Some Inequalities for the Forgotten Topological Index

Igor Z. Milovanović and Emina I. Milovanović Faculty of Electronic Engineering, University of Nis, 18000 Nis, Serbia
igor@elfak.ni.ac.rs, ema@elfak.ni.ac.rs
Ivan Gutman and Boris Furtula
Faculty of Science, University of Kragujevac
P. O. Box 60, 34000 Kragujevac, Serbia
gutman@kg.ac.rs, furtula@kg.ac.rs

Abstract

Let $G=(V, E)$ be a simple connected graph with vertex set $V=\{1,2, \ldots, n\}$ and edge set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Let d_{i} be the degree of its vertex i and $d\left(e_{i}\right)$ the degree of its edge e_{i}. We consider the recently introduced degree-based graph invariants: the forgotten index $F=\sum_{i \in V} d_{i}^{3}$, the hyper-Zagreb index $H M=$ $\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{2}$, and the reformulated first Zagreb index $E M_{1}=\sum_{e_{i} \in E} d\left(e_{i}\right)^{2}$. A number of lower and upper bounds for $F, H M$, and $E M_{1}$ are established, and the equality cases determined.

Key Words: degree (of vertex), degree (of edge), Zagreb index, Forgotten index, HyperZagreb index, Reformulated Zagreb index

AMS Classification: 05C07, 05C90, 92E10

1 Introduction

Let $G=(V, E), V=\{1,2, \ldots, n\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, be a simple connected graph with n vertices and m edges. Denote by $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$ and $d\left(e_{1}\right) \geq d\left(e_{2}\right) \geq$ $\cdots \geq d\left(e_{m}\right)>0$ the sequences of vertex and edge degrees of G, respectively. In addition, we use the following notation: $\Delta=d_{1}, \delta=d_{n}, \Delta_{e}=d\left(e_{1}\right)+2, \Delta_{e_{2}}=d\left(e_{2}\right)+2$, $\delta_{e}=d\left(e_{m}\right)+2, \delta_{e_{2}}=d\left(e_{m-1}\right)+2$. If the vertices i and j are adjacent, then we write

[^0]$i \sim j$. If the edges e_{i} and e_{j} are incident, then we write $e_{i} \sim e_{j}$. As usual, $L(G)$ denotes the line graph of G.

In the 1970s, two degree-based topological indices were introduces [10], nowadays referred to as the first and the second Zagreb index, M_{1} and M_{2}. These are defined as

$$
M_{1}=M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2}
$$

and

$$
M_{2}=M_{2}(G)=\sum_{i \sim j} d_{i} d_{j} .
$$

Note that the first Zagreb index satisfies the identities

$$
M_{1}=\sum_{i \sim j}\left(d_{i}+d_{j}\right)=\sum_{i=1}^{m}\left[d\left(e_{i}\right)+2\right] .
$$

Details of the mathematical theory of Zagreb indices can be found in [3, 7-9].
Recently [11], a graph invariant similar to M_{1} came into the focus of attention, defined as

$$
F=F(G)=\sum_{i=1}^{n} d_{i}^{3}
$$

which for historical reasons [7] was named forgotten topological index. It satisfies the identities

$$
\begin{equation*}
F=\sum_{i \sim j}\left(d_{i}^{2}+d_{j}^{2}\right)=\sum_{i=1}^{m}\left[d\left(e_{i}\right)+2\right]^{2}-2 M_{2} . \tag{1}
\end{equation*}
$$

A further degree-based graph invariant was introduced in [20], and named hyperZagreb index, $H M$. It is defined as

$$
H M=H M(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{2}
$$

and satisfies

$$
H M=\sum_{i=1}^{m}\left[d\left(e_{i}\right)+2\right]^{2} .
$$

However, $H M$ can hardly be recognized as a new invariant. Namely, according to (1),
the following immediate equality is valid [2]

$$
H M=F+2 M_{2}
$$

In analogy with the first Zagreb index, by replacing vertex degrees by edge degrees, a so-called "reformulated first Zagreb index" $E M_{1}$ has been conceived as [14]

$$
E M_{1}=E M_{1}(G)=\sum_{i=1}^{m} d\left(e_{i}\right)^{2}=\sum_{e_{i} \sim e_{j}}\left[d\left(e_{i}\right)+d\left(e_{j}\right)\right]
$$

In this paper, we are concerned with bounds for forgotten index. Then, we use the results obtained to establish upper and lower bounds for the invariants $E M_{1}$ and $H M$.

