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ABSTRACT. The quality and correlating ability of some recently deduced bounds and

approximate formulas for total π-electron energy are tested on a sample of 106 Kekuléan

benzenoid hydrocarbons. It was found that not a single new approximate formula and not

a single new bound is better than those from the 1970s.

1 Introduction

The total π-electron energy, calculated by mens of the the Hückel molecular or-

bital (HMO) approximation, is a quantum–theoretical characteristics of conjugated

molecules that has been extensively studied in the last 50 or more years [4, 7]. It

is attracting the attention of theoretical chemists and mathematicians thanks to its

explicit, but mathematically non-trivial, dependence on molecular topology [13]. In

the same time, total the π-electron energy is one of the most reliable results that can

be deduced from HMO theory, and is in reasonably good agreement with experimen-

tally determined thermodynamic properties of conjugated molecules, especially their

enthalpies [6, 10].
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When the HMO total π-electron energy is expressed in the units of the HMO

carbon–carbon resonance integral β, then it is directly related to the eigenvalues of the

molecular graph [4, 10]. For the majority of conjugated hydrocarbons (including the

benzenoid systems studied in the present work), the total π-electron energy satisfies

the following expression, which in the same time serves as the definition of graph

energy [13]:

E = E(G) =
n∑

i=1

|λi| . (1)

In Eq. (1), G is the molecular graph (for details see [10]), whose eigenvalues are

λi , i = 1, 2, . . . , n. In what follows, the number of vertices and edges of the graph

G will be denoted by n and m, respectively. It should never be forgotten that n is

the number of carbon atoms of the underlying conjugated hydrocarbon, whereas m

is the number of its carbon–carbon bonds.

By A we denote the adjacency matrix of the graphs G (for details see [10]).

Within the theory of total π-electron energy, numerous bounds and approximate

expressions for E have been discovered, many of which in terms of n, m, and detA.

The first upper and lower bounds for E were obtained in 1971 by McClelland [14]:

E(G) ≤
√
2mn (2)

and

E(G) ≥
√

2m+ n(n− 1)| detA|2/n (3)

and are valid for all graphs. Eventually, these bounds were improved in 1974 as [5]

E(G) ≤
√
2m(n− 1) + n | detA|2/n (4)

E(G) ≤
√

2m(n− 2) + 2n | detA|2/n (5)

and

E(G) ≥
√

4m+ n(n− 2)| detA|2/n (6)

where the upper bound (4) holds for all graphs, whereas the bounds (5) and (6) are

applicable only to bipartite graphs.

The fact that there exists an excellent linear correlation between E and the Mc-

Clelland upper bound (2), was the starting point for designing approximate formulas
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for E [7, 14]. These approximations are of the form E ≈ aE∗ + b, where E∗ is some

upper or lower bound for E. The coefficients a and b are determined by least squares

fitting, and are adjusted for a particular class of molecular graphs (usually benzenoid

hydrocarbons). A large number of such approximate formulas was investigated, and

their comparative studies can be found in our earlier works [6, 9, 11]. In particular,

in [9], 10 (n,m)-type approximate formulas for E were tested. In [6], 24 (n,m)-

type and additional 15 (n,m,K)-type formulas were examined. In [11], a total of 44

(n,m)-type approximations for E were dealt with.

Quite recently, a number of new bounds and approximate expressions for E were

established [1–3]. In [3], the following lower bound was obtained

E(G) ≥ 2m

n
+ n− 1 + ln

(
n | detA|

2m

)
(7)

which requires that detA ̸= 0.

The estimates and approximate formulas (8)–(14) were first time reported in [1].

At this point it should be noted that Eqs. (13) and (14) are erroneous. A correct

derivation yields Eqs. (15) and (16), respectively. Therefore, in what follows, Eqs.

(13) and (14) will be disregarded, and instead of these, their correct versions (15) and

(16) considered.

