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This paper presents the methodology of determination of dynamic parameters of wagons during the impact using the 

principles of nonlinear dynamics and the theory of elasticity. The general expression of oscillation of the tank of the tank-

wagon has been derived; it is described through nonlinear differential equations connected by common variables. The 

expression for determination of the change of hydrodynamic pressure on the tank bottom at the impact of wagons has been 

derived, where the model in which the change of pressure corresponds to propagation of elastic waves of stresses and 

deformations in the beam subjected to impact has been adopted. In addition to that, a mathematical model for two wagons 

impact simulation that takes into consideration freight moving has been developed. 

Ključne reči: Stability, reservoir, tank-wagon, longitudinal impact. 
 

 

0 INTRODUCTION 

 

The reservoir (tank) of the tank-wagon (Fig. 1) is 

made in the form of a circular cylinder with the radius R, 

the constant thickness h and the length l. It usually leans 

on the wagon underframe along its edges, so that supports, 

at one of  the ends, most frequently have the freedom of 

motion in the direction of longitudinal axis. In this way the 

tank is protected from the action of horizontal axial forces 

which are, at the impact of wagons, transmitted from the 

buffer to the underframe. At impact, considerable loads of 

the tank arise from the action of liquid on the tank bottom. 

 

Fig. 1. Tank-wagon 

Sudden action of longitudinal load causes radial 

oscillations of the tank where, if the load p is smaller than 

a certain value, those oscillations will be without the 

increase of amplitude around the equilibrium position, and 

vice versa, if the load p is greater than that value, than the 

deflection amplitude rises with the time and, consequently, 

the tank loses its stability. It means that the values of loads 

at which the deflection very quickly tends to infinity are 

critical values. The task is to determine that critical load 

from which the infinite increase of deflection amplitude 

arises. For the analysis we shall use general equations of 

motion of the cylindrical shell given by the following 

expressions [2]: 
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where: 

D – cylindrical rigidity of the shell 


4 
– double Laplace operator 

w – deflection of the tank of the tank-wagon 

wo – initial deflection of the tank of the tank-wagon 

 – function of stress 

 – specific gravity of the material 

g – gravity acceleration 

t – time 

q – cross load of the shell 

As there are still no exact methods of integration of 

the above equations, we shall look for their approximate 

solutions in the form of an order. Let us take the element 

of the middle surface of the tank and the coordinate axis, 

as it is shown in Figure 2, and let the following loads act in 

the general case: 

q – cross load which is normal on the middle surface, 

px – compression or tension load which acts along the 

direction x, 

 py – compression or tension load which acts along the 

direction y. 

Fig. 2. Loads of the tank of the tank-wagon 

In experimental tests it has been noticed that 

deflections of the tank toward the centre and from the 

centre of the curve are not the same. Deflection directed to 

the centre of the curve are greater than deflections directed 

from the centre of the curve. There fore, we shall adopt the 

following expression for the assumed displacements w: 

2mπx ny mπx
w f(t) sin sin ψ sin

l R l
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   (3) 

where: 

f(t)  – amplitude of deflection, 

l – length of the cylinder, 
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R – radius of the cylinder, 

m – number of semi-waves per the length of the cylinder, 

n – number of waves per radius, 

 – correction of the amplitude (time function). 

Depending on the oscillation form of the reservoir, 

the parameters m and n are changed (Fig. 3). On this basis, 

structural changes (e.g. installing rings on the tank) can 

affect the number of waves. 
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Fig. 3. Different forms of tank oscillations 

In addition to that, we shall take that the tank has 

initial deflections, that is irregularities which have the 

same character as the total deflection w: 

2

o o

mπx ny mπx
w f (t) sin sin ψ sin

l R l
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Adopting that:  

mπ
α

l
  and 

n
β

R
 ,  

and solving the equations (1) and (2) by applying Bubnov-

Galerkin method [1,2], we obtain a system of the second 

order non-linear differential equations connected by 

common variables. This system can be solved by applying 

the Runge-Kut method, bat before that it is necessary to 

determine the change of load, that is the pressure on the 

bottom of the tank of the tank-wagon xp , at longitudinal 

hydraulic impact [2]. 
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1 DETERMINATION OF PRESSURE OF LIQUID ON 

THE TANK BOTTOM AT LONGITUDINAL 

IMPACT 

 

At the impact of tank-wagons filled with liquid, 

there arises hydraulic impact of liquid on the tank bottom. 

