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1. Introduction

Let G = (V,E) be a simple graph, i.e., graph without loops and multiple edges. Let V (G) = {v1, v2,
. . . , vn}. For vi ∈ V (G), by di = di(G) we denote the degree of vertex vi in G.
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A sequence of positive integers π(G) = (δ1, δ2, . . . , δn) is called the degree sequence of G if δi =
di(G) holds for i = 1, 2, . . . , n. Throughout this paper, we order the vertex degrees non-increasingly,
i.e., d1 ≥ d2 ≥ · · · ≥ dn.

The minimum and maximum degree of a vertex in a graph is denote by δ and ∆, respectively.

The girth of G is the length of shortest cycle contained in G. Let Ni(v) = {w ∈ V (G)|d(v, w) = i},
where d(v, w) is the length of a shortest path connecting u and v. Define ni(v) = |Ni(v)|. Also, instead
of N1(v), it is often written N(v) to denote the (open) neighborhood of the vertex v. The eccentricity ε(v)

of v is defined as ε = ε(v) = maxw∈V (G){d(v, w)}. The radius r = r(G) and the diameter D = D(G)

are defined as the minimum and the maximum of ε(v) over all vertices v ∈ V (G), respectively.

The complement of G, denoted by G, is a simple graph on the same set of vertices V (G) in which
two vertices u and v are adjacent if and only if they are not adjacent in G.

For S ⊆ V (G), let G[S] be the subgraph induced by S.

The vertex-disjoint union of the graphs G and H is denoted by G ∪ H . Let G ∨ H be the graph
obtained from G ∪H by adding all possible edges from vertices of G to vertices of H , i.e.,

G ∨H ∼= G ∪H .

The first and the second Zagreb index are defined as

M1 = M1(G) =
∑

vi∈V (G)

d2i , M2 = M2(G) =
∑

vivj∈E(G)

di dj (1)

respectively.

The first Zagreb index M1(G) can also be expressed as [47]

M1(G) =
∑

vivj∈E(G)

(di + dj) . (2)

As it is well-known, the number of vertices of odd degree in every graph must be even. Therefore,
M1(G) must be an even number, as noted in [133].

2. Historical remarks

The Zagreb indices belong among the oldest and most studied molecular structure descriptors and found
noteworthy applications in chemistry. It is generally accepted that these have been conceived in 1972
by Trinajstić and one of the present authors, and first published in the much quoted paper [71]. The
nowadays standard notation M1 and M2 , as well as the definitions (1) were first time used in the paper
[70].

Details on these vertex–based topological indices can be found in the reviews [37,66,116] published
on the occasion of their 30th anniversary, as well as in the recent surveys [63, 69, 134].

The first survey on topological indices appeared in 1983 [11]. In it also M1 and M2 were mentioned
and commented. The authors of [11] named them “Zagreb group indices”, bearing in mind that these
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resulted from the work of a group of scholars at the “Rudjer Bošković” institute in Zagreb. The name
remained, except that “group” was eventually dropped.

One of the first graph–based molecular structure descriptors (topological indices) was invented in
1947 by Platt [122]. The Platt index IPl is the count of the edges incident to an edge of the underlying
graph, and its sum over all edges:

IPl =
∑

vivj∈E(G)

(di + dj − 2) . (3)

What was completely overlooked by the authors of the papers [70, 71], was the identity

M1 = IPl + 2m

which straightforwardly follows from (3) and the relation (2).
In 1964, Gordon and Scantelbury [58] considered a graph invariant that sometimes is referred to as

the Gordon–Scantelbury index IGS . By definition, it is equal to the number of acyclic P3-subgraphs
contained in the graph G. For triangle–free graphs,

IGS =
∑

vi∈V (G)

(
di
2

)
which leads to

M1 = 2 IGS + 2m

implying that the first Zagreb index is essentially the same as the somewhat older Gordon–Scantelbury
index. This too was missed by the authors of [70, 71].

More historical details on the Zagreb indices are found in [65].

3. On the maximum and minimum first Zagreb index
of graphs with n vertices and m edges

A simple graph G on n vertices and m edges will be referred to as an (n,m)-graph. In this section we
give a survey on upper and lower bounds for the first Zagreb index M1 of (n,m)-graphs in terms of n
and m, and give characterization of extremal graphs which attain these maximal (minimal) values. First,
we deal with the upper bounds on M1.

Székely et al. [131] gave the following upper bound for the sum of the squares of vertex degrees

M1 =
n∑

1=1

d2i ≤

(
n∑

1=1

√
di

)2

(4)

and de Caen [42] proved that

M1 =
n∑

1=1

d2i ≤ m

(
2m

n− 1
+ n− 2

)
. (5)
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De Caen pointed out that the bounds (4) and (5) are incomparable. Das [32] proved that the equality
in (5) holds if and only if G is a star or a complete graph or a complete graph with one isolated vertex.

Das [32], Zhou [154], and Liu et al. [100] established some new upper bounds for M1.

Theorem 3.1. [32, 100] Let G be a connected graph with n vertices and m edges. Then

M1(G) ≤ m(m+ 1) (6)

with equality for n > 3 if and only if G ∼= K3 or G ∼= K1,n−1.

Theorem 3.2. [154] Let G be a connected graph with n vertices and m edges. Then

M1(G) ≤ n(2m− n+ 1) (7)

with equality if and only if G ∼= Kn or G ∼= K1,n−1 or G ∼= mK2.

Remark. If m = n−1, then the bound (7) is equal to (6). If m ≥ n, then m(m+1) ≥ n(2m−n+1)

and thus the bound (7) is usually lower than the bound (6), as it was proven in [103].
Remark. If G is connected (n,m)-graph, then m ≤

(
n
2

)
, implying, as noted in [103], that

m

(
2m

n− 1
+ n− 2

)
= mn+ 2m

(
m

n− 1
− 1

)

≤ mn+ n(n− 1)

(
m

n− 1
− 1

)
= n(2m− n+ 1) .

Thus, the bound (5) is usually finer than the bound (7).
In the sequel, we outline the results concerned with the structure of (n,m)-graphs for which the

maximum value of M1 is attained.
Denote by G(n,m) the set of all simple (n,m)-graphs. The graph G is said to be optimal in G(n,m)

if M1(G) is maximum. Denote by max(n,m) this maximum value.
A matrix formulation of these problems was first investigated by Schwarz [124] in 1964 by consid-

ering rearrangements of square matrices with non-negative elements in order to maximize the sum of
elements of the matrix A2. By papers of Katz [106], and later Aharoni [3], these problem were com-
pletely solved.

The graph formulation of these problems were first investigated by Ahlswede and Katona [4] in 1978.
They solved an equivalent problem. In fact, they determined the maximum number of pairs of different
edges that have a common vertex, given by∑

vi∈V

(
di
2

)
=

M1

2
−m.

Ahlswede and Katona proved that the maximum value max(n,m) is always attained at one or both
of two special graphs in G(n,m) (Theorem 3.3).

The first of these special graphs, the quasi-complete graph, denoted by QC(n,m), is the graph having
the largest possible complete subgraph Kk .
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The other special graph, called quasi-star graph and denoted by QS(n,m), is the graph that has as
many vertices of degree n − 1 as possible. In fact, this graph is the complement of QC(n,m′), where
m′ =

(
n
2

)
−m.

After that, the problem of maximizing M1 was investigated by Boesch et al. [16]. Also, Olpp [119],
independently, was solving a question of Goodmen: maximize the number of monochromatic triangles
in a two-coloring of the complete graph with a fixed number of red edges. Ollp showed that Goodman’s
problem is equivalent to finding the two-coloring that maximizes the sum of squares of the red degrees
of the vertices, i.e., that maximizes M1 of a subgraph consisted of red edges. In both papers, the result
of Alshwede and Katona, that the maximum value of M1 is always attained at one or both of two special
graphs QC(n,m) and QS(n,m) in G(n,m) was reproven (Theorem 3.3).

In 1999, Peled et al. [121], and Byer [23], independently showed that all optimal graphs for which
M1 is maximum belong to one of the six classes of so-called threshold graphs. Byer solved another
equivalent form of the problem. In fact, he studied the maximum number of paths of lengths two over
all (n,m)-graphs, given by M1 − 2m. However, in these papers it was not discussed when any of the six
graphs, that achieve maximum, is optimal.

The problem was completely solved in 2009 by Ábrego et al. [2]. A related problem of determining in
which of the graphs, QC(n,m) or QS(n,m), the maximum of M1 is attained, was solved independently
in [2] and [139].

As it was proven by Peled et al. [121], all optimal graphs belong to a class of special graphs called
threshold graphs. The quasi-star and the quasi-complete graphs are among many threshold graphs in
G(n,m). These graphs can be characterized in several equivalent ways. By [108] G = (V,E) is a
threshold graph if G can be constructed from K1 by multiple adding of an isolated vertex or a vertex that
is adjacent with any other vertex, i.e., as

G∗
1(a, b, c, d, . . .)

∼= Ka ∨ (Kb ∪ (Kc ∨ (Kd ∪ · · · )))

or

G∗
2(a, b, c, d, . . .)

∼= Ka ∪ (Kb ∨ (Kc ∪ (Kd ∪ · · · ))) .

Theorem 3.3. [4, 16, 119] Among the graphs from G(n,m), there exist threshold graphs

QS(n,m) ∼= G∗
1(a, b, 1, d), QC(n,m) ∼= G∗

2(a, b, 1, d)

unique up to an isomorphism, such that at least one of them is optimal.

In fact, by Byer [23] and Peled et al. [121] it holds:

Theorem 3.4. [23, 121] Let G be an optimal graph in G(n,m). Then G ∼= G∗
1(a, b, c, d) or G ∼=

G∗
2(a, b, c, d) for b = 1 or c = 1 or d = 1.

By [108], the graph G = (V,E) is a threshold graph if for every three distinct vertices i, j, k ∈ V , if
di ≥ dj and jk ∈ E, then ik ∈ E.
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By the latter characterization of a threshold graph, its adjacency matrix has a special form. Its upper–
triangular part is left justified and the number of zeros in each row of its upper–triangular part does not
decrease. Having this in mind, a threshold graph can be represented by a partition π = (a0, a1, . . . , ap)

of m, all of whose parts are less than n, such that an upper–triangular part of its adjacency matrix is left
justified and contains as ones in a row s. We denote by Th(π) the threshold graph corresponding to a
partition π, and say that the partition π is optimal if Th(π) is an optimal graph. The diagonal sequence of
a partition π is defined as the number of ones in the upper–triangular part of its adjacency matrix on each
of the diagonal lines. By Theorem 3.4, there are at most six optimal partitions of graphs from G(n,m).
Ábrego et al. [2] gave precise conditions to determine when each of these partitions is optimal.