2 Preliminaries

In this section we outline some results for the invariants $F, E M_{1}$, and $H M$ that will be needed in our subsequent consideration.

In [23], Zhou and Trinajstić proved the following equality which establishes a connection between $E M_{1}, F, M_{2}$, and M_{1} :

$$
\begin{equation*}
E M_{1}=F+2 M_{2}-4 M_{1}+4 m \tag{2}
\end{equation*}
$$

In [12], Ilic and Zhou proved that

$$
\begin{equation*}
F \geq \frac{n M_{1}}{m} \tag{3}
\end{equation*}
$$

with equality if and only G is regular.
Two of the present authors [11] proved that the following inequalities are valid

$$
\begin{equation*}
F \geq \frac{M_{1}^{2}}{2 m} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
F \geq \frac{M_{1}^{2}}{m}-2 M_{2} \tag{5}
\end{equation*}
$$

with equality in (4) if and only if G is regular, and in (5) if and only if $L(G)$ is regular. Let us note that (5) was also proved in [6] but in the form

$$
\begin{equation*}
H M \geq \frac{M_{1}^{2}}{m} \tag{6}
\end{equation*}
$$

Based on the relations (2), (4), and (5), the following can be easily obtained

$$
\begin{equation*}
E M_{1} \geq \frac{M_{1}^{2}}{2 m}+2 M_{2}-4 M_{1}+4 m \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
E M_{1} \geq \frac{M_{1}^{2}}{m}-4 M_{1}+4 m \tag{8}
\end{equation*}
$$

which were, respectively, proven in [15] and [4].
For the invariants F and $E M_{1}$, the following was proven in [12]:

$$
\begin{equation*}
F \leq(\Delta+\delta) M_{1}-2 m \Delta \delta \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
E M_{1} \leq(\Delta+\delta-4) M_{1}+2 M_{2}-2 m \Delta \delta+4 m \tag{10}
\end{equation*}
$$

with equalities if and only if G is a regular or biregular graph.
In [6], several inequalities for $H M$ were proven. Some of them are

$$
\begin{equation*}
\delta M_{1}+2 M_{2} \leq H M \leq \Delta M_{1}+2 M_{2} \tag{11}
\end{equation*}
$$

with equality if and only if G is regular,

$$
\begin{equation*}
H M \leq 2(\Delta+\delta) M_{1}-4 m \delta \Delta \tag{12}
\end{equation*}
$$

with equality if and only if G is regular, and

$$
\begin{equation*}
H M \leq \frac{(\delta+\Delta)^{2}}{4 m \Delta \delta} M_{1}^{2} \tag{13}
\end{equation*}
$$

with equality if and only if G is regular. Let us note that inequality (13) is consequence of (12). Namely, it is obtained from (12) and the arithmetic-geometric mean inequality.

3 Main results

Theorem 3.1. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
F \geq \frac{M_{1}^{2}}{m}+\frac{1}{2}\left(\Delta_{e}-\delta_{e}\right)^{2}-2 M_{2} \tag{14}
\end{equation*}
$$

with equality if and only if $L(G)$ is regular, or $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$ and $\Delta_{e}+\delta_{e}=2 \Delta_{e_{2}}$.

Proof: Let $a_{1} \geq a_{2} \geq \cdots \geq a_{m}$ be real numbers with the property $r \leq a_{i} \leq R$, $i=1,2, \ldots, m$. In [21] (see also [19]) the following was proven

$$
\begin{equation*}
m \sum_{i=1}^{m} a_{i}^{2}-\left(\sum_{i=1}^{m} a_{i}\right)^{2} \geq \frac{m}{2}(R-r)^{2} \tag{15}
\end{equation*}
$$

with equality if and only if $R=a_{1}=\cdots=a_{m}=r$, or $a_{2}=\cdots=a_{m-1}$ and $a_{1}+a_{m}=$ $r+R=2 a_{2}$. For $a_{i}=d\left(e_{i}\right)+2, i=1,2, \ldots, m, r=\delta_{e}$, and $R=\Delta_{e}$, the inequality (15) transforms into

$$
m \sum_{i=1}^{m}\left[d\left(e_{i}\right)+2\right]^{2}-\left(\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)\right)^{2} \geq \frac{m}{2}\left(\Delta_{e}-\delta_{e}\right)^{2} .
$$

