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general helix (or curve of the constant slope) and the slant helix, respectively. It is

well-known that a regular curve α in E3 with the curvature κ 6= 0 and the torsion

τ in E3 is the general helix if and only if it has constant conical curvature τ/κ. In

particular, the slant helices have constant geodesic curvature of the spherical image

of their principal normal indicatrix ([7]). Some characterizations of the slant helices

can be found in [1, 8, 9]. Darboux helices in E3 are defined in [16] as the curves

whose Darboux vector makes a constant angle with some fixed direction. There is

a simple relationship between the Darboux helices and the slant helices. Namely,

every slant helix is the Darboux helix with respect to the same axis. Darboux

helices whose Darboux vector has a constant speed, are known as the curves of the

constant precession ([15]). In Minkowski space E3
1, the Darboux helices are studied

in [10, 12].

In Galilean space G3, the general helices are defined in [14] as admissible curves

which have a non-zero constant conical curvature τ/κ. In particular, the general

helices in G3 with the natural equations τ(x) = b/ax and κ(x) = 1/ax, where

a, b = constant 6= 0 lie on a cone and have a property that they are isogonal

trajectories of the cone generators ([13]). In pseudo-Galilean space G1
3, the general

helices are defined in [3] in terms of an angle between two isotropic vectors which lie

in the pseudo-Euclidean plane x = 0. Some characterizations of the general helices

in Galilean spaces can be found in [2, 4, 5, 6, 11].

In this paper, we introduce T -slant, N -slant and B-slant helices in G3 as ad-

missible curves whose tangent, principal normal and binormal vector respectively

makes a constant angle with some fixed straight line (an axis of the helix). We

prove that an admissible curve is a T -slant helix with a non-isotropic axis if and

only if it has a non-zero constant conical curvature. This means that the notion of

T -slant helices corresponds to the notion of the general helices defined in [2, 14].

We obtain an explicit parameter equation of the T -slant helix and show that the

obtained equation is more general than parameter equation of the general helix

obtained in [2] (Lemma 5.8, page 207). We also prove that there are no N -slant,

B-slant and Darboux helices in the same space.
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2. Preliminaries

The Galilean geometry is one of the real Cayley-Klein geometries of projective

signature (0, 0,+,+). The absolute of the pseudo-Galilean geometry is an ordered

triple {w, f, I}, where w is the ideal (absolute) plane, f is the line in w and I is the

fixed hyperbolic involution of the points of f ([4]). In the non-homogeneous affine

coordinates, the similarity group H8 of the Galilean space G3 has the following form

(1)


x̄ = a11 + a12x,

ȳ = a21 + a22x+ a23 cosϕy + a23 sinϕz,

z̄ = a31 + a32x− a23 sinϕy + a23z cosϕz,

where aij and ϕ are real numbers. For a12 = a23 = 1, the relation (1) defines the

group B6 ⊂ H8 of isometries of G3.

The scalar product of two vectors u = (u1, u2, u3) and v = (v1, v2, v3) in G3 is

given by

〈u,v〉 =

{
u1v1 , if u1 6= 0 ∨ v1 6= 0;

u2v2 + u3v3 , if u1 = 0 ∧ v1 = 0.

This scalar product leaves invariant the Galilean norm of the vector u = (u1, u2, u3)

defined by

‖u‖ =

{
|u1| , if u1 6= 0;√
u2

2 + u2
3 , if u1 = 0.

The cross product of two vectors u = (u1, u2, u3) and v = (v1, v2, v3) is given by

u× v =

∣∣∣∣∣∣∣∣
0 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣ ,
where e2 = (0, 1, 0) and e3 = (0, 0, 1).

A plane of the form x = const. in G3 is called Euclidean plane, since its induced

geometry is Euclidean. Otherwise, it is called an isotropic plane.

The angle measure between two unit non-isotropic vectors is defined in [14] as

the length of their difference.

Definition 2.1. Let a = (1, a2, a3) and b = (1, b2, b3) be the unit non-isotropic

vectors in general position in Galilean space G1
3. An angle ϕ between a and b is

given by

ϕ =
√

(a2 − b2)2 + (a3 − b3)2.
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The angle measure between two isotropic vectors, parallel to the Euclidean plane

in G3, is defined in [14] as follows.

Definition 2.2. An angle ω between two isotropic vectors c = (0, c2, c3) and d =

(0, d2, d3), parallel to the Euclidean plane in G3, is equal the Euclidean angle between

them. Namely,

cosω =
c2d2 + c3d3√
c22 + c23

√
d2

2 + d2
3

.

