1 + 1
+

√√√√µ2 − µ

4∆2

[
n∑

i=1

d3i − 2M2(G)− p(∆− 1)2

]
.

The lower and upper bounds are equal when G is a regular graph or a (∆, 1)-semiregular

graph.

Nordhaus–Gaddum type [21] lower and upper bounds for a connected graph G and

its connected complement graph G were obtained in [20]:

2k

k2 + 1

(
n

2

)
≤ GA1(G) +GA1(G) ≤

(
n

2

)
− p

(√
δ1 − 1

)2
δ1 + 1

− p

(√
δ1 − 1

)2
δ1 + 1

where k = max
{√

∆
δ
,
√

n−1−δ
n−1−∆

}
. p , p , and δ1 , δ1 are the number of pendent vertices

and minimum non-pendent vertex degrees in G and G , respectively.



The lower and upper bounds are equal when G is a regular graph.

2.2.1.1. Lower and upper bounds for GA1 of molecular graphs

A connected graph with maximum vertex degree at most 4 is said to be a “molecular

graph”. Its graphical representation may resemble a structural formula of some (usually

organic) molecule. That was a primary reason for employing graph theory in chemistry.

Nowadays this area of mathematical chemistry is called chemical graph theory [22].

In [19], lower and upper bounds for molecular graph G with n ≥ 4 vertices and

m ∈ [n− 1, 2n] edges are given:

17m− 4n

15
≤ GA1(G) ≤ 1

3

[(
9− 4

√
2
)
m−

(
6− 4

√
2
)
n
]
.

The left equality is attained if and only if G has only the vertices of degree four and one.

The right equality is reached if and only if the G is a path or a cycle.

2.2.2. Lower and upper bounds for GA1 of trees

The simplest connected graphs are the trees (T ). Hence, the mathematical properties

of some graph invariant are usually first investigated on them.

Therefore, the authors of the paper [8] explored mathematical properties of GA1 of

trees and chemical trees. They obtained the following tight lower and upper bounds for

trees:

2(n− 1)3/2

n
= GA1(Sn) ≤ GA1(T ) ≤ GA1(Pn) =


0 n = 1

1 n = 2

4
√
2

3
+ n− 3 n ≥ 3

(8)

The lower bound is achieved if and only if T is the star (Sn), and the upper bound is

achieved if and only if T is the path (Pn).



2.2.2.1. The GA1 index of chemical trees

A tree in which the maximum vertex degree does not exceed 4 is said to be a “chemical

tree”. Since a path is a chemical tree, the upper bound for chemical trees is the same as

in the inequality (8). The lower bound for chemical trees is given in [8]:

GA1(T ) ≥
13n− 17

15
.

The equality holds for chemical trees containing only vertices of degrees one and four. In

other words, the chemical tree(s) with n = 3k + 2, k = 1, 2, . . . , vertices are those with

minimal GA1 index.

Among chemical trees with n = 3k+2 vertices the minimal GA1 index may belong to

more than one tree. In Table 3 are given the numbers of chemical trees having minimal

GA1 index up to 20 vertices.

n η
5 1
8 1
11 1
14 2
17 3
20 5

Table 3 Among chemical trees with n vertices there are η trees having

minimal GA1 index.

In the paper [19] chemical trees with first, second, and third minimal GA1 index were

determined. Three cases can be distinguished:

Case I : If n ≡ 2 (mod 3) , then among the n-vertex chemical trees,

(a) for n ≥ 5 , the ones with only degrees 1 and 4 are the trees with minimum

GA1 index, which is equal to 13n−17
15

;

(b) for n ≥ 17 , the ones with a single vertex of degree 2 adjacent to two

vertices of degree 4, and a single vertex of degree 3 adjacent to three

vertices of degree 4 are the chemical trees having second minimum GA1

index equal to 13
15
n+ 12

√
3

7
+ 4

√
2

3
− 89

15
;

(c) for n ≥ 17 , the ones with three vertices of degree 2, each adjacent to

two vertices of degree 4, and without vertices of degree 3 are the chemical

trees with third minimum GA1 index equal to 13n+60
√
2−101

15
.