Bearing in mind the identities (1), the above inequality becomes

$$
m\left(F+2 M_{2}\right)-M_{1}^{2} \geq \frac{m}{2}\left(\Delta_{e}-\delta_{e}\right)^{2}
$$

wherefrom we obtain (14).
Since equality in (15) holds if and only if $R=a_{1}=\cdots=a_{m}=r$, or $a_{2}=\cdots=a_{m-1}$ and $a_{1}+a_{m}=R+r=2 a_{2}$, it follows that equality in (14) holds if and only if $\Delta_{e}=$ $d\left(e_{1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$, or $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$ and $\Delta_{e}+\delta_{e}=2 \Delta_{e_{2}}$.

It is not difficult to observe that (14) is stronger than (5), i.e., (6). However, lower bounds for F established by (5) and (14) are incomparable, since the bound (14) requires that Δ_{e} and δ_{e} are known.

Corollary 3.2. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
F \geq \delta_{e} M_{1}+\frac{1}{2}\left(\Delta_{e}-\delta_{e}\right)^{2}-2 M_{2} \geq m \delta_{e}^{2}+\frac{1}{2}\left(\Delta_{e}-\delta_{e}\right)^{2}-2 M_{2} \tag{16}
\end{equation*}
$$

with equality if and only if $L(G)$ is regular.
Proof: The inequality (16) is obtained from (14) and

$$
M_{1}^{2} \geq m \delta_{e} M_{1} \geq m^{2} \delta_{e}^{2}
$$

It is not difficult to observe that the first inequality in (16) is stronger than the lefthand side of (11).

Corollary 3.3. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
E M_{1} \geq \frac{M_{1}^{2}}{m}-4 M_{1}+\frac{1}{2}\left(\Delta_{e}-\delta_{e}\right)^{2}+4 m \tag{17}
\end{equation*}
$$

with equality if and only if $L(G)$ is regular, or $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$ and $\Delta_{e}+\delta_{e}=2 \Delta_{e_{2}}$.

Proof: The inequality (17) is obtained from (14) and (2).
The inequality (17) is stronger than (8).
Corollary 3.4. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
E M_{1} \geq \delta_{e} M_{1}+\frac{1}{2}\left(\Delta_{e}-\delta_{e}\right)^{2}-4 M_{1}+4 m \geq m \delta_{e}^{2}+\frac{1}{2}\left(\Delta_{e}-\delta_{e}\right)^{2}-4 M_{1}+4 m
$$

with equality if and only if $L(G)$ is regular.

By a similar procedure as in the case of Theorem 3.1, the following can be proven:
Theorem 3.5. Let G be a simple connected graph with $n \geq 4$ vertices and m edges. Then

$$
F \geq \frac{\left(M_{1}-\Delta_{e}\right)^{2}}{m-1}+\frac{1}{2}\left(\Delta_{e_{2}}-\delta_{e}\right)^{2}+\Delta_{e}^{2}-2 M_{2}
$$

with equality if and only if $d\left(e_{2}\right)=\cdots=d\left(e_{m}\right)$, or $d_{e_{3}}+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$ and $\Delta_{e_{2}}+\delta=2 \delta_{2}$.

Theorem 3.6. Let G be a simple connected graph with $n \geq 5$ vertices and m edges. Then

$$
F \geq \Delta_{e}^{2}+\delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}-\delta_{e}\right)^{2}}{m-2}-2 M_{2}+\frac{1}{2}\left(\Delta_{e_{2}}-\delta_{e_{2}}\right)^{2}
$$

with equality if and only if $d\left(e_{2}\right)=\cdots=d\left(e_{m-1}\right)$, or $d\left(e_{3}\right)+2=\cdots=d\left(e_{m-2}\right)+2$ and $\Delta_{e_{2}}+\delta_{e_{2}}=d\left(e_{3}\right)+2$.

