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Abstract

Let G = (V, E) be a simple connected graph with vertex set V = {1, 2, . . . , n}
and edge set E = {e1, e2, . . . , em}. Let di be the degree of its vertex i and d(ei)
the degree of its edge ei. We consider the recently introduced degree–based graph
invariants: the forgotten index F =

∑
i∈V d3

i , the hyper–Zagreb index HM =∑
i∼j(di + dj)2, and the reformulated first Zagreb index EM1 =

∑
ei∈E d(ei)2. A

number of lower and upper bounds for F , HM , and EM1 are established, and the
equality cases determined.

Key Words: degree (of vertex), degree (of edge), Zagreb index, Forgotten index, Hyper–
Zagreb index, Reformulated Zagreb index
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1 Introduction

Let G = (V,E), V = {1, 2, . . . , n}, E = {e1, e2, . . . , em}, be a simple connected graph

with n vertices and m edges. Denote by d1 ≥ d2 ≥ · · · ≥ dn > 0 and d(e1) ≥ d(e2) ≥

· · · ≥ d(em) > 0 the sequences of vertex and edge degrees of G, respectively. In addition,

we use the following notation: ∆ = d1, δ = dn, ∆e = d(e1) + 2, ∆e2 = d(e2) + 2,

δe = d(em) + 2, δe2 = d(em−1) + 2. If the vertices i and j are adjacent, then we write
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i ∼ j. If the edges ei and ej are incident, then we write ei ∼ ej. As usual, L(G) denotes

the line graph of G.

In the 1970s, two degree–based topological indices were introduces [10], nowadays

referred to as the first and the second Zagreb index, M1 and M2. These are defined as

M1 = M1(G) =
n∑

i=1
d2

i

and

M2 = M2(G) =
∑
i∼j

di dj .

Note that the first Zagreb index satisfies the identities

M1 =
∑
i∼j

(di + dj) =
m∑

i=1
[d(ei) + 2] .

Details of the mathematical theory of Zagreb indices can be found in [3, 7–9].

Recently [11], a graph invariant similar to M1 came into the focus of attention, defined

as

F = F (G) =
n∑

i=1
d3

i

which for historical reasons [7] was named forgotten topological index. It satisfies the

identities

F =
∑
i∼j

(d2
i + d2

j) =
m∑

i=1
[d(ei) + 2]2 − 2M2 . (1)

A further degree–based graph invariant was introduced in [20], and named hyper–

Zagreb index, HM . It is defined as

HM = HM(G) =
∑
i∼j

(di + dj)2

and satisfies

HM =
m∑

i=1
[d(ei) + 2]2 .

However, HM can hardly be recognized as a new invariant. Namely, according to (1),
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the following immediate equality is valid [2]

HM = F + 2M2 .

In analogy with the first Zagreb index, by replacing vertex degrees by edge degrees, a

so-called “reformulated first Zagreb index” EM1 has been conceived as [14]

EM1 = EM1(G) =
m∑

i=1
d(ei)2 =

∑
ei∼ej

[d(ei) + d(ej)] .

In this paper, we are concerned with bounds for forgotten index. Then, we use the

results obtained to establish upper and lower bounds for the invariants EM1 and HM .

2 Preliminaries

In this section we outline some results for the invariants F , EM1, and HM that will be

needed in our subsequent consideration.

In [23], Zhou and Trinajstić proved the following equality which establishes a connec-

tion between EM1, F , M2, and M1:

EM1 = F + 2M2 − 4M1 + 4m. (2)

In [12], Ilić and Zhou proved that

F ≥ nM1

m
(3)

with equality if and only G is regular.

Two of the present authors [11] proved that the following inequalities are valid

F ≥ M2
1

2m (4)

and

F ≥ M2
1

m
− 2M2 (5)
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with equality in (4) if and only if G is regular, and in (5) if and only if L(G) is regular.