Let Sn,m = M1(QS(n,m)) and Cn,m = M1(QC(n,m)). Then, by Theorem 3.3, the maximum
value of M1 equals to Sn,m or Cn,m.

Theorem 3.5. [2] Let n be a positive integer and m an integer such that 0 ≤ m ≤
(
n
2

)
. Let k, k′, j, j′

be the unique integers satisfying

m =

(
k + 1

2

)
− j , with 1 ≤ j ≤ k

and

m =

(
n

2

)
−
(
k′ + 1

2

)
+ j′ , with 1 ≤ j′ ≤ k′ .

Then every optimal partition π is one of the following six partitions:

1. π1.1 = (n− 1, n− 2, . . . , k′ + 1, j′), the quasi-star partition for m,

2. π1.2 = (n− 1, n− 2, . . . , 2k′ − j′, 2k′ − j′ − 2, . . . , k′ − 1), if k′ + 1 ≤ 2k′ − j′ − 1 ≤ n− 1,

3. π1.3 = (n− 1, n− 2, . . . , k′ + 1, 2, 1), if j′ = 3 and n ≥ 4,

4. π2.1 = (k, k − 1, . . . , j + 1, j − 1, . . . , 2, 1), the quasi-complete partition for m,

5. π2.2 = (2k − j − 1, k − 2, k − 3, . . . , 2, 1), if k + 1 ≤ 2k − j − 1 ≤ n− 1,

6. π2.3 = (k, k − 1, . . . , 3), if j = 3 and n ≥ 4.

The partitions π1.1 and π1.2 always exist and at least one of them is optimal. Furthermore, π1.2 and

π1.3 (if they exist) have the same diagonal sequence as π1.1, and if Sn,m ≥ Cn,m, then they are all optimal.

Similarly, π2.2 and π2.3 (if they exist) have the same diagonal sequence as π2.1, and if Sn,m ≤ Cn,m, then

they are all optimal.

In order to describe the behavior of Sn,m − Cn,m, we need the following definitions. Let k0 = k0(n)

be an integer such that (
k0
2

)
≤ 1

2

(
n

2

)
<

(
k0 + 1

2

)
and define the quadratic function

q0(n) :=
1

4

[
1− 2(2k0 − 3)2 + (2n− 5)2

]
.

In addition, let

R0 = R0(n) =
4
[(

n
2

)
− 2
(
k0
2

)]
(k0 − 2)

−1− 2(2k0 − 4)2 + (2n− 5)2
.
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Theorem 3.6. [2, 139] Let n be a positive integer.

(1) If q0(n) > 0, then

Sn,m ≥ Cn,m for 0 ≤ m ≤ 1

2

(
n

2

)

Sn,m ≤ Cn,m for
1

2

(
n

2

)
≤ m ≤

(
n

2

)
.

Sn,m
∼= Cn,m if and only if m ∈

{
0, 1, 2, 3, 1

2

(
n
2

)}
or m =

(
k0
2

)
and (2n − 3)2 − 2(2k0 − 3)2 ∈

{−1, 7}.

(2) If q0(n) < 0, then

Sn,m ≥ Cn,m for 0 ≤ m ≤ 1

2

(
n

2

)
−R0

Sn,m ≤ Cn,m for
1

2

(
n

2

)
−R0 ≤ m ≤ 1

2

(
n

2

)

Sn,m ≥ Cn,m for
1

2

(
n

2

)
≤ m ≤ 1

2

(
n

2

)
+R0

Sn,m ≤ Cn,m for
1

2

(
n

2

)
+R0 ≤ m ≤

(
n

2

)
.

Sn,m
∼= Cn,m if and only if m ∈

{
0, 1, 2, 3, 1

2

(
n
2

)
−R0,

1
2

(
n
2

)}
.

(3) If q0(n) = 0, then

Sn,m ≥ Cn,m for 0 ≤ m ≤ 1

2

(
n

2

)

Sn,m ≤ Cn,m for
1

2

(
n

2

)
≤ m ≤

(
n

2

)
.

Sn,m
∼= Cn,m if and only if m ∈

{
0, 1, 2, 3,

(
k0
2

)
, . . . , 1

2

(
n
2

)}
.

By using the fact that among the graphs from G(n,m) at least one of the graphs QS(n,m) or
QC(n,m) is optimal, Nikiforov [115] obtained an upper bound for M1, that is better than de Caen’s
(5), for the majority of graphs from G(n,m).

Theorem 3.7. [115] For an integer n and 0 ≤ m ≤
(
n
2

)
, let

F (n,m) =

 2m
√
2m if n2/4 ≤ m

(n2 − 2m)
√
n2 − 2m+ 4mn− n3 if m < n2/4 .
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Then

F (n,m)− 4m ≤ max{Sn,m, Cn,m} ≤ F (n,m) .

Furthermore, if n
√
n < m <

(
n
2

)
− n

√
n, then

F (n,m) < m

(
2m

n− 1
+ n− 2

)
.

If we consider bipartite graphs with n vertices and m edges, then the graphs which attain maximum
value of M1 cannot be threshold graphs, since a bipartite graph does not contain a complete subgraph
with more than two vertices. However, the structure of the extremal bipartite graphs whose M1 is max-
imum is similar to the structure of threshold graphs. Let n,m, k be three positive integers. As in [30],
we use B(n,m) to denote a bipartite graph with n vertices and m edges, and B(n,m, k) to denote a
B(n,m) with bipartition (X,Y ) such that |X| = k, |Y | = n − k. By B(n,m, k) we denote the set of
graphs of the form B(n,m, k).

The sign of x, denoted by sgn(x), is defined as 1, −1 and 0 when x is positive, negative and zero,
respectively.

Suppose that n,m, k are three integers such that n ≥ 2, 0 ≤ m ≤ bn
2
cdn

2
e and dn

2
e ≤ k ≤ n − 1

and let m = qk + r, where 0 ≤ r < k. Let B1(n,m, k) be a bipartite graph in B(n,m, k), such that q
vertices from Y are adjacent to all the vertices in X and one more vertex from Y is adjacent to r vertices
in X .

Theorem 3.8. [4] For 0 ≤ m ≤ bn
2
cdn

2
e and dn

2
e ≤ k ≤ n − 1, the graph B1(n,m, k) has maximum

M1 among all bipartite graphs with n vertices, m edges and given bipartition (k, n− k).

This result was improved by Cheng [30] for bipartite graphs with arbitrarily bipartition.

Theorem 3.9. [30] Let n and m be two integers such that n ≥ 2 and 0 ≤ m ≤ bn
2
cdn

2
e. Let

k0 = max
{
k|m = kq + r , 0 ≤ r < k ,

⌈n
2

⌉
≤ k ≤ n− q − sgn(r)

}
. (8)

Then, M1(B
1(n,m, k0)) attains maximum value among all bipartite graphs with n vertices and m edges.

As a consequence, the following upper bound for M1 has been determined in [30].

Theorem 3.10. [30] Let n and m be two integers such that n ≥ 2 and 0 ≤ m ≤ bn
2
cdn

2
e and G is a

bipartite graph with n vertices and m edges. Then the maximum possible value of M1(G) is⌊
m

k0

⌋
(k0 − 1)

(
k0 +

⌊
m

k0

⌋
k0 − 2m

)
+m2 +m

where k0 is given by (8).

Zhang and Zhou [151] slightly modified the previous result and proposed the following solution
to the problem of finding all bipartite graphs with a given number of vertices and edges whose M1 is
maximum.
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Theorem 3.11. [151]

(1) Let n and m be two integers such that n ≥ 2 and 0 ≤ m ≤ n− 1. Suppose that M1(B
∗) attains

the maximum value among all bipartite graphs with n vertices and m edges. Then, B∗ ∼= K1,m ∪ (n −
m− 1)K1.

(2) Let n and m be two integers such that n ≥ 2 and n ≤ m ≤ bn
2
cdn

2
e. Let k0 being an integer given

by (8). Suppose that M1(B
∗) attains the maximum value among all bipartite graphs with n vertices and

m edges. Then,

(a) B∗ ∼= B1(n,m, k0) or B∗ ∼= B1(n,m, n− k0) if m > (n− k0)(k0 − 1);

(b) B∗ ∼= B1(n,m, k0) or B∗ ∼= B1(n,m, n−k0) or B∗ ∼= B1(n,m, k0−1) if m = (n−k0)(k0−1);

(c) B∗ ∼= B1(n,m, k0) if m < (n− k0)(k0 − 1).

In the following, we turn our attention to the minimum of M1. The Cauchy–Schwarz inequality
yields a lower bound for M1 given by

M1 ≥
4m2

n
(9)

with equality if and only if the graph is regular. This bound was obtained several times in the literature
[42, 85, 147] and it is close to the sharp lowest bound for M1, determined in [32] and [62].

Theorem 3.12. [32, 62] Let G be a simple (n,m)-graph. Then

M1 ≥ 2m

(⌊
2m

n

⌋
+

⌈
2m

n

⌉)
− n

⌊
2m

n

⌋⌈
2m

n

⌉
(10)

and the equality holds if and only if the degree of any vertex is either b2m/nc or d2m/ne.

Cheng et al. [30] determined the minimum value of M1 of bipartite graphs with n vertices and m

edges.

Let n ≥ 2 be an even integer and t ≤ n/2 a nonnegative integer. By Bn,t we denote the bipartite
graph with vertices x1, x2, . . . , xn/2, y1, y2, . . . , yn/2 and edges xiyj with i < j ≤ i+t (where the addition
is taken modulo n/2) for i, j = 1, 2, . . . , n/2.

For two integers n and m such that n ≥ 2 and 0 ≤ m ≤ bn
2
cdn

2
e, let 2m = nt+ r, where 0 ≤ r < n.

We define, as in [30], a bipartite graph Bs(n,m) with n vertices and m edges as follows.

If n is even, then Bs(n,m) ∼= Bn,t ∪ {xiyj| 1 ≤ i ≤ r/2}.

If n is odd and nt ≤ 2m < nt+ t, let

Bs(n,m) ∼= Bs(n− 1,m− t+ 1) ∪
{
xiy0|(n+ r − t+ 1)/2 + 1 ≤ i ≤ (n+ r + t− 1)/2

}
where the addition is taken modulo (n− 1)/2.

If n is odd and nt + t ≤ 2m < nt + n− t− 1, or nt + n− t + 1 ≤ 2m < nt + n, let Bs(n,m) =

Bs(n− 1,m− t)∪{xiy0|(r− t)/2+1 ≤ i ≤ (r+ t)/2}, where the addition is taken modulo (n− 1)/2.