Corollary 3.7. Let G be a simple connected graph with $n \geq 4$ vertices and m edges. Then

$$
E M_{1} \geq \Delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}\right)^{2}}{m-1}+\frac{1}{2}\left(\Delta_{e_{2}}-\delta_{e}\right)^{2}-4 M_{1}+4 m
$$

with equality if and only if $d\left(e_{2}\right)=\cdots=d\left(e_{m}\right)$, or $d_{e_{3}}+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$ and $\Delta_{e_{2}}+\delta=2 \delta_{2}$.

Corollary 3.8. Let G be a simple connected graph with $n \geq 5$ vertices and m edges. Then

$$
E M_{1} \geq \Delta_{e}^{2}+\delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}-\delta_{e}\right)^{2}}{m-2}+\frac{1}{2}\left(\Delta_{e_{2}}-\delta_{e_{2}}\right)^{2}-4 M_{1}+4 m
$$

with equality if and only if $d\left(e_{2}\right)=\cdots=d\left(e_{m-1}\right)$, or $d\left(e_{3}\right)+2=\cdots=d\left(e_{m-2}\right)+2$ and $\Delta_{e_{2}}+\delta_{e_{2}}=d\left(e_{3}\right)+2$.

Corollary 3.9. Let G be a simple connected graph with $n \geq 4$ vertices and m edges. Then

$$
H M \geq \Delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}\right)^{2}}{m-1}+\frac{1}{2}\left(\Delta_{e_{2}}-\delta_{e}\right)^{2}
$$

with equality if and only if $d\left(e_{2}\right)=\cdots=d\left(e_{m}\right)$, or $d_{e_{3}}+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$ and $\Delta_{e_{2}}+\delta=2 \delta_{2}$.

Corollary 3.10. Let G be a simple connected graph with $n \geq 5$ vertices and m edges. Then

$$
H M \geq \Delta_{e}^{2}+\delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}-\delta_{e}\right)^{2}}{m-2}+\frac{1}{2}\left(\Delta_{e_{2}}-\delta_{e_{2}}\right)^{2}
$$

with equality if and only if $d\left(e_{2}\right)=\cdots=d\left(e_{m-1}\right)$, or $d\left(e_{3}\right)+2=\cdots=d\left(e_{m-2}\right)+2$ and $\Delta_{e_{2}}+\delta_{e_{2}}=d\left(e_{3}\right)+2$.

In the following theorem we establish an upper bound for the forgotten index.

Theorem 3.11. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
F \leq\left(\Delta_{e}+\delta_{e}\right) M_{1}-m \Delta_{e} \delta_{e}-2 M_{2} \tag{18}
\end{equation*}
$$

with equality if and only if there exists an integer $k, 1 \leq k \leq m$, such that $\Delta_{e}=$ $d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

Proof: Let $p_{1}, p_{2}, \ldots, p_{m}$ and $a_{1} \geq a_{2} \geq \cdots \geq a_{m}$ be positive real numbers with the property $p_{1}+p_{2}+\cdots+p_{m}=1$ and $r \leq a_{i} \leq R, i=1,2, \ldots, m$. In [18] (see also [17]) the following was proven

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} a_{i}+r R \sum_{i=1}^{m} \frac{p_{i}}{a_{i}} \leq r+R \tag{19}
\end{equation*}
$$

with equality if and only if there exists an integer $k, 1 \leq k \leq m$, such that $R=a_{1}=$ $\cdots=a_{k} \geq a_{k+1}=\cdots=a_{m}=r$.

For

$$
p_{i}=\frac{d\left(e_{i}\right)+2}{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)} \quad \text { and } \quad a_{i}=d\left(e_{i}\right)+2
$$

for $i=1,2, \ldots, m$, as well as $r=\delta_{e}$ and $R=\Delta_{e}$, the inequality (19) becomes

$$
\frac{\sum_{i=1}^{m}\left[d\left(e_{i}\right)+2\right]^{2}}{\sum_{i=1}^{m}\left[d\left(e_{i}\right)+2\right]}+\frac{m \Delta_{e} \delta_{e}}{\sum_{i=1}^{m}\left[d\left(e_{i}\right)+2\right]} \leq \Delta_{e}+\delta_{e}
$$

i.e.,

$$
F+2 M_{2}+m \Delta_{e} \delta_{e} \leq\left(\Delta_{e}+\delta_{e}\right) M_{1}
$$

wherefrom (18) is obtained. Equality in (18) holds if and only if there exists an integer k, $1 \leq k \leq m$, such that $\Delta_{e}=d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=$ δ_{e}.