E(G) ≥

√√√√2m+ n(n− 1)| detA|2/n + 4

(n+ 1)(n− 2)

(√
2m

n
−
(
2m

n

)1/4
)

(8)

E(G) ≥

√√√√2m+ n(n− 1)| detA|2/n + 4

(n+ 1)(n− 2)

(
2m

n
−
√

2m

n

)
(9)

E(G) ≤ 2m− 2m

n

(
2m

n
− 1

)
− ln

(
n | detA|

2m

)
(10)

E(G) ≤ 2m− 4m

n

(
2m

n
− 1

)
− ln

(
n2 | detA|

4m2

)
(11)

E(G) ≈
√

1

2

(
2mn+ n2 | detA|2/n

)
(12)
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E(G) ≈
√
2

2

√
2mn+

n | detA|2/n√
8m

(13)

E(G) ≈
√

m+
n− 1

2
+

2m

n
− 2m2

n2
(14)

E(G) ≈
√
2

2

√
2mn+

n
√
n

4
√
m

| detA|2/n (15)

E(G) ≈ m+
n− 1

2
+

2m

n
− 2m2

n2
(16)

The bound (8) is valid for all graphs. The validity of the bound (9) is restricted to

bipartite graphs. The bounds (10) and (11) are applicable only for graphs with non-

zero determinant of the adjacency matrix. In addition, (11) holds only for bipartite

graphs.

What has not been done in the papers [1–3] was the checking of the quality of

the bounds (8)–(11), relative to the earlier known bounds, and testing the accuracy

of the approximations aE∗ + b, where E∗ is an expression on the right–hand side of

Eqs. (8)–(12) and (15), (16). We do this in the present work.

2 Testing the new approximate formulas and bounds

for total π-electron energy

All earlier tests of approximate formulas for total π-electron energy [6,9,11] were done

on a representative set of 106 Kekuléan benzenoid hydrocarbons from the book [15].

We did the same also in the present work.

The molecular graphs of benzenoid hydrocarbons contain no odd-membered cy-

cles and are therefore bipartite [10]. If G is the molecular graph of a benzenoid

hydrocarbon, then according to the Dewar–Longuet–Higgins’ theorem [4,8],

detA = (−1)n/2 K2

and therefore

| detA| = K2
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where K is the number of Kekulé structures of the corresponding benzenoid molecule

[8]. The sample considered by us consisted of Kekuléan benzenoids, i.e., of benzenoids

for which K > 0. Therefore, all estimates and approximate expressions for E, men-

tioned in the preceding section (except, of course, Eqs. (13) and (14)), are applicable

for our sample. These estimates and approximate expressions are thus formulas of

(n,m)– or (n,m,K)-type, and say something about the dependence of total π-electron

energy on the number of carbon atoms (n), carbon–carbon bonds (m), and Kekulé

structures (K). Recall that n, m, and K are believed to be the three most important

structural parameters, determining the value of total π-electron energy and thus the

thermodynamic properties of (strain free) benzenoid hydrocarbons [7, 8, 12]

The results obtained for approximating the total π-electron energy as

E ≈ aE∗ + b

where E∗ is one of the above specified formulas of (n,m)– or (n,m,K)-type, and

where a and b are determined by least–squares fitting, are presented in Table 1.

E∗ a b R ARE GRE

(2) 0.899 0.426 0.99984 0.30 0.96
(3) 1.178 −1.531 0.99593 1.48 5.85
(4) 0.900 0.604 0.99988 0.27 0.93∗

(5) 0.902 0.786 0.99991 0.24 0.83∗

(6) 1.174 −1.815 0.99636 1.41 5.57∗

(7) 1.199 −1.677 0.99704 1.27 5.03∗

(8) 1.178 −1.532 0.99593 1.48 5.85
(9) 1.178 −1.533 0.99593 1.48 5.85
(10) 0.612 3.219 0.99772 1.24 3.81∗

(11) 0.619 4.398 0.99769 1.29 4.92∗

(12) 1.015 −0.314 0.99968 0.41 1.54∗

(15) 0.063 16.093 0.97972 3.91 41.26∗

(16) 0.814 1.398 0.99979 0.39 1.12∗

Table 1. Statistical parameters obtained by approximating the total π-electron energy
as aE∗ + b for the set of 106 benzenoid hydrocarbons from the book [15]. E∗ is
the expression on the right–hand side of one of the above given relations; R is the
correlation coefficient; ARE and GRE are the average and greatest relative errors
(in %); asterisk indicates that the (greatest) error of benzene is skipped.

We also tested the quality of the above specified upper and lower bonds for the

total π-electron energy. The results obtained are illustrated by the data presented
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in Tables 2 and 3. Recall that these all pertain to Kekuléan benzenoid hydrocar-

bons, which are typical and more often encountered polycyclic conjugated molecules.