Theorem 3.13. [30] Let n and m be two integers such that n ≥ 2 and 0 ≤ m ≤ bn
2
cdn

2
e. Then

M1(B
s(n,m)) attains minimum value among all bipartite graphs with n vertices and m edges.
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As a consequence, the following lower bound for M1 was obtained.

Theorem 3.14. [30] If G is a bipartite (n,m)-graph, where n ≥ 2 and 0 ≤ m ≤ bn
2
cdn

2
e, then the

minimum possible value of M1(G) is

(4m− n− nt)t+ 2m if n is even; or n is odd

and nt+ t ≤ 2m ≤ nt+ n− t− 1

(4m+ 1− nt)t if n is odd and nt ≤ 2m < nt+ t

(4m− n+ 1− nt)(t+ 1) if n is odd and nt+ n− t+ 1 ≤ 2m ≤ nt+ n

where t = b2m/nc.

In [140] the relation between the M1 index of an (n,m)-graph and the first three coefficient of its
Laplacian polynomial was considered and as a consequence, a lower bound for M1 was obtained and the
corresponding extremal graphs were identified.

By [118], for an (n,m)-graph G, the first three coefficients of its Laplacian polynomial are given by

q0(G) = 1 , q1(G) = −2m , q2(G) = 2m2 −m− 1

2

n∑
i=1

d2i .

The authors of [140, 141] used these coefficients to define the following invariant of a graph G

M1(G) =
1

2
M1(G)− 2m

as well as the set Gi = {G |G is connected,M1(G) = i, i ≥ −1, is an integer}.
Before stating the result, we need several new definitions.
Lg,` denotes the lollipop graph obtained from Cg and P` by identifying a vertex of Cg with an end-

vertex of P`, where g ≥ 3, ` ≥ 2 and n = g + `− 1.
T`1,`2,...,`k denotes the starlike tree of order n with a vertex u of degree k satisfying T`1,`2,...,`k − u =

P`1 ∪ P`2 ∪ . . . ∪ P`k , where `k ≥ · · · ≥ `2 ≥ `1 ≥ 1 and n =
∑k

i=1 `i + 1. T`1,`2,`3 is also named a
T-shape tree.

The centipede graph P a1,a2,...,at
z1,z2,...,zt,`

is defined as a path of ` vertices with pendent paths of zi edges
joining at vertex ai for i = 1, 2, . . . , t, where {a1, a2, . . . , at} ⊆ {2, . . . , ` − 1}, zi ≥ 1 (1 ≤ i ≤ t) and
n = `+

∑t
i=1 zi.

The sun-like graph Ca1,a2,...,at
z1,z2,...,zt,g

is a cycle with girth g and with pendent paths of zi edges joining
at vertex ai for i = 1, 2, . . . , t, where {a1, a2, . . . , at} ⊆ {1, 2, . . . , g}, zi ≥ 1 (1 ≤ i ≤ t) and n =

g +
∑t

i=1 zi.
By D`,g1,g2 we denote the dumbbell graph obtained by joining two cycles Cg1 and Cg2 with a path of

length `, where g1, g2 ≥ 3, ` ≥ 1 and n = g1 + g2 + `− 1.
The mirror graph M g

`1,`2,`3
is obtained from Cg and T`1,`2,`3 by identifying a vertex of Cg with an

end-vertex of T`1,`2,`3 , where `i ≥ 1 (1 ≤ i ≤ 3), g ≥ 3 and n = g +
∑3

i=1 `i.
The θ-graph θi,j,k consists of two vertices joined by three disjoint paths of orders i, j and k, where

n = i+ j + k − 4.
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By Jg
`1,`2,...,`k

we denote a jellyfish graph obtained from Cg and T`1,`2,...,`k , by identifying a vertex of
Cg with the center of T`1,`2,...,`k , where g ≥ 3, `i ≥ 1 (1 ≤ i ≤ k).

The fish graph F g,l
`1,`2,`3

is obtained from P` and M g
`1,`2,`3

,by identifying an end-vertex of P` with a
vertex of degree 2 which lies in the cycle of M g

`1,`2,`3
, where g ≥ 3, `, `1, `2, `3 ≥ 1.

By Kg,a1,a2
`,z1,z2

we denote the key graph obtained from Cg and P a1,a2
z1,z2,`

by overlapping a vertex of Cg with
an end-vertex of P a1,a2

z1,z2,`
, where g ≥ 3 and z1, z2 ≥ 1.

The double–starlike tree Sl
`1,`2,...,`k;h1,h2,...,hs

is obtained by joining the centers of the graphs T`1,`2,...,`k

and Th1,h2,...,hs with a path P`, where `i, hj ≥ 1.
These graphs are depicted in Fig. 1.

Fig. 1. The graphs occurring in Theorem 3.15.
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Theorem 3.15. [140, 141] Let G be a connected (n, m)-graph. Then

(i) M1(G) ≥ 4m− 2, and the equality holds if and only if G ∈ G−1 = {Pn|n ≥ 2}.

(ii) If G /∈ G−1, then M1(G) ≥ 4m with equality if and only if

G ∈ G0 =
{
P1, Cn |n ≥ 3

}
∪
{
T`1,`2,`3 |n ≥ 4

}
.

(iii) If G /∈ G−1 ∪ G0, then M1(G) ≥ 4m+ 2 with equality if and only if

G ∈ G1 =
{
Lg,` |n ≥ 4

}
∪
{
P a1,a2
z1,z2,`

|n ≥ 6
}
.

(iv) If G /∈ G−1 ∪ G0 ∪ G1, then M1(G) ≥ 4m+ 4 with equality if and only if

G ∈ G2 =
{
Ca1,a2

z1,z2,g
, T`1,`2,`3,`4 |n ≥ 5

}
∪
{
M g

`1,`2,`3
|n ≥ 6

}
∪
{
P a1,a2,a3
z1,z2,z3,`

|n ≥ 8
}
.

(v) If G /∈ G−1 ∪ G0 ∪ G1 ∪ G2, then M1(G) ≥ 4m+ 6 with equality if and only if

G ∈ G3 =
{
Ca1,a2,a3

z1,z2,z3,g
, P a1,a2,a3,a4

z1,z2,z3,z4,`
, Fn, D`,g1,g2 , Jg,`1,`2 , θi,j,k, F

g,`
`1,`2,`3

, S`,`1,`2
h1,h2,h3

, Kg,a1,a2
`,z1,z2

}
.

The above theorem includes or extends some previously known results [45, 66, 93, 142].
For a graph G and e = uv ∈ E(G), the degree of the edge e is defined as dG(e) = d(u) + d(v)− 2.
The authors of [140] suggested the following construction that can characterize all connected graphs

in Gk. Using this construction they generalized the result of Theorem 3.15.
Construction A. [140] Suppose that G−1,G0, . . . ,Gk−1 have been defined. For each graph G ∈ Gt

(1 ≤ t ≤ k − 1), it is searched for all possible edges e such that e /∈ E(G) and dG+e(e) = k − t + 1 in
order to construct the graph G+e (some vertices are added if necessary). Collect these new graphs G+e

in G′
k. By adding all possible edges of degree 1 to the graphs in G′

k, we obtain all the graphs belonging
to Gk.

The following theorem generalizes Theorem 3.15.

Theorem 3.16. [140] Let G be a connected (n,m)-graph.

(i) M1(G) ≥ 4m− 2 with equality if and only if G ∈ G−1.

(ii) If G /∈ G−1∪G0∪· · ·∪Gk−1 (k ≥ 0), then M1(G) ≥ 4m+2k with equality if and only if G ∈ Gk,

and Gk is defined by Construction A.

For given n and m, the graphs with largest M1-values are characterized in [45, 144]. Let B(i)
n be a

graph of order n with n+ i edges and maximum degree n− 1, second–maximum degree 2+ i, i = 1, 2.

Theorem 3.17. [45, 144] Let G be a connected graph of order n with m edges (n − 1 ≤ m ≤ n + 1).

If M1 is maximum, then:

(i) G ∼= K1,n−1 for m = n− 1;

(ii) G ∼= K1,n−1 + e for m = n where e = uv with u, v as two pendent vertices in K1,n−1;

(iii) G ∼= B
(1)
n for m = n+ 1.
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The following upper bound on M1 is obtained in [144]:

Theorem 3.18. [144] Let G be a connected graph of order n with m (= n+ 2) edges. Then

M1(G) ≤ n2 − n+ 24

with equality holding if and only if G ∼= B
(2)
n or G ∼= (Kn−4 ∨ 3K1) ∪K1.

For any integer m satisfying n+3 ≤ m ≤ 2n− 4, we denote by Nn−1, m−n+2
n, m a graph of order n and

with m edges in which the maximum degree is n− 1 and the second–maximum degree is m− n+ 2.

Theorem 3.19. [144] Let G be a connected graph of order n with m edges, n+3 ≤ m ≤ 2n− 4. Then

M1(G) ≤ n(n− 1) + (m− n+ 1)(m− n+ 6)

with equality holding if and only if G ∼= Nn−1,m−n+2
n,m .

4. On graphs with given parameters whose M1-value is extremal

In this section we give a survey of upper and lower bounds for M1 of graphs with some fixed parameters.

Knowing the value of the maximum or minimum degree, the bound (5) can be sharpened.

Theorem 4.1. [32] Let G be a connected graph with n vertices, m edges and minimum degree δ. Then

n∑
1=1

d2i ≤ 2mn− n(n− 1)δ + 2m(δ − 1) (11)

and the equality holds if and only if G is a star or a regular graph.

Theorem 4.2. [32] Let G be a connected graph with n vertices, m edges and maximum degree ∆. Then

M1 ≤ m

(
2m

n− 1
+ n− 2

)
−∆

(
4m

n− 1
− 2m1 −

n+ 1

n− 1
∆ + n− 1

)
(12)

where m1 is the average degree of the vertices adjacent to the highest degree vertex. Moreover, equality

in (12) holds if and only if G is a star or a complete graph or a graph consisting of isolated vertices.

Das [32] suggested that in the case of trees, the upper bound (12) is always better than de Caen’s
bound (5).

Theorem 4.3. [154] Let G be an (n,m)-graph with minimum degree δ. Then

M1(G) ≤ n(2m− δn) +
n

2

[
δ2 + 1 + (δ − 1)

√
(δ + 1)2 + 4(2m− δn)

]
and equality holds if and only if G is a regular graph or K1,n−1.
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Denote by K∗
2,n−2 a connected graph of order n obtained from the complete bipartite graph K2,n−2

with two vertices of degree n− 2 joined by a new edge. A kite Kin,ω is the graph obtained from a clique
Kω and a path Pn−ω by adding an edge between a vertex from the clique and an endpoint from the path.

Recently, Das et al. [41] determined an upper bound for M1 in terms of n, m, and ∆.