Let us note that (5) was also proved in [6] but in the form

HM ≥ M2
1

m
. (6)

Based on the relations (2), (4), and (5), the following can be easily obtained

EM1 ≥
M2

1
2m + 2M2 − 4M1 + 4m (7)

and

EM1 ≥
M2

1
m
− 4M1 + 4m (8)

which were, respectively, proven in [15] and [4].

For the invariants F and EM1, the following was proven in [12]:

F ≤ (∆ + δ)M1 − 2m∆δ (9)

and

EM1 ≤ (∆ + δ − 4)M1 + 2M2 − 2m∆δ + 4m (10)

with equalities if and only if G is a regular or biregular graph.

In [6], several inequalities for HM were proven. Some of them are

δM1 + 2M2 ≤ HM ≤ ∆M1 + 2M2 (11)

with equality if and only if G is regular,

HM ≤ 2(∆ + δ)M1 − 4mδ∆ (12)

with equality if and only if G is regular, and

HM ≤ (δ + ∆)2

4m∆δ M2
1 (13)
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with equality if and only if G is regular. Let us note that inequality (13) is consequence

of (12). Namely, it is obtained from (12) and the arithmetic–geometric mean inequality.

3 Main results

Theorem 3.1. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

F ≥ M2
1

m
+ 1

2(∆e − δe)2 − 2M2 (14)

with equality if and only if L(G) is regular, or ∆e2 = d(e2) + 2 = · · · = d(em−1) + 2 = δe2

and ∆e + δe = 2∆e2 .

Proof: Let a1 ≥ a2 ≥ · · · ≥ am be real numbers with the property r ≤ ai ≤ R,

i = 1, 2, . . . ,m. In [21] (see also [19]) the following was proven

m
m∑

i=1
a2

i −
(

m∑
i=1

ai

)2

≥ m

2 (R− r)2 (15)

with equality if and only if R = a1 = · · · = am = r, or a2 = · · · = am−1 and a1 + am =

r +R = 2a2. For ai = d(ei) + 2, i = 1, 2, . . . ,m, r = δe, and R = ∆e, the inequality (15)

transforms into

m
m∑

i=1
[d(ei) + 2]2 −

(
m∑

i=1
(d(ei) + 2)

)2

≥ m

2 (∆e − δe)2 .

Bearing in mind the identities (1), the above inequality becomes

m(F + 2M2)−M2
1 ≥

m

2 (∆e − δe)2

wherefrom we obtain (14).

Since equality in (15) holds if and only if R = a1 = · · · = am = r, or a2 = · · · = am−1

and a1 + am = R + r = 2a2, it follows that equality in (14) holds if and only if ∆e =

d(e1) + 2 = · · · = d(em) + 2 = δe, or ∆e2 = d(e2) + 2 = · · · = d(em−1) + 2 = δe2 and

∆e + δe = 2∆e2 .
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It is not difficult to observe that (14) is stronger than (5), i.e., (6). However, lower

bounds for F established by (5) and (14) are incomparable, since the bound (14) requires

that ∆e and δe are known.

Corollary 3.2. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

F ≥ δeM1 + 1
2(∆e − δe)2 − 2M2 ≥ mδ2

e + 1
2(∆e − δe)2 − 2M2 (16)

with equality if and only if L(G) is regular.

Proof: The inequality (16) is obtained from (14) and

M2
1 ≥ mδeM1 ≥ m2δ2

e .

It is not difficult to observe that the first inequality in (16) is stronger than the left–

hand side of (11).

Corollary 3.3. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

EM1 ≥
M2

1
m
− 4M1 + 1

2(∆e − δe)2 + 4m (17)

with equality if and only if L(G) is regular, or ∆e2 = d(e2) + 2 = · · · = d(em−1) + 2 = δe2

and ∆e + δe = 2∆e2 .

Proof: The inequality (17) is obtained from (14) and (2).

The inequality (17) is stronger than (8).

Corollary 3.4. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

EM1 ≥ δeM1 + 1
2(∆e − δe)2 − 4M1 + 4m ≥ mδ2

e + 1
2(∆e − δe)2 − 4M1 + 4m
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with equality if and only if L(G) is regular.

