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Abstract. We briefly review the conceptual basis of the recently introduced novel concept of 

the so-called Local Time in quantum theory. An emphasis is placed on certain cosmological 

aspects. 
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1. INTRODUCTION 

The concept of time in physics is typically regarded as a ―category‖—a concept of the 

highest rank of abstraction that serves the axiomatization of physical theories. Then the 

questions like ―What is Time?‖ seem not to make much sense. Hence the rare attempts of 

questioning this attitude—a comfortable zone in doing physics. Intuitively, it may seem 

that questioning the physical nature and theoretical position of Time may lead to the 

infinite regression of the kind ―What is older, a hen or the egg?‖.  

Essentially, Time in physics is introduced already by Newton in his Principia: 

(A) Time is universal and equally flowing for every observer in the physical Universe. 

This idea is directly applied in quantum theory and also applies to the theory of relativity, 

with the completion for the latter: ―every observer in a given (fixed) reference frame‖. 

Nevertheless, quantum foundations offer an alternative route to making sense of the 

question of  ―What is Time?‖. In this paper, we briefly present, emphasize and discuss the 

basics of a new, recently proposed approach to the concept of time in quantum physics that 

provided a novel paradigm of Local Time (Kitada, 1994; Jeknić-Dugić et al., 2014; Jeknić-

Dugić et al., 2016; Kitada et al., 2016). To this end, this paper essentially complements the 

original papers (Jeknić-Dugić et al., 2014; Jeknić-Dugić et al., 2016; Kitada et al., 2016), 

which are mainly devoted to the mathematical foundations and consistency of the concept 

of Local Time (LT). 
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2. HISTORICAL PERSPECTIVE 

The original ―derivation‖ of the Schrödinger’s equations starts from the time-

independent Schrödinger equation—in the Schrödinger picture and in the position 

representation (Schrödinger, 1926a; 1926b; 1926c; 1926d; 1926e). It is all appearance that 

―derivation‖ of the time-dependent Schrödinger equation (the same picture and the same 

representation) aimed at targeting the non-conservative systems hopefully being able to 

counterpart the classical dissipative dynamics. While the development of the quantum-

mechanical counterpart of classical dissipation had to wait for another 50 years (Caldeira 

and Leggett, 1983; Hu et al., 1992; Breuer and Petruccione,2002; Ferialdi, 2017), 

Schrödinger’s introduction of physical time and its role in the time-dependent equation are 

both an automatic as well as an ad hoc procedure. That is, ―time‖ is postulated to be unique 

and universally valid throughout the Universe in the Newtonian sense (A). Certainly, this 

ad hoc introduction and prejudice about physical time do not follow from the derivation of 

the time-dependent equation. Rather, Time is non-critically taken over with its full classical 

―load‖ to apply in the quantum-mechanical context. 

On the other hand, the asymmetry between the spatial degrees of freedom and time, 

which appears as a single parameter in the Schrödinger time-dependent equation may 

elevate to the ―problem of time‖, even in the non-relativistic context. That is, while the 

spatial degrees of freedom are quantized (hence allowing, for e.g., the position 

representation), the time parameter t remains intact, i.e. non-quantized. In order to 

complete the desired space-time symmetry, sometimes the classical ―definition‖ of time: 

    
 

 
 (1) 

is used for time-quantization (Aharonov and Bohm, 1961): 

  ̂   ( ̂ ̂    ̂   ̂). (2) 

Above, the   stands for the (single) particle’s mass,   for the particle’s (relative) position 

and   for the conjugate momentum. However, this approach to Time seems to open more 

questions than offering answers to the already open questions. 

In certain interpretations of quantum theory (Petrat and Tumulka, 2014a), a separate 

time instant is introduced for every particle of a composite system—a concept of local 

time (lt). Then, instead of the composite system’s state, 1 2( , ,..., )x x t , the state takes the 

form of 1 1 2 2( , , , ,...)x t x t . The time-instants’ labels are assumed to be fixed throughout 

the composite system’s dynamics. However, this procedure (somewhat analogous to the 

space-time foliation in General Relativity) may safely be applied only to the systems of 

non-interacting particles. Certain relativistic extensions may still be free of those 

obstacles (see e.g. Petrat and Tumulka, 2014b). 