Corollary 3.12. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
E M_{1} \leq\left(\Delta_{e}+\delta_{e}-4\right) M_{1}-m\left(\Delta_{e} \delta_{e}-4\right)
$$

with equality if and only if there exists an integer $k, 1 \leq k \leq m$, such that $\Delta_{e}=$ $d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

Corollary 3.13. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
H M \leq\left(\Delta_{e}+\delta_{e}\right) M_{1}-m \Delta_{e} \delta_{e} \tag{20}
\end{equation*}
$$

with equality if and only if there exists $k, 1 \leq k \leq m$, such that $\Delta_{e}=d\left(e_{1}\right)+2=\cdots=$ $d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

The inequality (20) is stronger than (12).
Corollary 3.14. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
F \leq \frac{M_{1}^{2}}{4 m}\left(\sqrt{\frac{\Delta_{e}}{\delta_{e}}}+\sqrt{\frac{\delta_{e}}{\Delta_{e}}}\right)^{2}-2 M_{2} \tag{21}
\end{equation*}
$$

with equality if and only if $L(G)$ is regular.

It is not difficult to conclude that (21) is stronger than (13).
Similarly, as in the case of Theorem 3.11, the following can be proven.
Theorem 3.15. Let G be a simple connected graph with $n \geq 4$ vertices and m edges. Then

$$
F \leq \Delta_{e}^{2}+\left(\Delta_{e_{2}}+\delta_{e}\right)\left(M_{1}-\Delta_{e}\right)-2 M_{2}-(m-1) \Delta_{e_{2}} \delta_{e}
$$

with equality if and only if there exists $k, 2 \leq k \leq m$, so that $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=$ $d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

Theorem 3.16. Let G be a simple connected graph with $n \geq 5$ vertices and m edges. Then

$$
F \leq \Delta_{e}^{2}+\delta_{e}^{2}+\left(\Delta_{e_{2}}+\delta_{e_{2}}\right)\left(M_{1}-\Delta_{e}-\delta_{e}\right)-2 M_{2}-(m-2) \Delta_{e_{2}} \delta_{e_{2}}
$$

with equality if and only if there exists $k, 2 \leq k \leq m-1$, so that $\Delta_{e_{2}}=d\left(e_{2}\right)+2=$ $\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$.

Corollary 3.17. Let G be a simple connected graph with $n \geq 4$ vertices and m edges. Then

$$
E M_{1} \leq \Delta_{e}^{2}+\left(\Delta_{e_{2}}+\delta_{e}\right)\left(M_{1}-\Delta_{e}\right)-(m-1) \Delta_{e_{2}} \delta_{e}-4 M_{1}+4 m
$$

and

$$
H M \leq \Delta_{e}^{2}+\left(\Delta_{e_{2}}+\delta_{e}\right)\left(M_{1}-\Delta_{e}\right)-(m-1) \Delta_{e_{2}} \delta_{e}
$$

with equality if and only if there exists $k, 2 \leq k \leq m$, so that $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=$ $d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

Corollary 3.18. Let G be a simple connected graph with $n \geq 5$ vertices and m edges. Then

$$
E M_{1} \leq \Delta_{e}^{2}+\delta_{e}^{2}+\left(\Delta_{e_{2}}+\delta_{e_{2}}\right)\left(M_{1}-\Delta_{e}-\delta_{e}\right)-(m-2) \Delta_{e_{2}} \delta_{e_{2}}-4 M_{1}+4 m
$$

and

$$
H M \leq \Delta_{e}^{2}+\delta_{e}^{2}+\left(\Delta_{e_{2}}+\delta_{e_{2}}\right)\left(M_{1}-\Delta_{e}-\delta_{e}\right)-(m-2) \Delta_{e_{2}} \delta_{e_{2}}
$$

with equality if and only if there exists $k, 2 \leq k \leq m-1$, so that $\Delta_{e_{2}}=d\left(e_{2}\right)+2=$ $\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$.