Case II : If n ≡ 1 (mod 3) , then among the n–vertex chemical trees,

(a) for n ≥ 13 , the ones with a single vertex of degree 3 adjacent to three

vertices of degree 4, and without vertices of degree 2 are the chemical trees

with the minimum GA1 index equal to 13
15
n+ 12

√
3

7
− 61

15
;

(b) for n ≥ 13 , the ones with two vertices of degree 2 adjacent to four vertices

of degree 4, and without vertices of degree 3 are the chemical trees with

the second minimum GA1 index equal to 13n+40
√
2−3

15
;

(c) for n ≥ 25 , the ones with a single vertex of degree 2 adjacent to two

vertices of degree 4, and two vertices of degree 3, each adjacent to three

vertices of degree 4 are the chemical trees with the third minimum GA1

index equal to 13
15
n+ 4

√
2

3
+ 24

√
3

7
− 133

15
.

Case III : If n ≡ 0 (mod 3) , then among the n–vertex chemical trees,

(a) for n ≥ 9 , the ones with a single vertex of of degree 2 adjacent to two

vertices of degree 4, and without vertices of degree 3 are the chemical trees

with minimum GA1 index equal to 13n+20
√
2−45

15
;

(b) for n ≥ 21 , the ones with two vertices of degree 3, each adjacent to three

vertices of degree 4, and without vertices of degree 2 are the chemical trees

with second minimum GA1 index equal to 13
15
n+ 24

√
3

7
− 7 ;

(c) for n ≥ 21 , the ones with two vertices of degree 2, each adjacent to two

vertices of degree 4, and a single vertex of degree 3 adjacent to three

vertices of degree 4 are the chemical trees with the third minimum GA1

index equal to 13
15
n+ 8

√
2

3
+ 12

√
3

7
− 39

5
.

In addition, the same authors determined the chemical trees with second and third

maximal GA1 index.

(a) Among all n–vertex chemical trees, the path is the unique tree with the maximum

GA1 index equal to n− 3 + 4
√
2

3
;

(b) for n ≥ 7 the chemical trees possessing a single vertex of degree 3 adjacent to three

vertices of degree 2 and without vertices of degree 4 are the trees with second maxi-

mum GA1 index equal to n− 7 + 2
√
2 + 6

√
6

5
;



(c) for n ≥ 7 the ones with a single vertex of degree 3 adjacent to two vertices of degree

2 and one vertex of degree 1, and without vertices of degree 4 are the chemical trees

with third maximum GA1 index equal to n− 6 + 4
√
2

3
+ 4

√
6

5
+

√
3
2
.

2.2.3. GA1 index of benzenoid hydrocarbons and phenylenes

Benzenoid systems (graph representations of benzenoid hydrocarbons) are defined

as finite plane graphs with no cut–vertices, in which all interior regions are mutually

congruent regular hexagons. One example of benzenoid hydrocarbon is given in Fig. 3

(a). Hexahelicene (Fig. 3 (b)) does not belong to the class of benzenoid hydrocarbons

because it does not obey the condition of planarity.

fjord
cove

bay
inner vertices

lagoon

(a) (b)

Figure 3. (a) dinaphtho[1,2-a:2’,1’-k ]perylene possesses all structural

properties that can be found on the perimeter of a benzenoid system;

(b) ordinary benzenoid hydrocarbons do not possess structural details

called lagoon. Phenanthro[3,4-c]phenanthrene (hexahelicene) is the first

member of a class of molecules referred to as helicenes and it has a

lagoon.