By a similar procedure as in the case of Theorem 3.1, the following can be proven:

Theorem 3.5. Let G be a simple connected graph with n ≥ 4 vertices and m edges.

Then

F ≥ (M1 −∆e)2

m− 1 + 1
2(∆e2 − δe)2 + ∆2

e − 2M2

with equality if and only if d(e2) = · · · = d(em), or de3 + 2 = · · · = d(em−1) + 2 = δe2 and

∆e2 + δ = 2δ2.

Theorem 3.6. Let G be a simple connected graph with n ≥ 5 vertices and m edges.

Then

F ≥ ∆2
e + δ2

e + (M1 −∆e − δe)2

m− 2 − 2M2 + 1
2(∆e2 − δe2)2

with equality if and only if d(e2) = · · · = d(em−1), or d(e3) + 2 = · · · = d(em−2) + 2 and

∆e2 + δe2 = d(e3) + 2.

Corollary 3.7. Let G be a simple connected graph with n ≥ 4 vertices and m edges.

Then

EM1 ≥ ∆2
e + (M1 −∆e)2

m− 1 + 1
2(∆e2 − δe)2 − 4M1 + 4m

with equality if and only if d(e2) = · · · = d(em), or de3 + 2 = · · · = d(em−1) + 2 = δe2 and

∆e2 + δ = 2δ2.

Corollary 3.8. Let G be a simple connected graph with n ≥ 5 vertices and m edges.

Then

EM1 ≥ ∆2
e + δ2

e + (M1 −∆e − δe)2

m− 2 + 1
2(∆e2 − δe2)2 − 4M1 + 4m

with equality if and only if d(e2) = · · · = d(em−1), or d(e3) + 2 = · · · = d(em−2) + 2 and

∆e2 + δe2 = d(e3) + 2.

Corollary 3.9. Let G be a simple connected graph with n ≥ 4 vertices and m edges.

Then

HM ≥ ∆2
e + (M1 −∆e)2

m− 1 + 1
2(∆e2 − δe)2
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with equality if and only if d(e2) = · · · = d(em), or de3 + 2 = · · · = d(em−1) + 2 = δe2 and

∆e2 + δ = 2δ2.

Corollary 3.10. Let G be a simple connected graph with n ≥ 5 vertices and m edges.

Then

HM ≥ ∆2
e + δ2

e + (M1 −∆e − δe)2

m− 2 + 1
2(∆e2 − δe2)2

with equality if and only if d(e2) = · · · = d(em−1), or d(e3) + 2 = · · · = d(em−2) + 2 and

∆e2 + δe2 = d(e3) + 2.

In the following theorem we establish an upper bound for the forgotten index.

Theorem 3.11. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

F ≤ (∆e + δe)M1 −m∆eδe − 2M2 (18)

with equality if and only if there exists an integer k, 1 ≤ k ≤ m, such that ∆e =

d(e1) + 2 = · · · = d(ek) + 2 ≥ d(ek+1) + 2 = · · · = d(em) + 2 = δe.

Proof: Let p1, p2, . . . , pm and a1 ≥ a2 ≥ · · · ≥ am be positive real numbers with the

property p1 + p2 + · · · + pm = 1 and r ≤ ai ≤ R, i = 1, 2, . . . ,m. In [18] (see also [17])

the following was proven

m∑
i=1

pi ai + rR
m∑

i=1

pi

ai

≤ r +R (19)

with equality if and only if there exists an integer k, 1 ≤ k ≤ m, such that R = a1 =

· · · = ak ≥ ak+1 = · · · = am = r.