Behaviour of the tank tank can then be completely 

different from its behaviour at static load. The cause is in 

inertial forces which arise in a very short time interval. 

The structure does not succeed in obtaining displacements 

which correspond to fast changes of load. Such delay 

causes abrupt deformation of the structure. 

In examination of the value of hydraulic pressure 

on the bottom of the tank-wagon, the model proposed by 

Euler will be used 2, it refers to the speed of motion of 

liquid particles which is seen as the function of time t and 

the coordinates x, y and z of the volume in which the liquid 

moves. 

Let us separate the elementary parallelepiped with 

the sides dx, dy and dz from the total volume of liquid 

(Fig. 4). vx, vy and vz denote speeds of liquid particles in 

that parallelepiped which correspond to the axes x, y and z. 

Speeds of particles are functions of coordinates and time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Elementary volume of fluid 
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By projecting the components from the above 

figure on the axis x, we obtain: 

f x f x f x f xρ v ( ρ v ) ρ v dydzdt ( ρ v )dxdydzdt
x x

    
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 (4.71) 

where: f fρ ρ ( x, y,z,t )  – density of fluid. 

The increase of components along the  y and z axes 

can be found in the same way so that the total change of 

mass of elementary fluid during the time dt is equal to: 

f x f y f z( ρ v ) ( ρ v ) ( ρ v ) dxdydzdt
x y z
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On the other hand, the change of mass of 

elementary fluid can be expressed through the change of 

its density: 

fρ
dxdydzdt

t





;  

the sign minus is in the case of decrease of volume. 

By equating these two expressions, the equations of  

continuity (compatibility) of the environment are obtained: 
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Equations of motion will be formed in the same 

way, with the note that internal frictional forces and forces 

due to temperature influence are neglected. Equations of 

motion of elementary fluid in the direction of the axis x. 

The difference of forces that acts on the plane dydz is: 

p
dx dydz

x

 
 
 

, where is: ),,( zyxpp   – pressure.  

The inertial force in the direction of the axis x is: 

x
f

dv
ρ dxdydz

dt
  

With the assumption that the change of liquid density is 

neglected, dynamic equations of ideal liquid can be written 

as: 
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At constant density of fluid, the equations (7) become: 
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It can be proved [1] that the value: 

f

f

p
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
 - speed of sound in the fluid;                  (10) 

then the equation of compatibility gets the form: 

yx z
f2

f

vv v1 p
ρ 0

c t x y z

  
    

    
        (11) 

If it is adopted that the potential  , then the speed 

of fluid particles can be expressed in the following way: 
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By replacing the expressions for speed in the equations 

(8), we obtain: 

f

φ
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t
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
                                                            (13) 

When such a defined pressure is put in the equation of 

compatibility (11), we have that: 
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The previous equation, according to its structure, 

corresponds to the equation which describes propagation 

of waves of stress and deformation in the beam subjected 

to impact [1]. By observing the wavy motion along the 

direction of the axis x, it can be written: 
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Every function ff ( x c t )  can be its solution [1]. 

If only the wave of propagation is observed, it can be 

written: 
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From the equation  (13), it follows: 
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Finally, by replacing the expression for speed vx 

(16) in the previous equation, we obtain that the dynamic 

pressure on the tank bottom of the tank-wagon, at 

longitudinal impact, is: 

d

x f f xp ρ c v    (18) 

For calculation of the total force of pressure of 

liquid on the bottom of the tank 
u

xp , at the impact of tank-

wagons, hydrodynamic force should be added by 

hydrostatic force s

xp . 

u d s

x x xp p p     (19) 

Real liquids are different from the ideal ones taken 

in the model by the forces of internal friction and frictional 

forces between liquids and tank walls. Besides, this model 

introducer the assumption that the liquid is non-elastic. For 

the problems studied here, it can be taken that the 

mentioned influences are neglectable. 

For the purpose of determination of the value of 

hydraulic impact on the tank bottom of the tank-wagon, it 

is necessary to study the process of impact of two wagons 

thoroughly. Change of the fluid speed vx, which arises at 

impact, will be determined according to the model (Fig. 5) 

which has been formed on the basis of theoretical and 

experimental knowledge. Let us consider the case of 

impact of two wagons of the masses m1 and m2 loaded with 

the freights of masses m3 and m4, where there is relative 
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moving of masses in the wagons by x3, that is x4. Let the 

elastic connections of rigidity between the wagon structure 

and the freight be c3 and c4. Besides, let the relative 

moving of the masses m3 and m4 are opposed by the forces 

of resistance of dry friction (3m3g, 4m4g) and the forces 

of resistance of viscous friction which are proportional to 

the first degree of speed of the relative moving of the 

freights 
3 3β x  and 

4 4β x . Also, motion of the first and the 

second wagons are opposed by the forces of rolling 

friction 1g(m1+m3) and 2g(m2+m4). 