Definition 2.3. The curve α (t) = (x(t), y (t) , z (t)) in the Galilean space G3 is

said to be admissible if it has no inflection points (α̇ (t)× α̈ (t) 6= 0) and no isotropic

tangents (ẋ (t) 6= 0).

Each admissible curve can be written as

(2) α(x) = (x, y(x), z(x)).

The arc-length parameter of α is defined by ds = |ẋ(t)dt| = |dx|. For simplicity, we

assume ds = dx and s = x as the arc-length parameter of α.

The curvature κ and the torsion τ of α(x) are given by

(3) κ(x) =
√
y′′(x)2 + z′′(x)2,

(4) τ(x) =
y′′(x)z′′′(x)− y′′′(x)z′′(x)

κ2(x)
.

The Frenet frame {T,N,B} of an admissible curve α(x) = (x, y(x), z(x)), has

the form

(5)

T (x) = (1, y′ (x) , z′ (x)) ,

N(x) =
1

κ(x)
(0, y′′ (x) , z′′ (x)) ,

B(x) =
1

κ(x)
(0,−z′′ (x) , y′′ (x)) ,

where T , N and B are called the tangent, the principal normal and the binormal

vector field of α, respectively.

The Frenet equations of the curve α (x) are given by

(6)


T ′(x)

N ′(x)

B′(x)

 =


0 κ(x) 0

0 0 τ(x)

0 −τ(x) 0



T (x)

N(x)

B(x)

 .



ON T-SLANT, N-SLANT AND ... — JDSGT VOL. 16, NUMBER 2 (2018) 191

Also, the Frenet’s frame vectors of α satisfy the equations

(7) T ×N = B, N ×B = 0, B × T = N.

By using the relations α(x) = (x, y(x), z(x)) and (5), we get

(8) y′′′ =
κ′

κ
y′′ − τz′′, z′′′ =

κ′

κ
z′′ + τy′′.

When the Frenet frame {T,N,B} moves along an admissible curve α in G3, there

exists an axis of the frame’s rotation. The direction of such axis is given by Darboux

vector (centrode), which has the equation

(9) D(x) = τ(x)T (x) + κ(x)B(x).

The Darboux vector satisfies Darboux equations given by

T ′ (x) = D (x)× T (x) ,

N ′ (x) = D (x)×N (x) ,

B′ (x) = D (x)×B (x) .

Throughout the next sections, let R0 denote R\{0}.

3. T-slant, N-slant and B-slant helices in G3

In this section we define T -slant, N -slant and B-slant helices in the Galilean

space G3 and obtain explicit parameter equations of the T -slant helices. We also

prove that there are no N -slant and B-slant helices in G3.

Definition 3.1. An admissible curve α in the Galilean space G3 is called a T -slant

helix, if its tangent vector T makes a constant angle with some non-isotropic fixed

direction.

Definition 3.2. An admissible curve α in the Galilean space G3 is called a N -slant

and B-slant helix, if its principal normal and binormal vectors N and B respectively

make a constant angle with some isotropic fixed direction.

The fixed direction in the Definitions 3.1 and 3.2 is called an axis of the helix. We

will exclude the case when the Frenet vectors T , N and B are constant, since they

trivially make a constant angle with any fixed direction. Let us first characterize

the T -slant helices.
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Theorem 3.1. Let α be an admissible curve with the curvature κ 6= 0 and the

torsion τ in G3. Then α is T -slant helix if and only if it has a non-zero constant

conical curvature τ/κ.

Proof. Assume that an admissible curve α(x) = (x, y(x), z(x)) is a T -slant helix with

a non-isotropic axis spanned by the unit constant vector U = (1, u2, u3) . According

to the Definition 3.1, its tangent vector T = (1, y′, z′) makes the constant angle ϕ

with U . By using the Definition 2.1, we have

ϕ2 = (y′ − u2)2 + (z′ − u3)2 = c2, c ∈ R+
0 .

From the previous equation we obtain

(10) y′ − u2 = c sinψ, z′ − u3 = c cosψ,

for some differentiable function ψ = ψ(x). Differentiating the last two equations

two times with respect to x, we get

y′′ = cψ′ cosψ, z′′ = −cψ′ sinψ,(11)

y′′′ = −c (ψ′)
2

sinψ + cψ′′ cosψ, z′′′ = −cψ′′ sinψ − c (ψ′)
2

cosψ.(12)

Substituting (11) and (12) in (8) and using linear independence of the trigonometric

functions sinx and cosx, we obtain

(13) ψ′′ =
κ′

κ
ψ′, ψ′ 2 = −τψ′.

If ψ′ = 0, α is not an admissible curve, which is a contradiction. Hence ψ′ 6= 0.