We may say that by far the most of the historically relevant approaches to physical time 

in quantum theory are framed by the concept of the Newtonian time (or of its variations like 

(lt)), on one side, and by the ―problem of time‖, on the other side. Nevertheless, the concept 

of Local Time goes beyond this framework as we shall see below. 
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3. AN ALTERNATIVE APPROACH TO THE CONCEPT OF TIME: INTUITION 

First, we want strongly to stress:  

(Conjecture) It is not possible to provide a rigorous theorem on the fundamental 

physical nature of Time. 

Then it may be only possible to provide plausible arguments of the interpretive nature 

that may make a shift or an alternative for the physical paradigm of Time. 

Getting back to Eq.(1) directly gives rise to the following observation (analogously 

for the equation (2)): if regarded as quantum mechanical observables, the position and the 

momentum variables x and p
 
are time-less. Indeed, in the position representation, the 

position variable x is just a multiplicative operator, while the momentum, ˆ /p i x   , 

becomes a derivative operator for the functional Hilbert state space of the system. This is 

indicative since the classical expression for the momentum, /p mdx dt , carries the 

time-variable via the time-derivation. Then the question implicit to the equation (2) is 

unavoidable with its foundational (even metaphysical) loads: 

(QT) Is it possible that “quantum time” maybe somehow “built” from the more 

fundamental position and momentum quantum observables? 

Interestingly enough, quantum theory offers a basis (of course, non-rigorous) for 

answering the (QT) in the affirmative yet in a specific sense. To this end, we have in mind 

the profound Enss’ theorem backing the modern quantum many-body scattering theory. In a 

simplified form and with details that can be found elsewhere (Kitada 1994; Jeknić-Dugić et 

al., 2014; Kitada et al., 2016), the Enss’ theorem (Enss, 1978) can be presented as: 

 ‖(
 ̂

  
 
 ̂

 
)     ̂    | 〉‖               , (3) 

as      (i.e.      ). Without loss of generality, further on we take,       . 

In Eq.(3)  ̂  ̂  ̂ are the system’s position, momentum and the (  -independent) 

Hamiltonian,   states for the system’s mass, while    represents an instant of time for the 

unitary Schrödinger operator,  ̂( )      ̂    , for an isolated quantum system—the 

standard unitary Schrödinger law in the non-relativistic quantum theory. The approach to 

zero on the r.h.s. of Eq.(3) is monotonic, i.e. without recurrence of the initial value for 

arbitrary pure state | 〉; generalization to the arbitrary mixed quantum states is rather 

obvious. The theorem applies to a rather wide class of the pair interactions of the 

constituent particles of the isolated system subjected to the unitary Schrödinger 

dynamics. 

From the Enss’ theorem, Eq.(3), we can write the operator relation (Kitada et al., 2016): 

 
 ̂

  
 
 ̂

 
 (4) 

as    , where the symbol ― ‖ emphasizes similarity in the statistical sense (statistics 

over an ensemble of quantum systems in a state |  〉; |  〉   
   ̂    | 〉). That is, 

( ̂   )|  〉
   
→   ( ̂  )|  〉 for the arbitrary initial state | 〉. As the index   grows, the 

Enss’ theorem, the equation (3), guarantees that the relation Eq.(4) is better satisfied. 

Therefore, we have at least schematically (Kitada, 1994) that the relation, 
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| ̂|

| ̂|
, (5) 

gets better satisfied with the increase of the index  . 

Then the ―time instant‖    may possibly not-in-advance be given any particular physical 

meaning. That is, the equations (3) and (4) may be formally considered without any physical 

prejudice on the parameter    (Kitada, 1994; Kitada et al., 2016; Jeknić-Dugić et al., 2014).  