Theorem 4.4. [41] Let G be an (n,m)-graph with maximum degree ∆. Then

M1(G) ≤ (n+ 1)m−∆(n−∆) +
2(m−∆)2

n− 2

with equality holding if and only if G ∼= K∗
2,n−2 or G ∼= Kn or G ∼= Kin,n−1.

Additional extensions of de Caen’s upper bound (5) are given in the following three theorems.

Theorem 4.5. [33] Let G be a graph with n vertices, m edges, minimum degree δ, and maximum degree

∆. Then

M1 ≤ m

[
2m

n− 1
+

n− 2

n− 1
∆ + (∆− δ)

(
1− ∆

n− 1

)]
(13)

with equality if and only if G is a star or a regular graph or a complete graph K∆+1 with n − ∆ − 1

isolated vertices.

Note that by (13), it holds

M1 ≤ m

[
2m

n− 1
+ (n− 2)−

[
n− 2− (∆− δ)

](
1− ∆

n− 1

)]
and since 1−∆/(n− 1) ≥ 0 and n− 2− (∆− δ) ≥ 0 for connected or disconnected graphs, the upper
bound (13) is always better than de Caen’s bound (5), as proven in [33].

For 1 ≤ α ≤ n − 1, the complete split graph CS(n, α) is the graph on n vertices consisting of a
clique on n − α vertices and a stable set on the remaining α vertices in which each vertex of the clique
is adjacent to each vertex of the stable set.

Theorem 4.6. [31, 33] Let G be a graph with n vertices, m edges, minimum degree δ, and maximum

degree ∆. Then

M1 ≤
2m [2m+ (n− 1)(∆− δ)]

n+∆− δ
(14)

with equality if and only if G is a star or a regular graph or a complete graph K∆+1 with n − ∆ − 1

isolated vertices.

If G is a connected graph, then the equality in (14) holds if and only if G is a regular graph or

G ∼= CS(n, α), for an integer α.

The upper bound given by (14) is better than the bound (5), since the right–hand side of the inequality
(14) is a monotonically increasing function of ∆− δ and ∆− δ ≤ n− 2.

In [33] Das also obtained the following upper bound on M1.
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Theorem 4.7. [33] Let G be a graph with n vertices and m edges, minimum vertex degree δ and

maximum vertex degree ∆. Then

M1 ≤ 2m(δ +∆)− nδ∆ (15)

with equality if and only if G is a bidegreed graph, i.e., it has only two type of degrees, δ and ∆.

In [154], the above upper bound was improved by proving the following.

Theorem 4.8. [154] Let G be a graph with n vertices and m edges, minimum vertex degree δ (δ ≥ 1),

maximum vertex degree ∆ and ∆ > δ. Then

M1 ≤ 2m(δ +∆)− nδ∆+ (δ − k)(∆− k) (16)

where k is an integer defined via

2m− nδ ≡ k − δ (mod (∆− δ)) , δ ≤ k ≤ ∆− 1

i.e.,

k = 2m− δ(n− 1)− (∆− δ)

⌊
2m− nδ

∆− δ

⌋
.

Equality in (16) is attained if and only if at most one vertex of G has degree different from δ and ∆.

Recall that a chemical graph is a graph with ∆ ≤ 4. From the previous theorem, the following
corollary is immediately deduced.

Corollary 4.1. [154] Let G be a chemical graph with n ≥ 2 and m edges. Then

M1(G) ≤

 10m− 4n, if 2m− n ≡ 0 (mod 3)

10m− 4n− 2 otherwise

with equality if and only if either

(i) every vertex of G is of degree 1 or 4 (in which case it must be 2m− n ≡ 0 (mod 3), or

(ii) one vertex of G has degree 2 or 3, and all other vertices are of degree 1 or 4.

In the paper [84], the following inequality, stronger than (15), has been obtained.

Theorem 4.9. [84] Let G be a simple non-regular graph with n vertices and m edges, with a vertices

of maximal degree ∆ and b vertices of minimal degree δ. Then

M1(G) ≤ 2m(∆ + δ)− n∆δ − (n− a− b)(∆− δ − 1) (17)

with equality if and only if the vertex degrees are equal to δ, δ + 1, ∆− 1, or ∆.

Some additional upper bounds for M1 were presented in [50, 84, 103, 112, 113].
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Theorem 4.10. [103] Let G be a connected (n,m)-graph. Then

M1 ≤ max

{
m

(
∆+ δ − 1 +

2m− δ(n− 1)

∆

)
,m

(
δ + 1 +

2m− δ(n− 1)

2

)}
(18)

and the equality is attained, for example, by a star or a regular graph of order n ≥ 3.

It was proven in [103] that for n ≥ 3, the bound (18) is better than (6).

Theorem 4.11. [50, 84, 103] Let G be connected (n,m)-graph. Then

M1(G) ≤ 2m2

n
+

(
∆

δ
+

δ

∆

)
m2

n
(19)

with equality if and only if G is a regular graph or G is a bidegreed graph such that ∆ + δ divides δn

and there are exactly p = 2n/(∆ + δ) vertices of degree ∆ and q = ∆n/(∆ + δ) vertices of degree δ.

In fact, the inequality in the previous relation was independently proven in [50, 84, 103], whereas
the equality case was determined first in [103] and then corrected in [84]. As a simple corollary of the
previous theorem, the following result was obtained.

Corollary 4.2. [84, 103] Let G be a connected graph with n vertices and m edges. If δ = 1, then

M1(G) ≤ nm2

n− 1

with equality if and only if G ∼= K1,n−1. If δ ≥ 2, then

M1(G) ≤ (n+ 1)2m2

2n(n− 1)

with equality if and only if G ∼= K3.

The upper bound (19) was improved in [112] in the following way.

Theorem 4.12. [112] Let G be a connected (n,m)-graph, n ≥ 2. Futher, let S be a subset of In =

{1, 2, . . . , n} that minimizes the expression |
∑

i∈S di −m|. Then

M1(G) ≤ 4m2

n

1 +(√∆

δ
−
√

δ

∆

)2

β(S)

 (20)

where

β(S) =
1

2m

∑
i∈S

di

(
1− 1

2m

∑
i∈S

di

)
and with equality as determined in Theorem 4.11.

As noted in [112], for each set S ⊂ In it holds β(S) ≤ 1
4
, implying that the inequality (20) is stronger

than (19). Besides, by Theorem 4.12, the bounds from Corollary 4.2 were also improved:
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Corollary 4.3. [112] Let G be a connected graph with n vertices and m edges, n ≥ 2. If δ = 1, then

M1(G) ≤ 4m2

n

[
1 +

(n− 2)2

(n− 1)
β(S)

]
with equality if and only if G ∼= K1,n−1. If δ ≥ 2, then

M1(G) ≤ 4m2

n

[
1 +

(n− 3)2

2(n− 1)
β(S)

]
with equality if and only if G ∼= K3.

The following upper bound for M1 was obtained in [50].

Theorem 4.13. [50] Let G be a simple (n,m)-graph. Then

M1(G) ≤ 4m2

n
+

n

4
(∆− δ)2 . (21)

This bound is improved as follows.

Theorem 4.14. [78, 112, 113] Let G be a connected (n,m)-graph. Then

M1(G) ≤ 1

n

[
α(n)(∆− δ)2 + 4m2

]
(22)

where the integer function α(n) is defined as

α(n) = n
⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
.

The equality holds if and only if G is a regular graph.

The above inequality was first obtained in the paper [78], but the function α(n) was erroneously
defined via dxe. The correct proof was given in [112, 113] and the equality case was characterized only
in [112]. It can be easily seen [112] that the inequality (22) is stronger than the inequality (21) for each
odd n, n ≥ 3.

An upper bound on the first Zagreb index M1(G) in terms of n, m, ∆, δ, and the second–maximum
vertex degree ∆2 was obtained in [39].

Theorem 4.15. [39] Let G be a graph with n vertices (n > 1), m edges, maximum degree ∆, second–

maximum degree ∆2 and minimum degree δ. Then

M1(G) ≤ (2m−∆)2

n− 1
+ ∆2 +

n− 1

4
(∆2 − δ)2 . (23)

Equality holds in (23) if and only if G is isomorphic to a graph H1 such that d2(H1) = d3(H1) = · · · =
dn(H1) = δ or G is isomorphic to a graph H2 such that d2(H2) = d3(H2) = · · · = dp+1(H2) = ∆2 and

dp+2(H2) = dp+3(H2) = · · · = d2p+1(H2) = δ, n = 2p+ 1.

The upper bound (23) was improved in the same paper.
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Theorem 4.16. [39] Let G be the same graph as in Theorem 4.15. Then

M1(G) ≤ ∆2 + (∆2 + δ)(2m−∆)− (n− 1)∆2 δ . (24)

Equality holds in (24) if and only if G is isomorphic to a graph H such that d2(H) = d3(H) = · · · =
dp(H) = ∆2 and dp+1(H) = dp+2(H) = · · · = dn(H) = δ, 2 ≤ p ≤ n.

As it was outlined in [39], the bound (24) is always better than the bound (15). By [39], it holds

2m(∆ + δ)− n∆δ ≥ ∆2 + (∆2 + δ)(2m−∆)− (n− 1)∆2 δ

⇔ 2m(∆−∆2) + ∆(∆2 + δ)−∆2 − nδ(∆−∆2)−∆2 δ ≥ 0

⇔ (2m−∆− nδ + δ)(∆−∆2) ≥ 0 ⇔
n∑

i=2

(di − δ)(∆−∆2) ≥ 0

which is obviously always obeyed.
Similarly, it was proven in [39] that the bound (24) is always better than the bound (23).
Some further estimations of the first Zagreb index were proposed in [40]. For a vertex vi of the graph

G we denote by mi the average degree of the vertices adjacent to vi. Denote by µ and ν the maximum
and minimum of mi. Then it holds:

Theorem 4.17. [40] Let G be a connected graph of order n with m edges. Then

2m[2m− (∆− ν)(n− 1)]

n+ ν −∆
≤ M1(G) ≤ 2m[2m+ (µ− δ)(n− 1)]

n+ µ− δ
. (25)

Equality on the left–hand side of (25) holds if and only if G is regular. The right–hand side equality

holds in (25) if and only G is either regular graph or G ∼= CS(n, α).

As noted in [40], Theorem 4.17 generalizes the previously obtained upper bound (14).
The irregularity index t(G) of a graph G is defined as the number of distinct terms in the degree

sequence of G. Before we state the next result, we need a few more definitions from [35].
Let Υ2 be the class of graphs H1 = (V,E) such that H1 is a graph of order n, irregularity index t,

maximum degree ∆ and
∆ = t , di = 1 , i = t+ 1, t+ 2, . . . , n .

