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A graph G of order n is said to be borderenergetic if its energy is 
equal to 2n − 2 and if G differs from the complete graph Kn. The first 
such graph was discovered in 2001, but their systematic study started 
only in 2015. Until now, the number of borderenergetic graphs of 
order n was determined for n  11. We now establish that there exist 
exactly 572 connected borderenergetic graphs of order 12. 
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1. INTRODUCTION  

Let G be a simple graph of order n, possessing m edges. Let the eigenvalues of G (i.e., the 
eigenvalues of the adjacency matrix of G) be 1 2, , , n    [1] The energy of the graph G is 
defined as 
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  . 

This graph-spectrum-based invariant has been extensively studied. Details of its 
mathematical theory can be found in the book [2] whereas details of its chemical 
applications in [3]. 

The upper bound 
2E mn  
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was established by McClelland in the early 1970s [4]. In the same paper [4], an 
approximate formula was proposed: 

2 , 0.9E a mn a      (1) 
which was eventually demonstrated to be highly accurate in the case of molecular graphs 
[5,6]. An additional corroboration of this formula was the analogous lower bound 
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27
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that holds for certain molecular graphs, in particular, for benzenoid systems [7]. 
According to formula (1), the energy of a graph would be a monotonically 

increasing function of the number m of edges. If this formula could be applied to all 
graphs, then among graphs with a fixed number n of vertices, the complete graph Kn 
would have the greatest energy, equal to ( ) 2 2nE K n  . Counterexamples for this naive 
conjecture were soon discovered [8]. Somewhat later [9], the first systematic construction 
of graphs with the property ( ) ( )nE G E K were reported. 

Graphs of order n with the property ( ) 2 2E G n   were named hyperenergetic 
[10]. Numerous classes of hyperenergetic graphs have been recognized; for details see the 
survey [11]. The search for hyperenergetic graphs became purposeless after Nikiforov 
proved in 2007 [12] that for almost all n-vertex graphs 
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implying that almost all graphs are hyperenergetic. 
The question that remained open was if there exist graphs of order n, other than Kn, 

satisfying the equality 
( ) 2 2E G n  . 

In 2015, such graphs were named borderenergetic [13]. It is understood that the complete 
graph is not borderenergetic. 

The first borderenergetic graph was discovered by Yaoping Hou and one of the 
present authors already in 2001 [14], but in that time it did not attract much attention. The 
first systematic research of borderenergetic graphs is reported in the paper [13], which was 
then continued in [15-19]. By means of computer-aided checking, the following was 
established. 

 
Theorem 1. 

1. There are no borderenergetic graphs of order 6n   [13].  
2. There exists a unique borderenergetic graph of order 7 [13]. 
3. For any 7n  , there exist borderenergetic graphs of order n [13]. 
4. There are exactly 6 borderenergetic graphs of order 8 [13]. 
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5. There are exactly 17 borderenergetic graphs of order 9 [13]. 
6. There are exactly 49 borderenergetic graphs of order 10 [15,18]. 
7. There are exactly 158 borderenergetic graphs of order 11 [18], of which 157 are 

connected. 
 

We now can extend Theorem 1 by establishing: 
 
Theorem 2. There are exactly 572 connected borderenergetic graphs of order 12. 

 
2. NUMERICAL WORK 

Determining computationally the borderenergetic graphs of order 12 is not an easy task to 
be done. This could be illustrated by the fact that the total number of such graphs is 
164059830476. In order to reduce the number of investigated graphs, the fact that the size 
of the borderenergetic species must be greater than 2 3n   is incorporated. Such 
intervention decreased the total number of 12-vertex connected graphs by 343198848. 

The geng tool from the nauty package was employed for the generation of the 
dataset containing 163716631628 graphs stored in 100000 files [20]. The total size of 
these files is more than 2 TB. All these files are moved to the cluster having 4 nodes with 
32 CPUs per node. A Python program was developed for filtering borderenergetic graphs. 
Using PySpark for processing large datasets, the jobs were distributed over cluster using in 
total 80 CPUs simultaneously. The computations took about a month or so and finally, we 
obtained the result that there were exactly 572 connected twelve-vertex borderenergetic 
graphs. 

Table 1 shows the distribution of 12-vertex borderenergetic graphs by the number 
of edges. Their size varies from 25 to 58. It should be noted that there are no 12-vertex 
borderenergetic graphs with 49, 53, and 59-65 edges.  
 

3. CONCLUSION 

In this note, we reported the preliminary results on searching for and studying of 
connected borderenergetic graphs with twelve vertices. There are 572 such species, and 
these provide a class of equienergetic graphs suitable for examining the structural factors 
on which graph energy does depend or does not depend. In addition, the distribution of 
these graphs with regard to the number of edges is presented in Table 1, indicating that 
equienergetic graphs may significantly differ in their edge counts. 
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Table 1. The distribution of twelve-vertex borderenergetic graphs by the number of edges. 

Number of Edges Number of Graphs 
25 2 
26 5 
27 1 
28 8 
29 7 
30 42 
31 20 
32 62 
33 58 
34 50 
35 44 
36 43 
37 37 
38 27 
39 25 
40 24 
41 20 
42 26 
43 12 
44 14 
45 14 
46 7 
47 4 
48 7 
50 2 
51 1 
52 4 
54 1 
55 2 
56 1 
57 1 
58 1 
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