From the relation (13), we find

(14) ψ′ = −τ, κ′

κ
=
τ ′

τ
.

The second equation of (14) gives

τ

κ
= constant 6= 0.

Conversely, assume that the admissible curve α has the constant conical curvature
τ
κ = constant 6= 0. Let us put τ

κ = − 1
c , c ∈ R0. Consider the unit non-isotropic

vector U given by

U(x) = T (x)− cB (x) .

Differentiating the previous equation with respect to x and using the Frenet equa-

tions (6), we find U ′ = 0. Hence U is a constant vector. By using the Definition
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2.1, it can be easily checked that an angle ϕ between the vectors T and U is given

by ϕ = |c| = constant. According to the Definition 3.1, the curve α is a T -slant

helix with an axis spanned by U . �

Remark 3.1. The notion of T -slant helices corresponds to the notion of the general

helices defined in [2, 14].

Corollary 3.1. The non-isotropic axis of the T -slant helix α is spanned by

U(x) = T (x)− cB (x) .

where c = −κτ ∈ R0.

In the next theorem, we obtain explicit parameter equations of the T -slant helices.

Theorem 3.2. Let α be an admissible curve with the curvature κ and the torsion

τ 6= 0 in G3. Then α is a T -slant helix with an axis spanned by the unit non-

isotropic fixed vector U = (1, u2, u3) if and only if it has parameter equation given

by

(15)

α(x) =

(
x, u2x+ c

∫
sin

(
1

c

∫
κ(x)dx

)
dx, u3x+ c

∫
cos

(
1

c

∫
κ(x)dx

)
dx

)
,

where u2, u3 ∈ R and c ∈ R0.

Proof. Assume that an admissible curve α given by (2) is a T -slant helix with an

axis spanned by the unit non-isotropic fixed vector U = (1, u2, u3). By Theorem

3.1, α has a non-zero constant conical curvature τ
κ = − 1

c , c ∈ R0. By using relation

(10), we obtain

y′ (x) = u2 + c sinψ(x), z′(x) = u3 + c cosψ(x).

Integrating the last two equations, we find

(16)

{
y(x) = u2x+ c

∫
sinψ(x)dx+ c1, c1 ∈ R,

z(x) = u3x+ c
∫

cosψ(x)dx+ c2, c2 ∈ R.

Up to a translation, we may take c1 = c2 = 0. Substituting (16) in the relation (2),

we obtain that α has parameter equation of the form

(17) α(x) =

(
x, u2x+ c

∫
sinψ(x)dx, u3x+ c

∫
cosψ(x)dx

)
.
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In particular, by using the first equation of (14), we get

(18) ψ(x) = −
∫
τ(x)dx+ c0, c0 ∈ R.

Substituting τ = −κc in the last relation and putting c0 = 0, we get

ψ(x) =
1

c

∫
κ(x)dx.

Substituting this in (17), we get (15).

Conversely, assume that an admissible curve α has parameter equation given by

(15). By using the Definition 2.1 it can be easily checked that an angle ϕ between

the vectors T and U is constant. By Definition 3.1, α is a T -slant helix with an axis

spanned by a non-isotropic fixed direction U . �

Remark 3.2. In [2], the general helices are defined as the curves which have a

constant conical curvature. It can be easily seen that parameter equation (14) of

the T -slant helix (i.e. general helix) is more general than parameter equation of the

general helix given in [2] (Lemma 5.8, page 207).

Example 3.1. Let us consider an admissible curve α in G3 with parameter equation

(Figure 1)

α (x) =
(
x,−x

2
[cos(lnx)− sin(lnx)] , x+

x

2
[cos(lnx) + sin(lnx)]

)
.

The tangent and the binormal vector of α are respectively given by

T (x) = (1, sin(lnx), 1 + cos(lnx)),

B(x) = (0, sin(lnx), cos(lnx)).

The curvature and torsion of α read κ(x) = −τ(x) = 1
x . Since τ

κ = −1 = − 1
c ,

according to the Theorem 3.1, the curve α is a T -slant helix. By Corollary 3.1, the

non-isotropic axis of α is spanned by

U = T − cB = (1, 0, 1),

where c = 1 is the angle between T and U .

Example 3.2. Let us consider an admissible curve β in G3 with parameter equation

(Figure 2)

β (x) = (x, 3x− 1

2

√
x cos(2

√
x) +

1

4
sin(2

√
x),

1

2

√
x sin(2

√
x) +

1

4
cos(2

√
x)).
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Figure 1. T -slant helix α
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Figure 2. T -slant helix β

The tangent and the binormal vector of β have the form

T (x) = (1, 3 +
1

2
sin(2

√
x),

1

2
cos(2

√
x)),

B(x) = (0, sin(2
√
x), cos(2

√
x)).