For

pi = d(ei) + 2
m∑

i=1
(d(ei) + 2)

and ai = d(ei) + 2
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for i = 1, 2, . . . ,m, as well as r = δe and R = ∆e, the inequality (19) becomes

m∑
i=1

[d(ei) + 2]2

m∑
i=1

[d(ei) + 2]
+ m∆eδe

m∑
i=1

[d(ei) + 2]
≤ ∆e + δe

i.e.,

F + 2M2 +m∆eδe ≤ (∆e + δe)M1

wherefrom (18) is obtained. Equality in (18) holds if and only if there exists an integer k,

1 ≤ k ≤ m, such that ∆e = d(e1)+2 = · · · = d(ek)+2 ≥ d(ek+1)+2 = · · · = d(em)+2 =

δe.

Corollary 3.12. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

EM1 ≤ (∆e + δe − 4)M1 −m(∆eδe − 4)

with equality if and only if there exists an integer k, 1 ≤ k ≤ m, such that ∆e =

d(e1) + 2 = · · · = d(ek) + 2 ≥ d(ek+1) + 2 = · · · = d(em) + 2 = δe.

Corollary 3.13. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

HM ≤ (∆e + δe)M1 −m∆eδe (20)

with equality if and only if there exists k, 1 ≤ k ≤ m, such that ∆e = d(e1) + 2 = · · · =

d(ek) + 2 ≥ d(ek+1) + 2 = · · · = d(em) + 2 = δe.

The inequality (20) is stronger than (12).

Corollary 3.14. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

F ≤ M2
1

4m

√∆e

δe

+
√
δe

∆e

2

− 2M2 (21)

with equality if and only if L(G) is regular.
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It is not difficult to conclude that (21) is stronger than (13).

Similarly, as in the case of Theorem 3.11, the following can be proven.

Theorem 3.15. Let G be a simple connected graph with n ≥ 4 vertices and m edges.

Then

F ≤ ∆2
e + (∆e2 + δe)(M1 −∆e)− 2M2 − (m− 1)∆e2δe

with equality if and only if there exists k, 2 ≤ k ≤ m, so that ∆e2 = d(e2) + 2 = · · · =

d(ek) + 2 ≥ d(ek+1) + 2 = · · · = d(em) + 2 = δe.

Theorem 3.16. Let G be a simple connected graph with n ≥ 5 vertices and m edges.

Then

F ≤ ∆2
e + δ2

e + (∆e2 + δe2)(M1 −∆e − δe)− 2M2 − (m− 2)∆e2δe2

with equality if and only if there exists k, 2 ≤ k ≤ m − 1, so that ∆e2 = d(e2) + 2 =

· · · = d(ek) + 2 ≥ d(ek+1) + 2 = · · · = d(em−1) + 2 = δe2 .

Corollary 3.17. Let G be a simple connected graph with n ≥ 4 vertices and m edges.

Then

EM1 ≤ ∆2
e + (∆e2 + δe)(M1 −∆e)− (m− 1)∆e2δe − 4M1 + 4m

and

HM ≤ ∆2
e + (∆e2 + δe)(M1 −∆e)− (m− 1)∆e2δe

with equality if and only if there exists k, 2 ≤ k ≤ m, so that ∆e2 = d(e2) + 2 = · · · =

d(ek) + 2 ≥ d(ek+1) + 2 = · · · = d(em) + 2 = δe.

Corollary 3.18. Let G be a simple connected graph with n ≥ 5 vertices and m edges.

Then

EM1 ≤ ∆2
e + δ2

e + (∆e2 + δe2)(M1 −∆e − δe)− (m− 2)∆e2δe2 − 4M1 + 4m

and

HM ≤ ∆2
e + δ2

e + (∆e2 + δe2)(M1 −∆e − δe)− (m− 2)∆e2δe2
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with equality if and only if there exists k, 2 ≤ k ≤ m − 1, so that ∆e2 = d(e2) + 2 =

· · · = d(ek) + 2 ≥ d(ek+1) + 2 = · · · = d(em−1) + 2 = δe2 .

Theorem 3.19. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

F ≤ M2
1

m
+mα(m)(∆e − δe)2 − 2M2 (22)

where

α(m) = 1
4

(
1− (−1)m+1 + 1

2m2

)
.