Phenylenes are a class of alternant polycyclic conjugated molecules consisting of six–

and four–membered rings, so that each four–membered ring is adjacent to two (disjoint)

six–membered rings, and no two six–membered rings are adjacent. K. P. C. Vollhardt

with his group synthesized a large number of phenylenes (for details see [27, 28]). They

attracted much attention of theoretical chemists because of their specific structure (con-

taining both stabilizing six–membered, and destabilizing four–membered rings) [29–31] .

Structural features such as bays, coves, fjords, and lagoons can be found also in the

structural formulas of phenylenes (see Fig. 4(a)). The phenylenes do not have inner

vertices. Numerous theoretical researches had shown that there exist relations between

a number of topological descriptors of a phenylene and its hexagonal squeeze, HS, (ben-

zenoid hydrocarbon which topology corresponding to the considered phenylene) [31–42].



In other words, each phenylene is in a one–to–one correspondence with a catacondensed

benzenoid hydrocarbon called hexagonal squeeze. The construction of the hexagonal

squeezes of phenylenes should be obvious from Fig. 4(b).

PH1 PH2 PH3

HS1 HS2 HS3

fjord

bay

cove

lagoon

(a)

(b)
Figure 4. (a) Phenylenes possess all structural properties noticed al-

ready in benzenoid hydrocarbons (cf. Fig. 3), except inner vertices. (b)

Phenylenes PH1 , PH2 , PH3 and the corresponding hexagonal squeezes

HS1 , HS2 , HS3 .

Names of structural features that are used here and notations of their counts is in

accordance with the terminology proposed by Cyvin and one of the present authors

[23,24]. Thus,



ni = number of inner vertices
h = number of hexagons
B = number of bays
C = number of coves
F = number of fjords
L = number of lagoons
b = number of bay regions; b = B + 2C + 3F + 4L

Using the above specified structural parameters, it is easy to derive the exact formula

for calculation of the GA1 index of benzenoid hydrocarbons:

GA1(B) =
8
√
6 + 5

5
h− 4

√
6− 10

5
b− 4

√
6− 5

5
ni −

8
√
6− 25

5
. (9)

For catacondensed benzenoid hydrocarbons (i. e., hexagonal squeezes) Eq. (9) is reduced

by deleting the term 4
√
6−5
5

ni :

GA1(HS) =
8
√
6 + 5

5
h− 4

√
6− 10

5
b− 8

√
6− 25

5
(10)

In similar way the formula for calculating GA1 of phenylenes is obtained:

GA1(PH) =
8
√
6 + 20

5
h− 4

√
6− 10

5
b− 8

√
6− 10

5
. (11)

Combining the Eqs. (10) and (11) we get linear relation between GA1 of phenylene and

its hexagonal squeeze:

GA1(PH)−GA1(HS) = 3(h− 1) .

2.2.4. GA1 index of TUC4C8(S) nanotubes

Since the discovery of buckminsterfullerene [43] and latter of nanotubes [44], the in-

vestigation of nanomolecules, both by experimental and theoretical chemists, has been

intensively conducted. Nowadays, there is a vast number of papers and several books

dealing with these molecules. Theoreticians predicted many structures of fullerenes, nan-

otubes, nanotoruses, . . . , expecting to be synthesized in the future [45].

One class of such nanomolecules are the TUC4C8(S) nanotubes. There are several

papers where various topological indices of these molecules were investigated [46–52]. In

Fig. 5 is shown the structure of this type of nanotubes.



Figure 5. A TUC4C8(S) nanotube

In the paper [53], thje authors found exact formulas for calculation of the GA1 index

of the two-dimensional lattice of the TUC4C8(S) graph (KTUC[p, q]), TUC4C8(S) nan-

otube (GTUC[p, q]), and TUC4C8(S) nanotorus (HTUC[p, q]) in terms of parameters p

and q . The two-dimensional lattice of the TUC4C8(S) graph is tessellated by alternating

squares (C4) and octagons (C8) and it is shown in Fig. 6.

1 2

2

p

q

Figure 6. A TUC4C8(S) lattice, where p and q denotes the number of

octagons in rows and columns, respectively.