Therefore, from the examples found in Tables 2 and 3 we may conclude about the

quality and applicability of the bounds for E in the case of all chemically relevant

graphs.

comp. n m K E (2) (4) (5) (10) (11)

1 20 27 7 25.1012 27.4955 27.2349 26.9718 35.8444 33.5806
2 22 26 17 30.9418 33.8231 33.5719 33.3188 44.5072 42.1442
3 26 31 7 36.1560 40.1497 39.8130 39.4734 55.6754 53.2427
4 26 31 24 36.7953 40.1497 39.9048 39.6584 53.2112 50.7784
5 24 29 13 33.9278 37.3095 37.0243 36.7370 50.3289 47.7877
6 30 36 20 42.1374 46.4785 46.1815 45.8853 63.5240 61.0395
7 28 34 21 39.6950 43.6348 43.3504 43.0640 59.3289 56.7468
8 28 34 24 39.7382 43.6348 43.3600 43.0834 59.0618 56.4797
9 32 39 18 45.0995 49.9600 49.6379 49.3138 69.6063 66.9934
10 36 44 16 50.8226 56.2850 55.9374 55.5876 79.8178 77.1807
11 32 41 50 46.4974 51.2250 50.9331 50.6396 71.1130 68.0501

Table 2. Examples illustrating the quality of the upper bounds (2), (4), (5), (10), (11);
1 = benz[a]anthracene, 2 = dibenz[a,c]anthracene, 3 = hexacene, 4 = dibenzo[g,p]-
chrysene, 5 = dibenzo[b,def ]chrysene, 6 = dibenzo[a,l ]pentacene, 7 = dibenzo[a,e]-
perylene, 8 = naphtho[1,2,3,4-rst ]pentaphene, 9 = naphtho[8,1,2-cde]hexacene, 10 =
tetrabenzo[a,de,l,op]pentacene, 11 = ovalene.

comp. n m K E (3) (6) (7) (8) (9)

1 20 27 7 25.1012 22.6615 22.9740 22.3779 22.6615 22.6617
2 22 26 17 30.9418 28.0804 28.3802 27.6333 28.0804 28.0805
3 26 31 7 36.1560 30.6408 31.0770 30.4074 30.6408 30.6408
4 26 31 24 36.7953 33.4944 33.7858 32.8717 33.4944 33.4944
5 24 29 13 33.9278 30.0739 30.4243 29.6642 30.0739 30.0740
6 30 36 20 42.1374 37.0020 37.3687 36.5160 37.0020 37.0021
7 28 34 21 39.6950 35.1555 35.5057 34.6303 35.1556 35.1556
8 28 34 24 39.7382 35.4740 35.8094 34.8974 35.4740 35.4741
9 32 39 18 45.0995 38.7519 39.1635 38.3273 38.7519 38.7519
10 36 44 16 50.8226 42.4570 42.9139 42.0958 42.4570 42.4570
11 32 41 50 46.4974 41.2267 41.5868 40.4456 41.2267 41.2268

Table 3. Examples illustrating the quality of the lower bounds (3), (6)–(9); the
compounds same as in Table 2.
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3 Discussion and concluding remarks

From Table 1 we see that the best approximations of the form E ≈ aE∗ + b for the

total π-electron energy of benzenoid hydrocarbons are the (n,m)-type McClelland’s

formula, with E∗ given by (2), and its two (n,m,K)-type improvements, with E∗

given by (4) and (5). Recall that all these were discovered in the 1970s.

The newly proposed approximations are weaker than these old ones, some slightly,

some significantly. Outstandingly bad is the formula with E∗ from Eq. (15).

From the data given in Table 2 we see that McClelland’s upper bound (2) and its

improvements (4) and (5), all from the 1970s, are far better than the upper bounds

(10) and (11) put forward in 2013. As expected, (11) is slightly better than (10).

Anyway, we may safely conclude that the new upper bounds (10) and (11) are useless

(at least for applications in chemistry) and should be ignored in future considerations

of both total π-electron energy and graph energy.

The data in Table 3 reveal that the improved McClelland’s lower bound (6),

from the 1970s, has not been superseded by any of the bounds discovered in 2013.

In particular, the lower bound (7) is slightly weaker than the original McClelland’s

estimate (3) and is thus weaker also than (6). From a purely mathematical point of

view, the bound (8) is better than (3), and (9) is better than (8). Numerical tests

show that (at least in the case of typical molecular graphs) the improvements of (8)

over (3) and of (9) over (8) are insignificant and chemically negligible.

The final conclusion of the present work is that the recently communicated bounds

and approximate formulas for total π-electron energy, in spite of their mathematical

appeal, are of no practical value for chemical applications, and shed hardly any new

light on the dependence of total π-electron energy on molecular structure.
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