Specifically, Eq.(5) may be alternatively understood to provide that dynamical change 

of the system’s state determined by the increase of the index   for the arbitrary initial 

state | 〉] gives rise to the “birth” of what is commonly known as the time in physics—

due to the similarity of Eq.(5) and Eq.(1). In defense of this formal similarity, we want to 

stress that a proper quantum theory (including the hypothetical, more general theory, cf. 

e.g. Popescu and Rohrlich 1994) should somehow provide the known classical limits, 

including Eq.(1). In the absence of a rigorous procedure, we perform mathematically non-

rigorous steps (in accordance with the above Conjecture) led by some intuition that is 

here hopefully clearly presented. 

Intuitively, we propose to read Eq.(5) as follows: down the dynamical chain for the 

unitary dynamics: 

   |    〉  |  〉  |    〉    (6) 

the parameter t
 

is getting quantitatively closer to what is ―defined‖ by Eq.(1) as 

―physical time‖. Of course, due to the Enss’ theorem, the equation (5) may become 

―exactly‖ satisfied only asymptotically, i.e. in the asymptotic limit,    . For the finite 

values of   (i.e. for the finite values of t), the equation (5), i.e. Eq.(1), can only be 

approximately satisfied. 

The physical picture becomes even more appealing after observing that the dynamics, 

Eq.(6), i.e. Eq.(3), is generated (for an isolated system) by the system’s Hamiltonian  ̂. 

That is, it is rather obvious that, even for the same ―initial‖ state, different Hamiltonians 

give rise to quantitatively different norms appearing in Eq.(3), i.e. to different quantitative 

levels of satisfying the equations (4) and (5). In other words, the (isolated) system’s 

Hamiltonian is responsible for the dynamical birth of time of an isolated quantum system, 

which can be schematically presented as: 

 (LT) One Hamiltonian One local time. 

4. AXIOMATIC APPROACH 

Following the intuition of Section 3, we can formulate a new axiomatic approach to 

the concept of physical time in quantum theory (elaborated in Jeknić-Dugić et al., 2014). 

Not surprisingly, our starting point and the primitive is the concept of dynamics, the 

equation (6), which simply appears as a dynamical map on the Hilbert state space of 

―pure‖ quantum states that is readily generalized for the Banach state space of the trace-

norm semidefinite-positive operators—of the ―statistical operators‖ also known as the 

―density matrices‖. 

As long as the quantum system is isolated, its dynamics is postulated to be unitary and 

hence the subject of the Enss’ theorem. In the asymptotic limit,     (    ), the 

Enss’ theorem guarantees the exact fulfillment of  
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 ‖
 ̂

  
 
 ̂

 
‖
 

  , (7) 

for virtually every Hamiltonian (i.e. for a very large class of the pair interactions of the 

system’s constituent particles) and for every initial state. Then we formulate the main 

interpretational rule for LT as follows: 

(MIRLT) Unitary dynamics generated by the system’s Hamiltonian dynamically gives 

rise to the ―birth‖ of local time for that single isolated quantum system, with the 

classical limit Eq.(1). 

A word of caution: if the isolated system also contains some isolated subsystems, then an 

amendment to MIRLT is needed—see Section 6 and Section 8. 

In this new view to the (isolated) quantum-systems’ dynamics, the concept of the 

standard Newtonian time appears essentially as an additional assumption, rather than a 

necessary part of physical theories. Indeed, just by an alternative reading of the Enss’ 

theorem, starting minimalisticly from the quantum dynamics, we came at the new paradigm 

of Local Time that appears as a ―local‖ (isolated) system’s emergent property, i.e. a by-

product of unitary dynamics. That is, the notion of time is not, i.e. not necessarily, any 

fundamental notion of universal importance.  

In order to ease acceptance of this new position, we suggest approaching the concept of 

local time in analogy with the concept of (local) temperature in classical thermodynamics. 

There, Temperature is an emergent property of a (large) collection of constituent particles 

that can be defined only for the systems in the thermodynamic equilibrium or close to the 

thermodynamic equilibrium (so-called quasi-static processes). 