Let Υ3 be the class of graphs H2 = (V,E) such that H2 is a graph of order n, irregularity index t,
maximum degree ∆ and

di =

 ∆− i+ 1 ; i = 1, 2, . . . , t

∆ ; i = t+ 1, t+ 2, . . . , n .

Theorem 4.18. [35] Let G be a graph of order n with irregularity index t and maximum degree ∆. Then

M1(G) ≥ 1

6
t(t+ 1)(2t+ 1) + n− t
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with equality if and only if G ∈ Υ2, and

M1(G) ≤ t(∆ + 1)2 +
1

6
t(t+ 1)(2t+ 1)− (∆ + 1)t(t+ 1) + (n− t)∆2

with equality if and only if G ∈ Υ3.

In the papers [154, 156, 158] Zhou et al. determined upper bounds for M1 of Kr+1-free graphs with
n vertices, where r ≥ 2.

Theorem 4.19. [154] Let G be a triangle–free (n,m)-graph. Then

M1(G) ≤ mn (26)

and equality holds if and only if G is a complete bipartite graph.

By Turán’s theorem, for an (n,m)-triangle–free graph it holds m ≤ bn2

4
c with equality if and only if

G ∼= Kbn
2
cdn

2
e. Then, by the previous theorem, for an (n,m)-triangle–free graph it holds [154]

M1(G) ≤ n

⌊
n2

4

⌋
with equality if and only if G ∼= Kbn

2
cdn

2
e.

Before we state the next results, we need few more definitions from [158]. By W̃n we denote a graph,
obtained by slightly redefining a class of graphs known as windmills. For n odd, W̃n is a graph obtained
by taking n−1

2
triangles all sharing one common vertex. For n even, W̃n is a graph obtained from W̃n−1

by attaching a pendent vertex to a central vertex of W̃n−1. Also, let even(n) = 1 if n is even, and 0
otherwise.

Theorem 4.20. [158] Let G be a quadrangle–free graph with n vertices and m > 0 edges. Then,

M1(G) ≤ n(n− 1) + 2m− 2 even(n)

with equality if and only if G ∼= W̃n.

The Moore graph is an r-regular graph with diameter k whose order is equal to

1 + r

k−1∑
i=0

(r − 1)i .

Hoffman and Singleton [75] proved that every r-regular Moore graph with diameter 2 must have
r ∈ {2, 3, 7, 57}.

Theorem 4.21. [158] Let G be a triangle– and quadrangle–free graph with n > 1 vertices. Then,

M1(G) ≤ n(n− 1)

with equality if and only if G is a star K1,n−1 or a Moore graph of diameter 2.
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Zhou [156] proved a general result concerning Kr+1-free graphs with n vertices, where r ≥ 2. If
r ≥ n, then obviously M1(G) ≤ M1(Kn) with equality if and only if G ∼= Kn. Thus, in the following
theorem it is supposed that 2 ≤ r ≤ n− 1.

Theorem 4.22. [156] Let G be a Kr+1-free graph with n vertices and m > 0 edges, where 2 ≤ r ≤ n−1.

Then, M1(G) ≤ (2r − 2)mn/r and the equality holds if and only if G is complete bipartite graph for

r = 2 and a regular complete r-partite graph for r ≥ 3.

Besides, as a consequence, in the same paper [156] the following upper bound was obtained.

Theorem 4.23. [156] Let G be a K1,1,k+1- and K2,`+1-free graph with n vertices and m > 0 edges,

where 0 ≤ k ≤ `. Then

M1(G) ≤ 2(k + 1− `)m+ `n(n− 1)

with equality if and only if each pair of adjacent vertices in G has exactly k common neighbors and each

pair of non-adjacent vertices in G has exactly ` common neighbors.

In [100], upper bounds for M1 were obtained in terms of the number of vertices, number of edges,
and diameter (or girth). Recall that the girth g = g(G) is the size of the smallest cycle in G.

Theorem 4.24. [100] Let G be an (n,m)-graph with diameter D. Then

M1(G) = n(n− 1)2 if D = 1

and

M1(G) ≤ m2 −m(D − 3) + (D − 2) if D > 1 . (27)

If D = 2, then equality in (27) holds if and only if either G ∼= K1,n−1 or G ∼= K3. If D ≥ 3, then

equality in (27) holds if and only if G ∼= PD+1.

Theorem 4.25. [100] Let G be a connected (n,m)-graph with girth g ≥ 4. Then M1(G) ≤ m2 with

equality if and only if G ∼= C4.

In the paper [89], sharp upper bounds for M1 and M2 are given among n-vertex bipartite graphs
with a given diameter D. Denote by B(n,D) the set of bipartite graphs on n vertices with diameter
D. When D = 1, then the bipartite graph is just K2. So, it is assumed that D ≥ 2. If G ∈ B(n,D),
then there exists a partition V0, V1, . . . , VD of V (G) such that |V0| = 1 and d(u, v) = i for each vertex
v ∈ Vi and u ∈ V0, i = 1, 2, . . . , D. Let mi = |Vi|. Let G[a, s, t, b] be a graph with s = ma = |Va| > 1,
t = ma+1 = |Va+1| > 1, |Vj| = 1 for j ∈ {0, 1, . . . , D}\{a, a+1}, a+b = D−1, s+t = n−D+1, and
two consecutive partition sets inducing a complete bipartite subgraph. Also, without loss of generality,
it is assumed that a ≤ b.

Theorem 4.26. [89] Let G ∈ B(n,D) with the maximal M1-value or M2-value, then

G ∼= G

{
a ,

⌊
n−D + 1

2

⌋
,

⌈
n−D + 1

2

⌉
, b

}
.
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Furthermore, the parameters a and b satisfy the following conditions with respect to the diameter of

G.

(i) if D = 2, then a = 0, b = 1;

(ii) if D = 3, then a = 1, b = 1;

(iii) if D = 4, then a = 1, b = 2;

(iv) if D = 5, then a = 2, b = 2;

(v) if D = 6, then a = 2, b = 3;

(vi) if D ≥ 7, then a ≥ 3, b ≥ 3.

As a consequence, the bipartite graphs with largest, second–largest and smallest M1-values (resp.
M2-values) have been characterized.

Theorem 4.27. [89] Among all bipartite graphs of order n ≥ 2, the graph Kbn
2
c,dn

2
e has the largest M1–

and M2-values, whereas the path Pn has the smallest M1– M2-values.

Theorem 4.28. [89] Among all bipartite graphs with order n > 2, the graph Kbn−2
2

c,dn+2
2

e has the

second–largest M1 values and M2-values for even n, and the graph Kbn
2
c,dn

2
e− e has the second–largest

M1-values and M2-values for odd n.

For triangle– and quadrangle–free graphs, an upper bound for M1 was established in terms of n and
radius r.

Theorem 4.29. [145] Let G be a triangle– and quadrangle–free connected graph with n vertices and

radius r. Then, M1(G) ≤ n(n + 1 − r) and the equality holds if and only if G is a Moore graph of

diameter two or G is the 6-vertex cycle C6.

Morgan and Mukwembi [114] derived an upper bound for M1 in terms of n, m, and the number of
triangles t.

Theorem 4.30. [114] Let G be an (n,m)-graph with t triangles. Then,

M1(G) ≤ mn+ 3t . (28)

As noted in [114], the equality in (28) is attained by the complete graph Kn and the complete bipartite
graph Kn

2
,n
2
. This bound is the generalization of the bound (26). Besides, for graphs with limited number

of triangles, such as triangle–free graphs, the bound (28) is better than the de Caen’s bound (5). Also,
by [114], the bound (28) is better than Nikiforov’ s bound (Theorem 3.7) for graphs with many edges.

By Theorem 4.30, the following corollary was obtained in [114].

Corollary 4.4. [114] Let G be an (n,m)-graph with maximum degree ∆. Then,

M1(G) ≤ m(n+∆− 1) .
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A vertex of degree 1 (pendent vertex) is sometimes called a leaf vertex. The leaf number L(G) of G
is defined [114] as the maximum number of leaf vertices contained in a spanning tree of G. This graph
invariant has applications in the optimization of centralized terminal networks [54].

In addition, the following upper bound for M1 in terms of n, m, the number of triangles, and the leaf
number has been obtained in [114].

Theorem 4.31. [114] Let G be an (n,m)-graph with t triangles and leaf number L. Then,

M1(G) ≤ m(L+ 2) + 3t .

Recall that a matching of a graph is a set of mutually independent edges in a graph, i.e., set of edges
with no common vertices. The matching number β(G) of the graph G is the number of edges in a
maximum matching. Obviously, β(G) = 0 if and only if G is an empty graph. For a connected graph G

with n > 2 vertices, β(G) = 1 if and only if G ∼= K1,n−1 or G ∼= K3. A matching M is said to be an
m-matching if |M | = β(G) = m. If β(G) = n/2, then the graph has a perfect matching.

Theorem 4.32. [51] Let G be a connected graph with n ≥ 4 vertices and matching number β, such that

2 ≤ β ≤ bn/2c. Let

b =
1

18

(
n+ 3 +

√
37n2 − 30n+ 9

)
.

Then the following holds:

(1) If β = bn/2c, then

M1(G) ≤ n(n− 1)2

with equality if and only if G ∼= Kn.

(2) If b < β ≤ bn/2c − 1, then

M1(G) ≤ n2 − n+ 8β3 − 12β2 + 4β

with equality if and only if G ∼= K1 ∨ (K2β−1 ∪Kn−2β).

(3) If β = b, then

M1(G) ≤ bn2 + b2n− 2bn− b3 + b = n2 − n+ 8b3 − 12b2 + 4b

with equality if and only if G ∼= Kβ ∨Kn−β or G ∼= K1 ∨ (K2β−1 ∪Kn−2β).

(4) if 2 ≤ β < b, then

M1(G) ≤ βn2 + β2n− 2βn− β3 + β

with equality if and only if G ∼= Kβ ∨Kn−β .

A cut edge in a connected graph G is an edge whose deletion breaks the graph into two components.
Denote by Gk

n the set of connected graphs with n vertices and k cut edges. The graph Kk
n is a graph

obtained by joining k independent vertices to one vertex of Kn−k and the graph Ck
n is a graph obtained

by identifying an end vertex of Pk+1 with a vertex of Cn−k (this graph was mentioned before as a lollipop
graph Ln−k,k+1).



89

Theorem 4.33. [52] Let G ∈ Gk
n. Then

4n+ 2 ≤ M1(G) ≤ (n− k − 1)3 + (n− 1)2 + k

with left–hand–side equality if and only if G ∼= Ck
n and with right–hand–side equality if and only if

G ∼= Kk
n.

For any set W of vertices (edges) in a graph G, if G is connected and G − W is disconnected, we
say that W is a |W |-vertex (edge- ) cut of G.