The curvature and the torsion of β read κ(x) = 1
2
√
x

, τ(x) = − 1√
x

. Since τ
κ = −2 =

− 1
c , the Theorem 3.1 implies that β is a T -slant helix. According to the Corollary

3.1, the non-isotropic axis of β is spanned by

U = T − cB = (1, 3, 0),

where c = 1
2 is the angle between T and U .

Next, let us consider N -slant helices. Let α be a N -slant helix whose principal

normal vector N(x) makes a constant angle ω with an isotropic axis determined by
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the unit isotropic fixed vector U = (0, u2, u3). According to the Definition 2.2, we

have

ω = ∠(N,U) =
1

κ
(u2y

′′ + u3z
′′) = c0, c0 ∈ R0.

The previous relation gives

(19) y′′ =
1

u2
(c0κ− u3z

′′).

Differentiating the previous equation with respect to x, we get

(20) y′′′ =
1

u2
(c0κ

′ − u3z
′′′).

Substituting (19) and (20) in the first equation of (8), we get

z′′′ =
κ′

κ
z′′ + τ

u2

u3
z′′.

By using the last equation and the second equation of (8), we find

τ(y′′ − u2

u3
z′′) = 0.

If τ = 0, then the Frenet equations (6) imply N = constant, which we have excluded

as the possibility. Thus

(21) y′′ =
u2

u3
z′′.

Differentiating the last relation with respect to x, we obtain

(22) y′′′ =
u2

u3
z′′′.

From the relations (4), (21) and (22) we get τ = 0, which gives a contradiction

again.

The above results can analogously be proved for the B-slant helices. Thus, we

can state the following theorem.

Theorem 3.3. There are no N -slant and B-slant helices in G3 with non-constant

Frenet vectors.
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4. Darboux helices in G3

In Euclidean and Minkowski 3-space, Darboux helices are defined as the curves

whose Darboux vector makes a constant angle with some fixed axis. In this section,

we show that there are no Darboux helices in Galilean space G3. First we give the

definition of such helices.

Definition 4.1. An admissible curve α in Galilean space G3 is called a Darboux

helix, if its Darboux vector makes a constant angle with some fixed direction.

The fixed direction in the Definition 4.1 is called an axis of the helix. We will

exclude the case when the Darboux vector is constant, since it trivially makes

constant angle with any fixed direction. By using the relations (5) and (9), we find

that the Darboux vector of an admissible curve α is given by

(23) D(x) = (τ, τy′ − z′′, τz′ + y′′).

Theorem 4.1. There are no Darboux helices in G3 with non-constant Darboux

vector.

Proof. Assume that there exists Darboux helix α in G3 with non-constant Darboux

vector. Depending on the torsion τ of α, we may consider two cases:

(A) Assume that τ = 0. Substituting τ = 0 in the relation (9) it follows that the

Darboux vector of the Darboux helix is given by D = κB. Moreover, from the

Frenet equations (6) it follows that the binormal vector B is constant. This implies

that the Darboux vector D always has a fixed direction, which is a contradiction.

(B) Assume that τ 6= 0. According to the Definition 4.1 and the relation (23), the

unit Darboux vector D0 of α given by

(24) D0 =
D

||D||
=

(
1, y′ − z′′

τ
, z′ +

y′′

τ

)
makes a constant angle with some fixed axis spanned by the unit non-isotropic

constant vector U = (1, u2, u3). By Definition 2.1, it holds

ϕ2 =

(
y′ − z′′

τ
− u2

)2

+

(
z′ +

y′′

τ
− u3

)2

= c2, c ∈ R+
0 .

From the previous equation we obtain

(25) y′ − z′′

τ
− u2 = c sinψ, z′ +

y′′

τ
− u3 = c cosψ,
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for some differentiable function ψ = ψ(x). The last two equations imply

(26) z′′ = τy′ − τu2 − cτ sinψ, y′′ = −τz′ + τu3 + cτ cosψ.

Differentiating the second equation of (26) with respect to x, we get

(27) y′′′ = −τ ′z′ − τz′′ + τ ′u3 + cτ ′ cosψ − cτψ′ sinψ.

Substituting the second equation of (26) and (27) in the first equation of (8), we

find

−τ ′z′ + τ ′u3 + cτ ′ cosψ − cτψ′ sinψ =
κ′

κ
(−τz′ + τu3 + cτ cosψ).

The last equation is satisfied if and only if ψ′ = 0 and τ = c1κ, c1 ∈ R+
0 . Substi-

tuting ψ(x) = constant in (25) and using (24), we get D0 = constant which is a

contradiction. �
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