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Abstract

The graphs and trees with smallest resolvent Estrada indices (EEr) are characterized. The
connected graph of order n with smallest EEr-value is the n-vertex path. The second–smallest
such graph is the (n − 1)-vertex path with a pendent vertex attached at position 2. The tree
with third–smallest EEr is the (n− 1)-vertex path with a pendent vertex attached at position
3, conjectured to be also the connected graph with third–smallest EEr . Based on a computer–
aided search, we established the structure of a few more trees with smallest EEr .

The details of the theory of resolvent Estrada index are outlined in the paper [1], that

appears in the same issue of this journal. Thus, for a graph G of order n, the resolvent Estrada

index is defined as

EEr = EEr(G) =

n∑
i=1

(
1− λi

n− 1

)−1
(1)

where λ1, λ2, . . . , λn are the eigenvalues of G.

In [1] it is established that for e being an edge of G, EEr(G − e) < EEr(G). From this

relation immediately follows that the graph of order n with maximal EEr is the complete graph
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Kn and that the connected graph with minimal EEr is some tree. The tree with maximal

EEr was shown [1] to be the star. On the other hand, the tree with minimal EEr (thus, the

connected graph with minimal EEr) was not determined in [1]. The aim of the present note is

to fill this gap.

Since for all graphs of order n (except for the complete graph Kn), |λi/(n − 1)| < 1, the

summand on the right–hand side of Eq. (1) can be expanded into a convergent power series as(
1− λi

n− 1

)−1
=
∞∑
k=0

(
λi

n− 1

)k

and therefore the resolvent Estrada index can be expanded as

EEr(G) =
∞∑
k=0

Mk(G)

(n− 1)k
(2)

where Mk(G) is the k-th spectral moment of G, defined as

Mk = Mk(G) =
n∑

i=1

(
λi
)k
.

Recall that for bipartite graphs (and for trees in particular), all odd spectral moments are

equal to zero.

In the paper [2], Hanyuan Deng proved that for Pn and Sn being the n-vertex path and

star, and T being any other tree of the same order, the inequalities

M2k(Pn) ≤M2k(T ) ≤M2k(Sn)

hold for all k. It is easy to verify that for k ≥ 2, M2k(Pn) < M2k(T ). These results, combined

with Eq. (2), directly imply:

Theorem 1. Among all connected graphs of order n , n ≥ 1, the path Pn has minimal resolvent

Estrada index.

In order to find the graph with second minimal EEr-value, we use another result of Hanyuan

Deng [3].

Let the vertices of the path Ph be numbered consecutively by 1, 2, . . . , h. Let R be a

bipartite graph of order n−h, and let v be its non-isolated vertex. Construct the graph Ph(j)R

by identifying the vertex v of R with the vertex j of Ph . Then for all k ≥ 0,

M2k(Ph(1)R) ≤M2k(Ph(2)R) ≤M2k(Ph(3)R) ≤ · · · ≤M2k(Ph(bh/2c)R). (3)
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In [3], the relations (3) have been proven only for h = 5 (cf. Lemma 3 in [3]), but a fully

analogous reasoning applies also to larger values of h.

It is evident that the smallest deviation of the (minimal) M2k(Pn)-value will happen if the

graph R in Ph(j)R is as small as possible, i.e., if R contains only two vertices. In what follows,

we denote these graph by Pn−1(j). Thus, Pn−1(j) is the tree obtained by attaching a pendent

vertex at position j of the (n− 1)-vertex path.

Bearing the above in mind, according to (3), the second-minimal M2k-value will be that of

Pn−1(2). This implies:

Theorem 2. Among all connected graphs of order n , n ≥ 4, the tree Pn−1(2) has the second-

minimal resolvent Estrada index.

In fact, for a complete proof of Theorem 2 we would need to show that EEr(Pn−1(2)) <

EEr(Cn), where Cn is the cycle of order n. The fact that Cn has many more self-returning

walks than Pn−1(2) is almost self-evident. Just recall that Cn has more edges than Pn−1(2). In

addition, if n is odd, then some of the odd spectral moments of Cn are greater than zero.

The tree with third-minimal EEr-value also immediately follows from the inequalities (3):

Theorem 3. Among all trees of order n , n ≥ 6, the tree Pn−1(3) has the third-minimal resolvent

Estrada index.

We conjecture that Pn−1(3) has third-minimal EEr-value among all connected graphs

of order n. However, for a proof of this conjecture we would have to demonstrate that

EEr(Pn−1(3)) < EEr(Cn) and EEr(Pn−1(3)) < EEr(Un), where Un is the unicyclic graph

obtained by joining a new vertex to the vertices 1 and 2 of Pn−1 . Note that by deleting an

edge from Cn or from the cycle of Un we obtain either Pn (the minimal graph) or Pn−1(2) (the

second-minimal graph).

By means of a computer–aided investigation of the resolvent Estrada indices of trees, we

arrived at a simple regularity which we state as:

Conjecture 1. Among all trees of order n , n ≥ 2`, the tree Pn−1(`) has the `-th minimal

resolvent Estrada index, for ` = 2, 3, . . ..

For 6 ≤ n ≤ 14, the trees with the fourth– up to seventh-minimal resolvent Estrada indices

(when such do exist) are depicted in Fig. 1.
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Fig. 1. Trees with small resolvent Estrada index.
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