For k ≥ 1, we say that a graph G is k-connected if either G is the complete graph Kk+1, or else
it has at least k + 2 vertices and contains no (k − 1)-vertex cut. Similarly, for k ≥ 1, a graph G is
k-edge–connected if it has at least two vertices and does not contain an (k − 1)-edge cut. The maximal
value of k for which a connected graph G is k-connected is the connectivity of G, denoted by κ(G). If
G is disconnected, we define κ(G) = 0. The edge–connectivity κ′(G) is defined analogously.

Denote by Vk
n the set of graphs of order n with κ(G) ≤ k ≤ n − 1, and by Ek

n the set of graphs of
order n with κ′(G) ≤ k ≤ n− 1. Also, let Gk

n be a graph obtained by joining k edges from k vertices of
Kn−1 to an isolated vertex. Obviously, G ∈ Vk

n ⊆ Ek
n.

Li and Zhou in [92] investigated the Zagreb indices of G ∈ Vk
n (resp. Ek

n) and gave sharp upper and
lower bounds for M1(G) and M2(G), respectively. Besides, Hua in [81] independently obtained sharp
upper bound for the first Zagreb index of graphs from G ∈ Vk

n (resp. Ek
n).

Theorem 4.34. [81, 92] Among all graphs G in Vk
n (Ek

n), k > 0,

4n− 6 ≤ M1(G) ≤ k(n− 1)2 + k2 + (n− k − 1)(n− 2)2

with left–hand side equality if and only if G ∼= Pn and right–hand side equality if and only if G ∼= Gk
n.

A subset S ⊆ V (G) of mutually non-adjacent vertices in a graph G is said to be an (vertex-) inde-

pendent set in G, and the independence number α(G) is the maximum cardinality of an independent set
in G. Besides, the so-called vertex-independence number and edge-independence number of a graph G

can be defined as follows. Let S be an (vertex-) independent set of G. If for any vertex x ∈ V (G) \ S it
holds N(x) ∩ S 6= ∅, then S is called maximal vertex–independent set of G. Let

i(G) = min{|S| : S is a maximal vertex–independent set of G} .

Then i(G) is said to be the vertex–independence number of G.

A subset T of E(G) is said to be an edge–independent set of G if T contains exactly one edge or any
two edges in T (if such do exist) sharing no common vertices. Let T be an edge–independent set of G.
For any e ∈ E(G) \ T , if {e}∪ T is no longer an edge–independent set of G, then T is called a maximal
edge–independent set of G.

Let

m(G) = min{|T | : T is a maximal edge–independent set of G} .
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Then m(G) is said to be the edge–independence number of G.
For a connected graph G it holds, as noted in [81], that 1 ≤ i(G) ≤ bn

2
c and 1 ≤ m(G) ≤ bn

2
c. For

2 ≤ k ≤ (n− 1)/2, we define, as in [81], a graph Gn1,n2,...,nk
as follows.

For 2 ≤ ni ≤ n − 2k + 2, i = 1, 2, . . . , k, let Kn1 , Kn2 , . . . , Knk
be complete graphs of orders

n1, n2, . . . , nk, respectively, with V (Kni
) = {vi1, . . . , vini

}. Let

Gn1,n2,...,nk
= (Kn1 − {v11}) ∨ (Kn2 − {v21}) ∨ · · · ∨ (Knk

− {vk1}) .

For k = 2, let G̃n1,n2 be the graph obtained from Gn1,n2 by adding to it the edge v11v21.
Sharp upper bounds for the first Zagreb index of graphs with given vertex- (edge-) independence

number are obtained in [81].

Theorem 4.35. [81] Let G be a connected graph with n vertices and i(G) = k for 1 ≤ k ≤ bn/2c.

Then the following holds:

(i) If k = 1, then M1(G) ≤ n(n− 1)2 with equality if and only if G ∼= Kn.

(ii) If k = 2, then M1(G) ≤ (n− 1)(n− 2)2 + 4 with equality if and only if G ∼= G̃2,n−2.

(iii) If 3 ≤ k ≤ (n− 1)/2, then M1(G) ≤ (n− k)3 +(n− 2k+1)2 + k− 1 with equality if and only

if G ∼= G2,...,2,n−2k+2.

(iv) If k = n/2, then M1(G) ≤ n3

4
with equality if and only if G ∼= Kk,k.

Theorem 4.36. [81] Let G be a connected graph with n vertices and m(G) = k. Then

M1(G) ≤ 2k(n− 1)2 + 4k2(n− 2k)

with equality if and only if G ∼= K2k ∨ (n− 2k)K1.

An outerplanar graph is a planar graph that has a planar drawing with all vertices on the same face.
Thus, a graph is outerplanar if it can be embedded in the plane so that all its vertices lie on the outer face
boundary. An edge of an outerplanar graph is said to be a chord if it joins two vertices of the outer face
boundary of G, but is not itself an edge of the outer face boundary. A maximal outerplanar graph is an
outerplanar graph such that all its faces, except eventually the outer face, are composed by three edges.
Such a graph on n (n ≥ 3) vertices has a plane representation as an n-gon triangulated by n− 3 chords.

Denote by Pn,2 the graph obtained from Pn by adding new edges joining all pairs of vertices at
distance 2 apart. Fig. 2 shows Pn,2 for the even and odd values of n.

Fig. 2. The graph Pn,2 for n = 2k and 2k − 1 .
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In thw paper [80], Hou et al. determined sharp upper bounds for M1 among all (maximal) outerplanar
graphs on n vertices, as well as among all 2k-vertex conjugated (maximal) outerplanar graphs (i.e.,
outerplanar graphs on 2k vertices with perfect matchings).

Theorem 4.37. [80] Let G be a maximal outerplanar graph on n (n ≥ 4) vertices.

(i) If n = 6, then M1(G) ≤ 60, with equality if and only if G ∼= K1 ∨ P5 or G ∼= H , where H is the

graph depicted in Fig. 3.

(ii) If n 6= 6, then M1(G) ≤ n2 + 7n− 18 with equality if and only if G ∼= K1 ∨ Pn−1.

H

Fig. 3. The graph occurring in Theorem 4.37.

Theorem 4.38. [80] Let G be conjugated maximal outerplanar graph on 2k vertices. Then

32k − 38 ≤ M1(G) ≤ 4k2 + 14k − 18 . (29)

The left equality holds if and only if G ∼= P2k,2. If k 6= 3, then the right equality holds in (29) if and only

if G ∼= K1 ∨ P2k−1. If k = 3, then the right equality holds in (29) if and only if G ∼= K1 ∨ P5 or G ∼= H

(where H is depicted in Fig. 3).

Since by the definition of Zagreb indices it holds Mi(G − e) < Mi(G), for i = 1, 2 and e ∈ E(G),
the extremal outerplanar graphs (with perfect matchings) whose Mi-values attain maximum must be
maximal outer planar graphs. Thus, the statements of Theorems 4.37 and 4.38 still remain true for
outerplanar graphs and conjugated outerplanar graphs, respectively. Similarly, the extremal outerplanar
graphs (with perfect matchings) whose Mi-values attain minimum must be n-vertex trees, in fact n-
vertex paths.

A graph is called a series–parallel if it does not contain a subdivision of K4 [48]. For example,
outerplanar graphs are series–parallel.

Theorem 4.39. [155] Let G be a series–parallel graph with n ≥ 2 vertices and m edges. Suppose that

G has no isolated vertices. Then

M1(G) ≤ n(m− 1) + 2m

with equality for n ≥ 3 if and only if G is isomorphic to K1,1,n−2.
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The clique number of G, denoted by ω(G), is the number of vertices in a largest clique of G. Let
Wn,k be the set of connected n-vertex graphs with clique number k. The graphs with extremal (maximal
and minimal) Zagreb indices belonging to Wn,k are characterized in [143]. Recall that the Turán graph
Tn(k) is a complete k-partite graphs whose partition sets differ in size by at most one. Obviously, for
k = 1, the set Wn,k contains a single connected graph K1. When k = n, the only graph in Wn,k is Kn.
So, it may be assumed that 1 < k < n and let n = kq + r, where 0 ≤ r < k and q = bn

k
c.

Theorem 4.40. [143] Let G ∈ Wn,k. Then

M1(G) ≤ (k − r)
⌊n
k

⌋(
n−

⌊n
k

⌋)2
+ r

⌈n
k

⌉(
n−

⌈n
k

⌉)2
with equality if and only if G ∼= Tn(k).

In the following, we give a survey of results on the minimum of M1 among the graphs with some
given parameters.

Let Γ be the class of graphs H = (V,E), where H is a graph of minimum vertex degree δ and
maximum vertex degree ∆ (∆ 6= δ) such that

d2 = d3 = · · · = dn−1 = dn = δ , di = dH(vi) , i = 2, 3, . . . , n .

Let Γ2 and Γ3 be the class of graphs such that d2 = d3 = · · · = dn−1 = ∆2, dn = δ, with d1 = ∆ > di,
i = 2, 3, . . . , n and di = δ with d1 ≥ d2 > di, i = 3, 4, . . . , n, respectively. Das [32, 41] obtained the
following lower bounds for M1 which are better than (9).

Theorem 4.41. [32] Let G be an (n,m)-graph with maximum degree ∆ and minimum degree δ. Then

M1 ≥ ∆2 + δ2 +
(2m−∆− δ)2

n− 2

with equality if and only if G is regular or G ∈ Γ or G ∈ Γ2.

Theorem 4.42. [41] Let G be an (n,m)-graph with maximum degree ∆, second–maximum degree ∆2

and minimum degree δ. Then

M1 ≥ ∆2 +
(2m−∆)2

n− 1
+

2(n− 2)

(n− 1)2
(∆2 − δ)2 .

The equality holds if and only if G is regular or G ∈ Γ.

Recently, Milovanović and Milovanović [112] proposed a new lower bound for M1 better than (9).
The conclusion related to the equality case was wrong in [112] and it was eventually corrected in [109],
and the equality case additionally corrected in [36].

Theorem 4.43. [36,109,112] Let G be an (n,m)-graph, n ≥ 2, with maximum degree ∆ and minimum

degree δ. Then

M1 ≥
4m2

n
+

1

2
(∆− δ)2

with equality if and only if G has the property d2 = d3 = · · · = dn−1 = (∆ + δ)/2, which includes also

the regular graphs.
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In [36], the following strengthening of Theorem 4.43 was achieved:

Theorem 4.44. [36] Let G be an (n,m)-graph, n ≥ 2, with maximum degree ∆ and minimum degree

δ. Then

M1 ≥
4m2 + (n− 1)(∆2 + δ2)− 4m(∆ + δ) + 2∆ δ

n− 2
with equality if and only if G has the property d2 = d3 = · · · = dn−1.