The same authors obtained for two-dimensional lattice of the TUC4C8(S) graph

(KTUC[p, q]) the following formula:

GA1(KTUC[p, q]) = 12p q +

(
8
√
6

5
− 6

)
(q − p) + 8− 16

√
6

5
.

For TUC4C8(S) nanotube (GTUC[p, q]), they found the following expression:

GA1(GTUC[p, q]) = 12p q +

(
8
√
6

5
− 6

)
p .

Since nanotoruses are 3-regular graphs, then the GA1 index is equal to the number of

edges. In this case, the first geometric–arithmetic index is simply

GA1(HTUC[p, q]) = 12p q .

3. The Second Geometric–arithmetic Index

The “second geometric–arithmetic index” has been put forward very recently as a

continuation of research on geometric–arithmetic indices [9]. It is also based on Eq. (1),

and its definition is given by Eq. (5).

3.1. GA2 as a tool for QSAR/QSPR researches

The GA2 index was correlated with the already established GA1 index in the case of

octanes. In Table 4 are given values of GA1 and GA2 indices for octane isomers. Fig. 7

shows the correlation between these two indices.

By a superficial inspection of the correlation, it appears to be linear but weak. The

data points 15, 13, 5, 9, 2, and 1 form an almost perfect straight line with increasing

slope. If we denote the number of quaternary and tertiary carbon atoms by n4 and n3 ,

we may immediately check that for these isomers (n4, n3) is equal to (2, 0) , (1, 1) , (1, 0) ,

(0, 2) , (0, 1) , and (0, 0) , respectively. This shows that both GA1 and GA2 are increasing

functions of the extent of branching of the molecular skeleton. It is worth noting that

the molecules 15, 13, 5, 9, and 2 are all branched at the very end of their carbon–atom

chains.



# octanes GA1 GA2 GA3

1 n–octane 6.88562 5.99142 4.37633
2 2–methyl heptane 6.65466 5.78683 3.63097
3 3–methyl heptane 6.71124 5.68461 3.43352
4 4–methyl heptane 6.71124 5.65286 3.37633
5 2,2–dimethyl hexane 6.28562 5.48002 2.68817
6 3,3–dimethyl hexane 6.37124 5.34605 2.43352
7 2,3–dimethyl hexane 6.52068 5.44827 2.63097
8 2,4–dimethyl hexane 6.48027 5.48002 2.68817
9 2,5–dimethyl hexane 6.42369 5.58224 2.88562
10 3,4–dimethyl hexane 6.57726 5.37780 2.49071
11 2,3,4–trimethyl pentane 6.33013 5.24368 1.88562
12 2,2,3–trimethyl pentane 6.17837 5.17321 1.74536
13 2,2,4–trimethyl pentane 6.05466 5.27543 1.94281
14 2,3,3–trimethyl pentane 6.20741 5.14146 1.68817
15 2,2,3,3–tetramethyl butane 5.80000 4.96863 1.00000
16 3–ethyl–2–methyl pentane 6.57726 5.34605 2.43352
17 3–ethyl–3–methyl pentane 6.45685 5.24383 2.23607
18 3–ethyl hexane 6.76781 5.55064 3.17888

Table 4. GA1 , GA2 , and GA3 indices of all 18 octane isomers
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Figure 7. Correlations between GA1 and GA2 of octanes; the number-

ing of the data points corresponds to Table 4.



A detailed examination of Fig. 7 reveals that the data points are grouped into several

clusters. By direct checking it is verified that each cluster corresponds to a particular

choice of (n4, n3) . The apparent outlier 11 pertains to 2,3,4-trimethyl pentane, the only

octane isomer for which (n4, n3) = (0, 3) .

Thus, the isomers belonging to the same cluster are those similarly branched. Within

each such cluster (provided that there are two or more data points), the proportionality

between GA1 and GA2 is inverse. For instance, the data points 7, 8, 9, 10, and 16, all

pertaining to (n4, n3) = (0, 2) , lie nearly on a straight line with decreasing slope.