It is essential to note that the relation (LT) can be established with the full mathematical 

rigor (Kitada et al 2016). In one direction, the system’s Hamiltonian uniquely determines 

the system’s local time, while in the opposite direction, the unitary dynamics parameterized 

by   uniquely determines the system’s Hamiltonian. The only ―ingredients‖ in the axiomatic 

sense are the concepts that are unavoidable in every known-to-us fundamentals of quantum 

theory: the state space and the unitary dynamical map on that space. Then the description of 

open (non-isolated) quantum systems (Breuer and Petruccione, 2002; Rivas and Huelga, 

2011) goes smoothly and without any conceptual problems (Jeknić-Dugić et al., 2016). The 

only possible exception might be quantum dynamics that, in principle, cannot be derived 

from the unitary Schrödinger dynamics for an extended isolated system—the cases not 

known to us yet. 

Therefore, the axiomatic, bottom-up, approach to LT goes algorithmically:  

(i) define the degrees of freedom and, therefore, the state space and the dynamical 

chains for an (approximately) isolated quantum (sub)system,  

(ii) postulate unitary dynamics for the isolated quantum systems, and  

(iii) follow the two-directional relation (LT) while keeping in mind that every state in 

a dynamical chain uniquely determines the relative strength of every term of the 

system’s Hamiltonian, thus giving rise  

(iv) to define Local Time for the isolated system as well as for each of its subsystems 

(that may be open systems not describable by the unitary Schrödinger law). 

Now the following questions naturally appear: (a) Is (LT) essentially not the same as 

(lt)?; (b) Why has the stochastic nature of Time apparently never been experimentally 

even suspected?; (c) In which situations may the local time be ill-defined, if in any?; 
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(d) What is the status of the ―initial‖ state and the initial ―instant of time‖?; (e) What 

maybe a description of the standard unitary dynamics in the context of the local time?; (f) 

Does the Local Time paradigm offer something new or any alternative to the standard 

quantum mechanical theory based on the Newtonian universal time? 

The answers to these questions are briefly presented in the next sections. 

5. THE NEW FUNDAMENTAL QUANTUM MECHANICAL LAW 

The one-to-one relationship between the Hamiltonian and the local time encourages the 

application of the algorithm but also emphasizes that Eq.(3) may have a full physical sense 

in this context only in the asymptotic limit t  . That is, for some smaller t s, the local 

system’s time may be not well defined—which answers the above question (c). 

On the other hand, in realistic physical situations (that cannot attain the asymptotic 

limit) there may be more than one, sufficiently large, t for which the limit in Eq.(3) is 

approximately fulfilled. Hence the fundamental physical picture for LT: dynamics of an 

isolated system neither provides Eq.(3) exactly satisfied nor does it provide a unique (large) 

value of    (which is assumed to have the asymptotic classical limit Eq. (1)). 

Now, a non-unique value of ―sufficiently-large   ‖ implies a non-unique quantum state 

obtained via the unitary dynamics for the system. That is, instead of the standard Schrödinger 

law (given in the Schrödinger picture without any representation) for a mixed state: 

  ̂(  )   ̂(  ) ̂( ) ̂
 (  ), (8) 

the time-instant-uncertainty introduces the following new fundamental quantum 

mechanical law: 

  ̂(  )  ∫   
     

     
 ( ) ̂( ) ̂( ) ̂ ( ), (9) 

where  ( ) is a probability distribution (   ( )       ∫  ( )     ), and    
determines the uncertainty of the ―sufficiently large‖   , which is assumed to be unique 

and universal in the standard theory of Eq.(8). 

Physically, Eq.(9) establishes that a single system can take some instant of time    only 

from the interval [           ] with the probability density  ( ). While this answers the 

above question (e) (Eq.(8) follows from Eq.(9) in the limit of     ), it also emphasizes a 

need for       as an answer to the question (b) that suggests a rather sharp probability 

density  ( ). In a more transparent discrete version, Eq.(9) introduces an ensemble 

{ ̂                } of states  ̂   ̂(  ) ̂( ) ̂
 (  ),    [           ], with 

the probability   , such that ∑      . 