Theorem 3.19. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
\begin{equation*}
F \leq \frac{M_{1}^{2}}{m}+m \alpha(m)\left(\Delta_{e}-\delta_{e}\right)^{2}-2 M_{2} \tag{22}
\end{equation*}
$$

where

$$
\alpha(m)=\frac{1}{4}\left(1-\frac{(-1)^{m+1}+1}{2 m^{2}}\right) .
$$

Equality in (22) holds if and only if $L(G)$ is regular.

Proof: Let $p=\left(p_{i}\right), a=\left(a_{i}\right)$ and $b=\left(b_{i}\right), i=1,2, \ldots, m$, be sequences of non-negative real numbers with the property

$$
0<r_{1} \leq a_{i} \leq R_{1}<+\infty, \quad \text { and } \quad 0<r_{2} \leq b_{i} \leq R_{2}<+\infty .
$$

Further, let S be a subset of $I_{m}=\{1,2, \ldots, m\}$ for which the expression

$$
\left|\sum_{i \in S} p_{i}-\frac{1}{2} \sum_{i=1}^{m} p_{i}\right|
$$

is minimized. Under the given conditions, Andrica and Badea [1] proved that

$$
\begin{align*}
& \left|\sum_{i=1}^{m} p_{i} \sum_{i=1}^{m} p_{i} a_{i} b_{i}-\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} p_{i} b_{i}\right| \\
& \leq\left(R_{1}-r_{1}\right)\left(R_{2}-r_{2}\right) \sum_{i \in S} p_{i}\left(\sum_{i=1}^{m} p_{i}-\sum_{i \in S} p_{i}\right) . \tag{23}
\end{align*}
$$

For $p_{i}=1, a_{i}=b_{i}=d\left(e_{i}\right)+2, i=1,2, \ldots, m, R_{1}=R_{2}=\Delta_{e}$, and $r_{1}=r_{2}=\delta_{e}$, the inequality (23) becomes

$$
m \sum_{i=1}^{m}\left[d\left(e_{i}\right)+2\right]^{2}-\left(\sum_{i=1}^{m}\left[d\left(e_{i}\right)+2\right]\right)^{2} \leq\left(\Delta_{e}-\delta_{e}\right)^{2}\left\lfloor\frac{m}{2}\right\rfloor\left(m-\left\lfloor\frac{m}{2}\right\rfloor\right)
$$

i.e.,

$$
m\left(F+2 M_{2}\right) \leq M_{1}^{2}+\left(\Delta_{e}-\delta_{e}\right)^{2} m^{2} \alpha(m)
$$

wherefrom we obtain the required result. Since equality in (23) holds if and only if $R_{1}=a_{1}=\cdots=a_{m}=r_{1}$ or $R_{2}=b_{1}=\cdots=b_{m}=r_{2}$, then the equality in (22) holds if and only if $\Delta_{e}=d\left(e_{1}\right)+2=d\left(e_{2}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

By a similar procedure, the following can be proven.

Theorem 3.20. Let G be a simple connected graph with $n \geq 4$ vertices and m edges. Then

$$
F \leq \Delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}\right)^{2}}{m-1}+(m-1) \alpha(m-1)\left(\Delta_{e_{2}}-\delta_{e}\right)^{2}-2 M_{2}
$$

with equality if and only if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

Theorem 3.21. Let G be a simple connected graph with $n \geq 5$ vertices and m edges. Then

$$
F \leq \Delta_{e}^{2}+\delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}-\delta_{e}\right)^{2}}{m-2}+(m-2) \alpha(m-2)\left(\Delta_{e_{2}}-\delta_{e_{2}}\right)^{2}-2 M_{2}
$$

with equality if and only if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$.
Corollary 3.22. Let G be a simple connected graph with $n \geq 3$ vertices and m edges. Then

$$
E M_{1} \leq \frac{M_{1}^{2}}{m}+m \alpha(m)\left(\Delta_{e}-\delta_{e}\right)^{2}-4 M_{1}+4 m
$$

and

$$
H M \leq \frac{M_{1}^{2}}{m}+m \alpha(m)\left(\Delta_{e}-\delta_{e}\right)^{2}
$$

with equality if and only if $L(G)$ is regular.
Corollary 3.23. Let G be a simple connected graph with $n \geq 4$ vertices and m edges. Then

$$
E M_{1} \leq \Delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}\right)^{2}}{m-1}+(m-1) \alpha(m-1)\left(\Delta_{e_{2}}-\delta_{e}\right)^{2}-4 M_{1}+4 m
$$

and

$$
H M \leq \Delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}\right)^{2}}{m-1}+(m-1) \alpha(m-1)\left(\Delta_{e_{2}}-\delta_{e}\right)^{2}
$$

with equality if and only if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