The above described relations between GA1 and GA2 , which hold not only for oc-

tanes, but for all chemical trees, indicate that these indices depend in the same way on

one structural feature (namely, on branching), but have a different dependence on some

other details of molecular structure. This gives hope that GA1 and GA2 will both be

simultaneously applicable in QSPR and QSAR studies.

Similarly as in sub-section 2.1. we are showing the correlations between the GA2

index and 16 physico–chemical properties of octanes.
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From the above figures it can be seen that there exists a useful linear correlation

between GA2 and only four physico–chemical properties, i. e., entropy (S), standard

enthalpy of vaporization (DHV AP ), motor octane number (MON), and acentric factor

(Acenfac). The respective correlation coefficients are given in Table 5.

Physico–chemical property Correlation coefficient (R)
S 0.890

DHV AP 0.843
MON 0.968

AcenFac 0.973

Table 5.



3.2. Mathematical properties of GA2

In this section we are concerned with connected simple graphs with n vertices and m

edges.

3.2.1. Lower and upper bounds for GA2

Lower and upper bounds of GA2 index for bipartite graphs were communicated in

[9, 13]:

2(n− 1)3/2

n
= GA2(Sn) ≤ GA2(G) = GA2(K⌊n

2
⌋,⌈n

2
⌉) ≤

{
n2/4 if n is even

(n2 − 1)3/2/4n if n is odd
.

Furthermore, the star Sn has minimum second geometric–arithmetic index among all

connected graphs. This comes from the following inequality that is true for all connected

graphs [9]:

GA2(G) ≥ 2m
√
n− 1

n
. (12)

Equality in (12) is achieved if and only if G ∼= Sn (i. e., G is the star).

Other lower and upper bounds of GA2 index are in terms of vertex Padmakar–Ivan

index and Szeged index.

The vertex Padmakar–Ivan index (PIv) [11] has been introduced re-

cently inspired by the definition of the “original” PI index which al-

ready had many applications in chemistry (e.g. see [54] and references

cited therein).

PIv(G) =
∑

uv∈E(G)

[nu(e) + nv(e)]

The definition of nu(e) and nv(e) is given by Eq. (3). More details about

vertex PI index can be found in [55–58].

The Szeged index was introduced in 1994 as an extension to all graphs of

the well-known Wiener’s formula for the calculation of the Wiener index

of trees [10]:

Sz(G) =
∑

uv∈E(G)

nu(e) · nv(e)

where nu and nv are defined by Eq. (3). This index was extensively

studied in past fifteen years. Mathematical properties of the Szeged

index are outlined in a number of papers; for a review see [59]. Chemical

applications of the Szeged index were presented in the book [54].



Among all connected graphs the following inequality is true [9]:

GA2(G) ≤ 1

2
PIv(G)

where equality holds if and only if G is the complete graph.

In the same paper it was shown that for all connected graphs with m edges

GA2(G) ≤
√

mSz(G) (13)

where equality holds if and only if the G is the complete graph.

In the paper [13] a similar inequality was reported, applicable to bipartite connected

graphs with n vertices and m edges:

GA2(G) ≤ 2

n

√
mSz(G)

with equality if and only if nu nv is a constant for any uv ∈ E(G) .

In [9] was also proven another upper bound for GA2 index for all connected graphs

with m edges in terms of the Szeged index:

GA2(G) ≤
√

Sz(G) +m(m− 1) (14)

with equality if and only if G ∼= Kn .

For the complete graph, the inequalities (13) and (14) are equivalent. For all other

connected graphs, the upper bound (14) is better than (13).

In the same paper a lower bound for the GA2 index for connected graphs with n

vertices and m edges in terms of the Sz index was established:

GA2(G) ≥ 2

n

√
Sz(G) +m(m− 1) . (15)

Equality in (15) is attained if and only if G ∼= K2 .