Therefore, Eq.(9) introduces a ―proper mixture‖ (D’Espagnat, 1999) described by the 

mixed state  ̂(  ) for a statistical ensemble consisting of single systems (single elements 

of the ensemble), each of which being in one of the offered states (some state  ̂ ) and 

with the related local time instant (   [           ]). (Of course, the ensemble is 

supposed to regard the same initial state). Bearing in mind that    must be sufficiently large, 

we may say, in a picturesque way, that local time dynamically “matures” for every single 

element of the ensemble. 
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6. INITIAL ―INSTANT OF TIME‖ 

Placing      in Eq.(9) gives rise to uncertainty of the ―initial instant of time‖, which 

labels the initial state  ̂( ). For an ensemble of systems, this uncertainty does not 

produce any problem as the initial state  ̂( ) is allowed in Eq.(9) to be a mixed state, 

whatever the origin/reason for the mixed-ness might be. Bearing in mind that Eq.(9) 

describes a proper mixture, formally the non-unique initial state emphasizes ignorance 

about the single system’s state and the related instant of time, this provides an answer to 

the first part of the above question (d); a complete answer to the (d) question requires a 

deeper insight that we will provide below. 

In order to comply with the apparent absence of experimental evidence for the 

nonzero   , the   -uncertainty cannot be arbitrary. To this end, it seems unavoidable to 

require non-orthogonality (i.e. indistinguishability) of the states determined by the 

interval [           ]—a precise answer to the above question (b). Formally, this 

requires that the unitary time evolution for an arbitrary initial, e.g., pure state ⌊ 〉, cannot 

even produce approximate orthogonality (operational distinguishability) of the states, i.e. 

⟨ ( )| (  )⟩             [           ] should be fulfilled. While the quantitative 

criteria can be found elsewhere (Jeknić-Dugić et al., 2014), below we complete the 

answer to the question (d) while also providing an answer to the question (a). 

Consider a bipartite quantum system,      . Then Eq. (3) equally applies to both 

isolated subsystems 1 and 2, thus providing local times for both of them. Now suppose that 

down the dynamical chain for a single   system, the interaction between the subsystems 

becomes non-negligible. According to the above algorithm, the sufficiently strongly 

interacting subsystems 1 and 2 start to constitute an isolated whole with a unique local time 

for that single whole as well as for both subsystems. Therefore, a sufficiently strong 

interaction between certain systems may imply a constitution of a new isolated whole, 

which is now subject of the algorithm that introduces a new local time for the whole as well 

as for all of its constituent, mutually interacting, subsystems. This immediately answers the 

question (a): the interaction-induced dynamical change of local time (or dynamical 

redistribution of local times for a many-particle total system) makes LT incompatible with 

the lt. On the other hand, it implies a new start of the dynamics for the newly formed 

composite system, as well as for all of its subsystems. Bearing in mind the above given 

answer to this question, i.e. partly to the question (d), we strongly emphasize that the effect 

of the dynamical transition from the negligible interaction (approximately isolated 

subsystems 1 and 2) to the ―strongly‖ interacting subsystems 1 and 2 makes the uncertainty 

of the initial ―instant of time‖ practically negligible and virtually unobservable in realistic 

situations (Jeknić-Dugić et al., 2016). This completes our answer to the above question (d): 

neither may there be a problem with the initial mixed state nor does the uncertainty of the 

initial ―time instant‖ introduce arbitrariness or vagueness for the fundamental dynamical 

law Eq.(9). 

7. SOME OPEN QUESTIONS 

The following related questions are in order. First, why not use the mixed states in the 

dynamical chain equation (6)? Second, what is the system’s dynamics in between the 

―weak‖ and the ―(sufficiently) strong‖ interaction? 
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As for the first question, we regard mixed states poorly defined for single systems.  That is, 

we are not aware of a consistent meaning of ―probability‖ when already a single system 

should carry/be-responsible-for all the ignorance. Some arguments in contrast to our 

standpoint can be found in Zurek (2018) and a more general discussion in Khrennikov (2014). 

Accepting the point of view by Zurek (2018), we already have a solution to the long-standing 

(almost an aporia) quantum measurement problem (Jeknić-Dugić et al., 2014). 

Independently of the kind of states in Eq. (6), the second question still remains open. 