Fig. 5. Impact of the wagons where there is moving of 

freight 

By determining kinetic and potential energies as 

well as the function of dissipation and by applying 

Lagrange’s equations of the second order, we obtain: 
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  (20) 

This defined system of differential equations takes 

into consideration moving of freight during the impact of 

wagons and is suitable for numeric solving. The standard 

method of Runge-Kutt of the fourth order has been used in 

solving this system of differential equations. 

 

2 DETERMINATION OF DYNAMIC PARAMETERS 

AT LONGITUDINAL HYDRAULIC IMPACT 

 

The calculation scheme of the tank of the tank-

wagon consists of a closed cylindrical shell which at its 

ends has membrane partitions (bottoms), which are 

absolutely rigid in their planes. Theoretically and 

experimentally seen, the greatest stresses arise in the zone 

of passing from the cylinder to the bottom. However, in 

exploitation it is very rare to have a crack at the observed 

point regardless great stresses obtained by calculation and 

evident during tests. This can be explained by the fact that 

the stresses in the zone of passing from the cylinder to the 

bottom whose values exceed the elasticity limit are limited 

by the field of stresses which have considerably lower 

level, and according to the Saint-Venant’s principle, they 

can be considered to have local character. These 

considerations hold while the stresses in the cylindrical 

part are considerably smaller than the stresses in the zone 

of passing from the cylindrical part to the bottom. The 

greatest increase of stress in the tank and therefore the 

occurrence of cracks can be caused by hydraulic impact of 

fluid which arises at the impact of wagons. 

This paper considers the impact between the tank-

wagon (Fig. 1) and the tank-wagon Uah/Ra. Technical 

data for these wagon are given in [1]. 

By analyzing the results obtained by numeric 

simulation of the equations (20), it can be concluded that 

the tank of the tank-wagon loses its stability at the impact 

speed v=19,5 m/s (Fig. 6). This refers to the tank which 

does not have initial deflections. Diagrams of the change 

of amplitude f of the deflection w depending on whether 

there are initial deflections are given in Fig 7. It can be 

noticed from the diagram that if there are initial 

deflections, the tank of the tank-wagon will lose its 

stability earlier. 

 

Fig. 6.  Change of speed of fluid at impact 

 

 

Fig. 7. Change of amplitude of deflection of the tank 

At impact dynamic loading, the analysis of 

influences of shapes of oscillation on the occurrence of 

lost of stability has also been made, and the results are 

shown in Fig. 8. From the diagram it can be concluded that 

at dynamic action of load that arises at the impact of 

wagons at the speed of 19,5 m/s, critical load obtains at the 

number of semi-waves m=1 and n=4. In addition to that, 

the value of minimum critical load which the tank can 

stand is for higher at dynamic load in relation to static 

load. 

 

Fig. 8. Influence of shapes of oscillation on amplitude of 

deflection of the tank for m=1 
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By comparing the previous diagram with the 

diagram of change of speed of fluid (Fig. 6) and analyzing 

the time moment of lost of stability, it can be concluded 

that the abrupt increase of amplitude of deflection of the 

tank f  arises only in the phase of unloading, that is when 

the load has considerably lower values in relation to its 

maximum values.  

 

Fig. 9. Deformed reservoir of tank-wagon 

Maximum load of tank occurs in the interval to 0.2 

sec (Fig. 6), while loss of stability occurs in the interval 

after 0.2 sec (Fig. 8). 

The appearance of deformed reservoir of tank-

wagon at a loss of stability is given in Fig. 9. 

3 CONCLUSION 

 

By applying the principle of non-linear dynamics of 

plates and shells, a mathematical model of  oscillation of 

the tank has been formed and, with appropriate initial and 

limiting  conditions, it can be applied to all types of tank-

wagons. The formed model of oscillation of the tank of the 

tank-wagon has been applied during calculation of the real 

structure, where critical loads at static and dynamic actions 

of  forces have been determined as well as the influence of 

shapes of oscillation and initial deflections on the stability 

of the structure. 
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