For the complete graph with two vertices, inequalities (15) and (12) are equivalent.

For all other connected graphs the lower bound (12) is better than (15).

3.2.2. Extremal values of the GA2 index of trees

The trees with extremal values of GA2 index are presented in the paper [9]. There

the following was shown:

GA2(Sn) ≤ GA2(T ) ≤ GA2(Pn)

where T is any n-vertex tree. If T � Sn, Pn , then the above inequalities are strict. Thus,

the tree with smallest GA2 index is the star, and the path has the greatest value of GA2 .



4. The Third Geometric–arithmetic Index

The “third geometric–arithmetic index” (GA3) is at the present moment (December

2009) the last index belonging to the GA class. It has been introduced in the paper [13]

and is defined by Eq. (6). Some of its properties are discussed in this section.

4.1. GA3 as a tool for QSAR/QSPR researches

In order to check if the GA3 index is a possible tool for QSAR/QSPR researches, we

first examine its correlation with other indices from a GA class.

The correlation between the GA3 index and the GA1 and GA2 indices are studied in

the case of octanes. The values of those three indices are given in Table 4, whereas Figs.

8 and 9 show these correlations.
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Figure 8.

Comparing Figs. 7 and 8 it is evident that they are qualitatively very similar. There-

fore, all conclusions derived for the correlation between GA1 and GA2 indices are appli-

cable also in this case. Briefly, there exists a weak linear correlation between GA1 and

GA3 , and the clustering of the points in Fig. 8 is caused by the number of quaternary

(n4) and tertiary (n3) carbon atoms. It can be seen that both the GA1 and GA3 indices

are increasing functions of the extent of branching in acyclic molecules.



The correlation between GA2 and GA3 indices is shown in Fig. 9.
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By a superficial glance at Fig. 9 it appears that between GA2 and GA3 there exists a

reasonably good linear correlation (R = 0.989). In addition, it is noticed that all points

are grouped into few nearly parallel lines. By inspecting the data more carefully we found

that the points are clustered by the number of pendent vertices (p) in a chemical tree (i.

e., by the number CH3 groups in the corresponding alkanes). The octanes belonging to

each line as well as the parameters of lines and correlation coefficients are given in Table

6.

p Molecule∗ a±∆a b±∆b R
2 1 – – –
3 2, 3, 4, 18 1.910± 0.010 −7.43± 0.06 0.99997
4 5, 6, 7, 8, 9, 10, 16, 17 1.917± 0.006 −7.82± 0.03 0.99997
5 11, 12, 13, 14 1.920± 0.030 −8.20± 0.10 0.99982
6 15 – – –
∗ The given numbers correspond to numbering of octanes in Table 4.

Table 6. p is the number of pendent vertices; a and ∆a are the slope of

the line and the respective absolute error; b and ∆b are the intercept of

the line and the respective absolute error; R is the correlation coefficient.



These subtle differences of dependence on some structural properties gives us hope

that the GA3 index may be applicable in QSAR/QSPR investigations.

In the following pictures are given the correlations between the GA3 index and the

16 physico–chemical properties of octane isomers, same as those used in the previous

sections.
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From the above figures it can be seen that there exist useful linear correlation (R ≥

0.8) between GA3 and five physico–chemical properties of octanes, namely entropy (S),

enthalpy of vaporization (HV AP ), standard enthalpy of vaporization (DHV AP ), motor

octane number (MON), and acentric factor (AcenFac). Without any further discussion,

the corresponding correlation coefficients are given in Table 7.

Physico–chemical property Correlation coefficient (R)
S 0.909

HV AP 0.828
DHV AP 0.890
MON 0.970

AcenFac 0.975

Table 7.

Comparing the R’s from Table 7 with those presented in Table 5 (for the GA2 index) it

can be concluded that the GA3 index gives somewhat better predictions of the presented

properties than GA2 .