That is, if for certain states in the chain (6) the interaction is neither ―weak‖ nor ―strong‖, it is 

not clear if unitary dynamics may be applied to these states. Then at least for certain sub-

chains in the system’s dynamical chain (transition from the ‖weak‖ to the ―strong‖ 

interaction), the fundamental dynamical law may not be known yet. This line of reasoning—

which may result in unitary dynamics as a special case—will be presented elsewhere. 

8. SOME COSMOLOGICAL ASPECTS 

Starting from Eq.(9), a number of interesting findings, including some desired results 

in the foundations of quantum theory and the open quantum systems theory, can be 

obtained (Jeknić-Dugić et al., 2014; Jeknić-Dugić et al., 2016). As an example, we 

emphasize the following: for small systems (a small number of degrees of freedom), the 

state Eq.(9) is virtually indistinguishable from the state Eq.(8); the quantitative criterion 

used is the so-called fidelity of states (Nielsen and Chuang 2000). Therefore, the 

nontrivial implications of LT can be expected practically only for many-particle systems, 

e.g. for the coarse-grained energy spectrum for the system. Without further ado, here, as 

an answer to the above question (f), we distinguish only a few cosmological aspects of 

the concept of Local Time. 

Within the Local Time scheme, every single (at least approximately) isolated system 

dynamically changes and, possibly, dynamically acquires its own local time, which remains 

undeterminable for the system itself as well as for an external observer. As for the latter, 

determining the local-time-instant for a system would contradict the stipulated (see above) 

indistinguishability, ⟨ ( )| (  )⟩          [           ], i.e. it would contradict 

the no-cloning theorem (Nielsen and Chuang, 2000; Jeknić-Dugić et al., 2014). While every 

proper system may be used to serve as a clock by an observer, non-measurability of the 

local time instant and unobserved uncertainty      may make an impression that the 

clock measures the universal Newtonian time for the unique state Eq.(8). 

Just like the composite system   consisting of the mutually independent (sufficiently-

weakly interacting) isolated subsystems 1 and 2 (Section 6), the Universe as a whole 

cannot be joined by unique time. That is, just like in any mixture, even if every single 

―local‖ (approximately isolated) system has its own local time, the Universe as a whole 

cannot be described by unique local time. The most that can be done is to provide a 

(dynamically changing) local-subsystems’ time-distribution for the Universe, very much 

like the spatial-position distribution of the gas molecules. Some kind of averaging the 

local times does not seem to fit with the Enss’ theorem and its interpretation presented by 

Eq.(9). The absence of the unique (local) time for the Universe may be regarded as an 

interpretation of the Wheeler-DeWitt equation (Jeknić-Dugić et al., 2014): 

  ̂⌊ 〉   . (10) 
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Finally, the algorithm presented in Section 4 provides a novel picture of the Universe 

cosmological dynamics. Assuming that in the early stages of its dynamics the Universe 

can be regarded as a single isolated system (i.e. consisting of strongly interacting 

subsystems), the algorithm (Section 4) directly implies the existence of the unique local 

time for the early Universe as a whole; that Time may be universal in the sense of the (A) 

statement (cf. Introduction). However, for some subsequent states in the Universe 

dynamical chain, a possible dynamical structuring of the Universe into a set of 

approximately isolated systems leads to the lack of the universal time for the reasons 

discussed above. This kind of transition from the existence to non-existence of the 

Universe local time may possibly be regarded as a kind of ―phase transition‖, i.e. a 

change in the rules for describing the Universe as a dynamical physical system. The 

importance of the existence of ―local‖ subsystems of the Universe in the cosmological 

context can be found e.g. in Halliwell (2010). 

Therefore, we may recognize at least two novel points of relevance for (quantum) 

cosmology that, to the best of our knowledge, have not yet been fully appreciated. 

Investigation along these lines may constitute one of the prominent routes in the further 

development of the Local Time scheme.  
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O POJMU LOKALNOG VREMENA 

Dat je kratak pregled osnova ne davno uvedenog, originalnog, pojma Lokalnog Vremena u 

kvantnoj teoriji. Poseban naglasak je stavljen na odredjene kosmološke aspekte. 

Ključne reči: zasnivanje kvantne teorije, kvantno rasejanje, otvoreni kvantni sistemi, kosmologija 