In the paper [109], the following lower bounds for M1, better than (9), were also obtained.

Theorem 4.45. [109] Let G be an (n,m)-graph, n ≥ 3, with maximum degree ∆, minimum degree δ

and the second–maximum degree ∆2. Then

M1 ≥ ∆2 +∆2
2 +

(2m−∆−∆2)
2

n− 2

with equality if and only if G is regular or G ∈ Γ or G ∈ Γ3.

Corollary 4.5. [109] With the assumptions as in Theorem 4.45, one has the inequality

M1 ≥ ∆2 +
(2m−∆)2

n− 1

with equality if and only if G is regular or G ∈ Γ.

A lower bound for M1 of maximal outerplanar graphs was established in [80].

Theorem 4.46. [80] Let G be maximal outerplanar graph on n vertices. Then

M1(G) ≥ 16n− 38 (30)

and the equality holds if and only if G ∼= Pn,2.

In the paper [143], a sharp lower bound for M1 of n-vertex graphs with a given clique number has
been determined.

Theorem 4.47. [143] Let G ∈ Wn,k. Then

M1(G) ≥ k3 − 2k2 − k + 4n− 4

with equality if and only if G ∼= Kin,k, where Kin,k is a kite.

The local independence number α(v) of a vertex v, is the independence number of the subgraph
induced by the closed neighborhood of v. The average local independence number α(G), of a graph G,
is defined as 1

n

∑
v∈V (G) α(v), [43].

In the paper [114], the following upper bound on the average local independence number in terms of
n, m, the number of triangles t, and the first Zagreb index M1 is obtained, from which the lower bound
on M1 can be deduced.

Theorem 4.48. [114] Let G be connected (n,m)-graph with t triangles. Then

α(G) ≤
√

1

n
(M1 − 2m− 6t) +

1

4
+

1

2
.

Also, it was proven in [50] that for an n-vertex graph G, n ≥ 3, without isolated vertices, M1(G) ≥
3m and M2(G) ≥ 2m with equality if and only if G ∼= P3.
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5. Second Zagreb index

We first consider upper bounds for M2.

Let G be an (n,m)-graph. Bollobás and Erdős [18] proved that if m = k2, then M2(G) ≤ m(k−1)2,
with equality if and only G is the union of the complete graph Kk and isolated vertices. This result can
be reformulated as follows.

Theorem 5.1. [18] Let G be a graph with n vertices and m edges. Then

M2(G) ≤ m

(√
2m+

1

4
− 1

2

)2

with equality if and only if m is of the form m =
(
k
2

)
for some positive integer k, and G is the union of

the complete graph Kk and isolated vertices.

For given n and m, the graphs with largest M2-values are characterized in [45, 144].

Theorem 5.2. [45, 144] Let G be a connected graph of order n with m edges, n − 1 ≤ m ≤ n + 1. If

M2 is maximum, then

(i) G ∼= K1,n−1 for m = n− 1;

(ii) G ∼= K1,n−1 + e for m = n where e = uv with u, v as two pendent vertices in K1,n−1;

(iii) G ∼= B
(1)
n for m = n+ 1.

The following upper bound on M2 is obtained in [144]:

Theorem 5.3. [144] Let G be a connected graph of order n with m (= n+ 2) edges. Then

M2(G) ≤ n2 + 4n+ 22

with equality holding if and only if G ∼= (Kn−4 ∨ 3K1) ∪K1.

Denote by Kn−k
k the graph obtained by attaching n − k pendent vertices to one vertex of Kk. For

any positive integer t < k, let Kn−k
k (t) be a graph obtained by adding t new edges between one pendent

vertex in Kn−k
k and t vertices with degree k − 1 in it. In particular, (Kn−4 ∨ 3K1) ∪K1

∼= Kn−4
4 . For

given n and m, the graph with largest M2-values is characterized in [144]:

Theorem 5.4. [144] Let G be a connected graph of order n with m edges, such that m = n +
(
k
2

)
−

k , k ≥ 4. If M2 is maximum, then G ∼= Kn−k
k .

Xu, Das and Balachandran [144] gave the following conjecture:

Conjecture 5.1. Let G be a connected graph of order n with m edges, m ≥ n + 3. If M2 is maximum,

then G ∼= Kn−k
k (t) if m− n =

(
k
2

)
− k + t with 1 ≤ t ≤ k − 1 and 4 ≤ k ≤ n− 2.
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Bollobás, Erdős and Sarkar [19] proved the following:

Theorem 5.5. [19] Let k and r be positive integers such that 0 < r ≤ k. Then all graphs G with

m =
(
k
2

)
+ r edges and minimal degree at least one, satisfy

M2(G) ≤ k2

(
r

2

)
+ (k − 1)2

(
k − r

2

)
+ k(k − 1)(k − r)r + kr2

and the equality holds if and only if the graph G consists of a complete graph Kk together with an

additional vertex joined to r vertices of Kk.

In the papers [154, 156, 158], results concerning upper bounds for the second Zagreb index of Kr+1-
free graphs, r ≥ 2, were obtained.

Theorem 5.6. [154] Let G be a triangle–free graph with m > 0 edges. Then,

M2(G) ≤ m2

with equality if and only if G is the union of a complete bipartite graph and isolated vertices.

By Turán’s theorem, for an (n,m)-triangle–free graph, m ≤ bn2

4
c with equality if and only if G ∼=

Kbn
2
cdn

2
e. Then, by the previous theorem, for an (n,m)-triangle–free graph it holds [154]

M2(G) ≤
⌊
n2

4

⌋2
with equality if and only if G ∼= Kbn

2
cdn

2
e.

Recall that we use the notation even(n) = 1 if n is even and even(n) = 0, otherwise.

Theorem 5.7. [158]
(i) Let G be a quadrangle–free graph with n vertices and m > 0 edges. Then,

M2(G) ≤ mn+

(
n

2

)
− even(n)

with equality if and only if G ∼= W̃n for odd n, where W̃n is the graph defined in Section 4 (in Theorem

4.20).

(ii) Let Let G be a triangle– and quadrangle–free graph with n vertices and m > 0 edges. Then,

M2(G) ≤ m(n− 1)

with equality if and only if G is the star K1,n−1 or a Moore graph of diameter 2.

More generally, it holds:

Theorem 5.8. [156] Let G be a Kr+1-free graph with n vertices and m > 0 edges, where 2 ≤ r ≤ n−1.

Then

M2(G) ≤ 2

r
m2 +

(r − 1)(r − 2)

r2
mn2

and the equality holds if and only if G is the complete bipartite graph for r = 2 and a regular complete

r-partite graph for r ≥ 3.
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As a consequence, the following theorem has been proved.

Theorem 5.9. [156] Let G be a K1,1,k+1- and K2,l+1-free graph with n vertices and m > 0 edges, where

0 ≤ k ≤ l. Then

M2(G) ≤ m(k + 1− l)2 + l(n− 1)m+
1

2
(k + 1− l)ln(n− 1)

with equality if and only if each pair of adjacent vertices in G has exactly k common neighbors and each

pair of non-adjacent vertices in G has exactly l common neighbors.

In the paper [87], Lang et al. considered the second Zagreb index of bipartite graphs with a given
number of vertices and edges and gave a necessary condition for a maximal M2-value. Denote by
B(X,Y ) a connected bipartite graph with a bipartition (X,Y ) and by B(X,Y ) the set of bipartite graphs
B(X,Y ). In [87], the following ordered sets are defined. Let {u, v} ∈ V (G). The pair of vertices {u, v}
is said to be ordered if d(u) ≥ d(v) implies NG(v) ⊆ NG(u). A subset S ⊂ V (G) is called an ordered set
of vertices if any pair of vertices of S is ordered. Also, B(X,Y ) is said to be an ordered bipartite graph
if X and Y are ordered sets of vertices. Otherwise, the graph B(X,Y ) is referred to as an unordered
bipartite graph.

Theorem 5.10. [87] Let m and n be two integers such that n − 1 ≤ m ≤ bn/2cdn/2e. If B(X,Y )

attains the maximum value of the second Zagreb index in B(X,Y ) with n vertices and m edges, then

B(X,Y ) must be an ordered bipartite graph.

Theorem 5.11. [87] Let m, n and p be integers such that m = (n−1)+(p−1)(n2−1)+k, where p ≥ 1,

k ≤ n2 − 1. If the graph B(X,Y ) with |X| = n1 and |Y | = n2 satisfies |{v ∈ X|d(v) = n2}| = p, then

M2(G) ≤ pn1n2 + p2 n2
2 + n2

1 + (k − p)n1 + p(k − p)n2 + (p+ 1)k(k + 1) .

In the next theorem, in addition to n and m, the upper bounds depend also on the minimum vertex
degree δ.

Theorem 5.12. [158] (i) Let G be a quadrangle–free graph with n vertices, m edges and minimum

vertex degree δ ≥ 1. Then

M2(G) ≤ 2m2 − (n− 1)mδ + (δ − 1)

[(
n

2

)
+m

]
with equality if and only if G is isomorphic to a redefined windmill W̃n (see Theorem 4.20) for odd n, or
n
2
K2 for even n, or the star K1,n−1.

(ii) Let G be a triangle– and quadrangle–free graph with n vertices, m edges, and minimum vertex

degree δ ≥ 1. Then

M2(G) ≤ 2m2 − (n− 1)mδ + (δ − 1)

(
n

2

)
with equality if and only if G is the star K1,n−1, or n

2
K2 for even n, or a G is a Moore graph of diameter

2.
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In [157], an upper bound for M1 in terms of n, m, the minimum vertex degree δ, and the maximum
degree ∆ was established (cf. Theorem 4.8). Fonseca and Stevanović [56] proved the analogous upper
bound on M2 for general values of n, m, δ, and ∆.

Theorem 5.13. [56] Let G be a graph with n vertices, m edges, the minimum vertex degree δ and

maximum vertex degree ∆ > δ + 1. Then

M2 ≤ 1

2

[
(2m− k)(∆2 +∆δ + δ2)− (n− 1)∆δ(∆ + δ)

]

+

 kδ(k − δ
2
) if k ≤ (∆ + δ)/2

k∆(k − ∆
2
) if k > (∆ + δ)/2

(31)

where k is an integer defined via

2m− nδ ≡ k − δ (mod (∆− δ)) , δ ≤ k ≤ ∆− 1

i.e.,

k = 2m− δ(n− 1)− (∆− δ)

⌊
2m− nδ

∆− δ

⌋
.

A graph G attains equality in (31) if and only if G does not contain an edge connecting a vertex of degree

∆ to a vertex of degree δ and it contains at most one vertex of degree k 6= ∆, δ such that

(i) the vertex of degree k is adjacent to vertices of degree δ only, when k < (∆ + δ)/2;

(ii) the vertex of degree k is adjacent to a vertex of degree ∆ only, if k > (∆ + δ)/2.