4.2. Mathematical properties of GA3

As in the previous sections on mathematical properties of the GA indices, we are

going to consider only simple connected graphs. By Sp,q , for p, q ≥ 2 , will be denoted

the (p+ q)–vertex tree formed by adding an edge between centers of the stars Sp and Sq .

The tree Tn(∆) is formed by attaching ∆− 1 pendent vertices to a terminal vertex of the

path Pn−∆+1 , where 2 ≤ ∆ ≤ n− 1 . The tree T (n, 2) is obtained from the path (Pn−1)

by attaching a pendent vertex to its vertex at distance 2 form a terminal vertex.



The edge–Szeged index has been put forward recently. It is defined as [14]

Sze(G) =
∑

uv∈E(G)

mu ·mv .

For more results about the edge–Szeged index consult the papers [60–65].

4.2.1. Lower and upper bounds for GA3

For all connected graphs with n vertices the following inequality holds [13]:

0 = GA3(Sn) ≤ GA3(G) ≤ GA3(Kn) =
n(n− 1)

2

In the same paper, some more bounds were obtained for GA3 for simple connected graphs

with m ≥ 2 edges in terms of the edge–Szeged index:

2

m− 1

√
Sze(G) ≤ GA3(G) ≤

√
Sze(G) +m(m− 1)

The left equality is achieved if and only if G ∼= Sm+1 or G ∼= Sp,m+1−p with 2 ≤ p ≤

⌊(m + 1)/2⌋ . The right equality is attained if and only if the G is the triangle or the

quadrangle.

4.2.2. Extremal values of the GA3 index of trees

In [13] the trees with minimum and maximum values of GA3 index were determined.

There the following inequality was obtained:

GA3(Sn) ≤ GA3(T ) ≤ GA3(Pn) .

In the same work also the trees with second, third, fourth, and fifth minimum GA3 index

were characterized.

The unique tree with the second minimum GA3 index is S2,n−2 for n ≥ 4 and

GA3(S2,n−2) =
2
√
n− 3

n− 2
.

For n ≥ 6 vertices S3,n−3 is the unique tree with the third minimum GA3 index equal

to

GA3(S3,n−3) =
2
√

2(n− 4)

n− 2
.

For trees with n ≥ 8 vertices S4,n−4 is the tree with fourth smallest GA3 index, equal

to

GA3(S4,n−4) =
2
√

3(n− 5)

n− 2
.



The tree with the fifth minimum GA3 index with n ≥ 10 vertices is S5,n−5 and

GA3(S5,n−5) =
2
√

4(n− 6)

n− 2
.

As it was previously stated, the tree with maximum GA3 index among all n-vertex

trees is the path Pn . Its GA3-values can be calculated as:

GA3(Pn) =
2

n− 2

n−3∑
i=1

√
i(n− 2− i) .

The tree with the second maximum GA3 index can be formed by attaching two pen-

dent vertices to an end–vertex of the path Pn−2. Let us label this tree by T (n, 1) . Its

GA3-value is equal to

GA3(T (n, 1)) =
2

n− 2

n−4∑
i=1

√
i(n− 2− i) .

Among the n–vertex trees with n ≥ 6 , T (n, 2) is the unique tree with the third

maximum GA3-value, equal to

GA3(T (n, 2)) =
2

n− 2

[
n−3∑
i=1

√
i(n− 2− i)− 2(n− 4)

]
.

Let G be a tree with n vertices and maximum vertex degree ∆, where 2 ≤ ∆ ≤ n−1 .

Then

GA3(G) ≤ 2

n− 2

∑
i=1

n−∆− 1
√

i(n− 2− i)

where equality is attained if and only if G ∼= Tn(∆) .

5. Conclusion

In this survey, probably all results about GA indices are outlined. We believe that in

the future the research on this class of indices will continue. The results obtained so far

give us hope that the GA class of indices has a future in QSAR/QSPR researches.
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