Corollary 3.24. Let G be a simple connected graph with $n \geq 5$ vertices and m edges. Then

$$
E M_{1} \leq \Delta_{e}^{2}+\delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}-\delta_{e}\right)^{2}}{m-2}+(m-2) \alpha(m-2)\left(\Delta_{e_{2}}-\delta_{e_{2}}\right)^{2}-4 M_{1}+4 m
$$

and

$$
H M \leq \Delta_{e}^{2}+\delta_{e}^{2}+\frac{\left(M_{1}-\Delta_{e}-\delta_{e}\right)^{2}}{m-2}+(m-2) \alpha(m-2)\left(\Delta_{e_{2}}-\delta_{e_{2}}\right)^{2}
$$

with equality if and only if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$.

References

[1] D. Andrica, C. Badea, Grüss inequality for positive linear functions, Period. Math. Hung. 19 (1988) 155-167.
[2] B. Basavanagoud, V. R. Desai, Forgotten topological index and hyper-Zagreb index of generalized transformation graphs, Bull. Math. Sci. Appl. 14 (2016) 1-6.
[3] K. C. Das, I. Gutman, Some properties of the second Zagreb index MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112.
[4] N. De, Some bounds of reformulated Zagreb indices, Appl. Math. Sci. 6 (2012) 5005-5012.
[5] C. S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull. London. Math. Soc. 9 (1977) 203-208.
[6] F. Falahati-Nezhad, M. Azari, Bounds on the hyper-Zagreb index, J. Appl. Math. Inform. 34 (2016) 319-330.
[7] I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.) 146 (2014) 39-52.
[8] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[9] I. Gutman, B. Furtula, Ž. Kovijanić Vukičević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.
[10] I. Gutman, N. Trinajstić, Graph theory and molecular orbitas. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[11] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
[12] A. Ilić, B. Zhou, On reformulated Zagreb indices, Discr. Appl. Math. 160 (2012) 204-209.
[13] T. Mansour, M. A. Rostami, E. Sures, G. B. A. Xavier, On the bounds of the first reformulated Zagreb index, Turk. J. Anal. Number Theory 4 (2016) 8-15.
[14] A. Milićević, S. Nikolić, N. Trinajstić, On reformulated Zagreb indices, Mol. Divers. 8 (2004) 393-399.
[15] E. I. Milovanović, I. Ž. Milovanović, E. Ć. Dolićanin, E. Glogić, A note onthe first reformulated Zagreb index, Appl. Math. Comput. 273 (2016) 16-20.
[16] I. Ž. Milovanović, V. M. Ćirić, I. Z. Milentijević, E. I. Milovanović, On some spectral, vertex and edge degree-based graph invariants, MATCH Commun. Math. Comput. Chem. 71 (2017) 177-188.
[17] D. S. Mitrinović, P. M. Vasić, Analytic Inequalities, Springer, Berlin, 1970.
[18] B. C. Rennie, On a class of inequalities, J. Austral. Math. Soc. 3 (1963) 442-448.
[19] R. Sharma, M. Gupta, G. Kapor, Some better bounds on the variance with applications, J. Math. Ineq. 4 (2010) 355-367.
[20] G. H. Shirdel, H. Rezapour, A. M. Sayadi, The hyper-Zagreb index of graph operations, Iran. J. Math. Chem. 4 (2013) 213-220.
[21] J. Szökefalvi Nagy, Über algebraische Gleichungen mit lauter reeler Wurzeln, Jahresber. Deutsch. Math. Verein. 27 (1918) 37-43.
[22] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.
[23] B. Zhou, N. Trinajstić, Some properties of the reformulated Zagreb indices, J. Math. Chem. 48 (2010) 714-719.

[^0]: * Corresponding Author: Igor Z. Milovanović
 Ψ Received on December 26, 2016 / Accepted On January 25, 2017