Equality in (22) holds if and only if L(G) is regular.

Proof: Let p = (pi), a = (ai) and b = (bi), i = 1, 2, . . . ,m, be sequences of non-negative

real numbers with the property

0 < r1 ≤ ai ≤ R1 < +∞, , and 0 < r2 ≤ bi ≤ R2 < +∞ .

Further, let S be a subset of Im = {1, 2, . . . ,m} for which the expression∣∣∣∣∣∑
i∈S

pi −
1
2

m∑
i=1

pi

∣∣∣∣∣
is minimized. Under the given conditions, Andrica and Badea [1] proved that∣∣∣∣∣

m∑
i=1

pi

m∑
i=1

pi ai bi −
m∑

i=1
pi ai

m∑
i=1

pi bi

∣∣∣∣∣
≤ (R1 − r1)(R2 − r2)

∑
i∈S

pi

(
m∑

i=1
pi −

∑
i∈S

pi

)
.

(23)

For pi = 1, ai = bi = d(ei) + 2, i = 1, 2, . . . ,m, R1 = R2 = ∆e, and r1 = r2 = δe, the

inequality (23) becomes

m
m∑

i=1
[d(ei) + 2]2 −

(
m∑

i=1
[d(ei) + 2]

)2

≤ (∆e − δe)2
⌊
m

2

⌋ (
m−

⌊
m

2

⌋)
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i.e.,

m(F + 2M2) ≤M2
1 + (∆e − δe)2 m2 α(m)

wherefrom we obtain the required result. Since equality in (23) holds if and only if

R1 = a1 = · · · = am = r1 or R2 = b1 = · · · = bm = r2, then the equality in (22) holds if

and only if ∆e = d(e1) + 2 = d(e2) + 2 = · · · = d(em) + 2 = δe.

By a similar procedure, the following can be proven.

Theorem 3.20. Let G be a simple connected graph with n ≥ 4 vertices and m edges.

Then

F ≤ ∆2
e + (M1 −∆e)2

m− 1 + (m− 1)α(m− 1)(∆e2 − δe)2 − 2M2

with equality if and only if ∆e2 = d(e2) + 2 = · · · = d(em) + 2 = δe.

Theorem 3.21. Let G be a simple connected graph with n ≥ 5 vertices and m edges.

Then

F ≤ ∆2
e + δ2

e + (M1 −∆e − δe)2

m− 2 + (m− 2)α(m− 2)(∆e2 − δe2)2 − 2M2

with equality if and only if ∆e2 = d(e2) + 2 = · · · = d(em−1) + 2 = δe2 .

Corollary 3.22. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

EM1 ≤
M2

1
m

+mα(m)(∆e − δe)2 − 4M1 + 4m

and

HM ≤ M2
1

m
+mα(m)(∆e − δe)2

with equality if and only if L(G) is regular.

Corollary 3.23. Let G be a simple connected graph with n ≥ 4 vertices and m edges.

Then

EM1 ≤ ∆2
e + (M1 −∆e)2

m− 1 + (m− 1)α(m− 1)(∆e2 − δe)2 − 4M1 + 4m
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and

HM ≤ ∆2
e + (M1 −∆e)2

m− 1 + (m− 1)α(m− 1)(∆e2 − δe)2

with equality if and only if ∆e2 = d(e2) + 2 = · · · = d(em) + 2 = δe.

Corollary 3.24. Let G be a simple connected graph with n ≥ 5 vertices and m edges.

Then

EM1 ≤ ∆2
e + δ2

e + (M1 −∆e − δe)2

m− 2 + (m− 2)α(m− 2)(∆e2 − δe2)2 − 4M1 + 4m

and

HM ≤ ∆2
e + δ2

e + (M1 −∆e − δe)2

m− 2 + (m− 2)α(m− 2)(∆e2 − δe2)2

with equality if and only if ∆e2 = d(e2) + 2 = · · · = d(em−1) + 2 = δe2 .
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