Remark. The case of equality in (31) implies that if k 6= (∆ + δ)/2, then the graph with the
maximum value of M2 for given n,m,∆ and δ is necessarily disconnected. If k < (∆ + δ)/2, then the
vertices of degree ∆ are adjacent only to vertices of degree ∆, while if k > (∆+ δ)/2, then the vertices
of degree δ are adjacent only to vertices of degree δ. Only when k = (∆ + δ)/2, an M2-maximal graph
may be connected, as then the vertex of degree k may be adjacent both to vertices of degree ∆ and to
vertices of degree δ. The same situation is present in Theorem 4.8 as well. All this is not a mistake, but
it just means that graphs attaining the maximum value of the first or second Zagreb index may happen to
be disconnected multigraphs, as suggested in [56].

The appearance of disconnected multigraphs as extremal graphs for the second Zagreb index may be
avoided in the case of trees (see Theorem 6.6).

In the papers [39, 41], Das et al. established some upper and lower bounds on M2(G) in terms of n,
m, δ, ∆, and ∆2.

Theorem 5.14. [39] Let G be a graph with n vertices, m edges, maximum degree ∆, second–maximum

degree ∆2 and minimum degree δ. Then

M2(G) ≤ 2m2 − (n− 1)mδ +
1

2
(δ − 1)

[
(2m−∆)2

n− 1
+ ∆2 +

n− 1

4
(∆2 − δ)2

]
with equality if and only if G is a regular graph or G ∼= K1,n−1 or G ∼= Kp+1,p, n = 2p+ 1.
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Theorem 5.15. [41] Let G be a graph with n vertices, m edges, maximum degree ∆, second–maximum

degree ∆2 and minimum degree δ. Then

(i)
M2(G) ≥ 2m2 − (n− 1)m∆

+
1

2
(∆− 1)

[
∆2 +

(2m−∆)2

n− 1
+

2(n− 2)

(n− 1)2
(∆2 − δ)2

]
with equality if and only if G is regular graph;

(ii)
M2(G) ≤ 2m2 − (n− 1)mδ

+
1

2
(δ − 1)

[
(n+ 1)m−∆(n−∆) +

2(m−∆)2

n− 2

]
with equality if and only if G ∼= K∗

2,n−2 or G ∼= Kn.

For triangle– and quadrangle–free graphs, an upper bound for M2 was established in terms of n, m,
and radius r.

Theorem 5.16. [145] Let G be a triangle– and quadrangle–free connected graph with n vertices, m

edges and radius r. Then, M2(G) ≤ m(n + 1 − r) and the equality holds if and only if G is a Moore

graph of diameter two or G is the 6-vertex cycle C6.

Extremal graphs whose M2 is maximum among connected graphs with matching number β are char-
acterized in [51].

Theorem 5.17. [51] Let G be a connected graph with n ≥ 4 vertices and matching number β, 2 ≤ β ≤
bn/2c. Let c be the largest root of the cubic equation

16x3 + 2x2(n− 13) + x(14n+ 1− 3n2)− 2n2 = 0 .

Then the following holds:

(1) If β = bn/2c, then

M2(G) ≤ 1

2
n(n− 1)3

with equality if and only if G ∼= Kn.

(2) If c < β ≤ bn/2c − 1, then

M2(G) ≤ n2 + 4nβ2 − 6nβ − 20β3 + 8β4 + 14β2 − β

with equality if and only if G ∼= K1 ∨ (K2β−1 ∪Kn−2β).

(3) If β = c, then

M2(G) ≤ n2 + 4nc2 − 6nc− 20c3 + 8c4 + 14c2 − c =
1

2
c(n− 1)(1− c− 2c2 − n+ 3cn)

with equality if and only if G ∼= Kβ ∨Kn−β or G ∼= K1 ∨ (K2β−1 ∪Kn−2β).
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(4) If 2 ≤ β < c, then

M2(G) ≤ 1

2
β(n− 1)(1− β − 2β2 − n+ 3βn)

with equality if and only if G ∼= Kβ ∨Kn−β .

In [52] and [53], Feng et al. characterized the graphs from the set Gk
n of all connected graphs with n

vertices and k cut edges whose M2 is maximum (minimum).

Theorem 5.18. [52, 53] Let G ∈ Gk
n, then

4n+ 4 ≤ M2(G) ≤ 1

2
(n− k − 1)3(n− k − 2) + (n− 1)2

and the left equality holds if and only if G ∼= Ck
n and the right equality holds if and only if G ∼= Kk

n.

Li and Zhou [92] determined sharp lower and upper bounds for the second Zagreb index of graphs
with connectivity (edge–connectivity) at most k. Recall that we use Vk

n (Ek
n) to denote the set of graphs

of order n with κ(G) ≤ k ≤ n − 1 (κ′(G) ≤ k ≤ n − 1), and by Gk
n we denote a graph obtained by

joining k edges from k vertices of Kn−1 to an isolated vertex.

Theorem 5.19. [92] Among all graphs G in Vk
n (Ek

n), k > 0, we have

M2(G) ≥ 4n− 8

and

M2(G) ≤ k2(n− 1) +

(
k

2

)
(n− 1)2 +

(
n− k − 1

2

)
(n− 2)2 + k(n− k − 1)(n2 − 3n+ 2)

where the lower bound is attained if and only if G ∼= Pn and the upper bound is attained if and only if

G ∼= Gk
n.

As mentioned before, Hou et al. [80] determined sharp upper and lower bounds for M2 among (max-
imal) outerplanar graphs on n vertices, as well as among conjugated (maximal) outerplanar graphs.

Theorem 5.20. [80] Let G be a maximal outerplanar graph on n vertices, n ≥ 4. Then

(i) M2(G) ≥ 32n− 100, with equality if and only if G ∼= Pn,2.

(ii) If n = 6, then M2(G) ≤ 96, with equality if and only if G ∼= H , where H is the graph depicted

in Fig. 3.

(iii) If n 6= 6, then M2(G) ≤ 3n2 + n− 19 with equality if and only if G ∼= K1 ∨ Pn−1.

Theorem 5.21. [80] Let G be conjugated maximal outerplanar graph on 2k vertices. Then

64k − 100 ≤ M2(G) ≤ 12k2 + 2k − 19 .

The left equality holds if and only if G ∼= P2k,2. For k 6= 3, the right equality holds if and only if

G ∼= (K1 ∨ P2k−1). For k = 3, the right equality holds if and only if G ∼= H (depicted in Fig. 3).
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As noted before, extremal (conjugated) outerplanar graphs whose M2 is maximum coincide with
those specified in Theorems 5.20 and 5.21. However, extremal (conjugated) outerplanar graphs whose
M2 is minimum are n-vertex paths.

Upper bounds on M2 of series–parallel graphs were determined in [155].

Theorem 5.22. [155] Let G be a series–parallel graph with n ≥ 2 vertices and m edges. Suppose that

G has no isolated vertices. Then

M2(G) ≤ m2 +
1

2
n(m− 1)

with equality for n ≥ 3 if and only if G is isomorphic to K1,1,n−2.

Theorem 5.23. [155] Let G be a series–parallel graph with n ≥ 2 vertices, m edges and minimum

vertex degree δ. Then

M2(G) ≤ 2m2 − (n− 1)mδ +
1

2
(δ − 1)

[
n(m− 1) + 2m

]
with equality if and only if G is isomorphic to K1,1,n−2 or K1,n−1 or n

2
K2 for even n.

Xu [143] obtained sharp upper and lower bounds for the second Zagreb index of graphs from the set
Wn,k of n-vertex graphs with a clique number k.

Theorem 5.24. [143] Let G ∈ Wn,k. Then

(1)

M2(G) ≤
(
k − r

2

)⌊n
k

⌋2 (
n−

⌊n
k

⌋)2
+ r(k − r)

⌊n
k

⌋ ⌈n
k

⌉(
n−

⌊n
k

⌋)(
n−

⌈n
k

⌉)
+

(
r

2

)⌈n
k

⌉2 (
n−

⌈n
k

⌉)2
with equality if and only if G ∼= Tn(k);

(2)

M2(G) ≥
(
k

2

)
(k − 1)2 + k2 + 4(n− k)− 5

with equality if and only if G ∼= Kin,k, where Kin,k is a kite graph.

6. On extremal Zagreb indices of trees

A tree is a connected graph without cycles. In every tree δ = 1. The tree with ∆ = 2 is the path Pn

and the tree with ∆ = n − 1 is the star K1,n−1. In chemical trees it must be ∆ ≤ 4. In the case of trees
(both chemical and non-chemical), the relations (5) and (10) are significantly simplified and thus, the
following result is straightforward.
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Theorem 6.1. [66] Let T be any tree of order n. Then

4n− 6 ≤ M1(T ) ≤ n(n− 1)

and the left equality holds if and only if T ∼= Pn and the right equality holds if and only if T ∼= K1,n−1.

Using the bound (18) from [103], the first four trees from the class T(n) of trees on n vertices whose
M1 is maximum were determined.

Theorem 6.2. [103] Suppose that T1
∼= K1,n−1 and T ∈ T(n). If n ≥ 9 and T ∈ T(n) \ {T1, T2, T3, T4,

T5}, then M1(T1) > M1(T2) > M1(T3) > M1(T4) = M1(T5) > M1(T ), where T2 − T5 are trees

depicted in Fig. 4.

Fig. 4. The trees occurring in Theorem 6.2.

In [37], the trees with maximal and minimal value of the second Zagreb index are obtained as follows.

Theorem 6.3. [37] Let T be any tree of order n, then

4n− 8 ≤ M2(T ) ≤ (n− 1)2

and the left equality holds if and only if T ∼= Pn and the right equality holds if and only if T ∼= K1,n−1.

Das et al. [38] obtained the following upper bound on M1(T ) in terms of n and ∆:

Theorem 6.4. [38] Let T be a tree with n vertices and maximum degree ∆ . Then

M1(T ) ≤ n2 − 3n+ 2(∆ + 1)

with equality if and only if T ∼= K1,n−1 or T ∼= P4 .

In the paper [35], the authors gave some lower and upper bounds on the first Zagreb index M1(G) of
graphs and trees in terms of number of vertices, irregularity index, maximum degree, and characterized
extremal graphs. Let Υ1 be the class of trees T = (V,E) such that T is a tree of order n, irregularity
index t, maximum degree ∆ and

∆ = t , di = 1 , i = t, t+ 1, . . . , n .
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Theorem 6.5. [35] Let T be a tree of order n with irregularity index t and maximum degree ∆. Then

M1(T ) ≤
[
n− 3− t(t− 3)

2

]
∆2 − (t− 1)(t− 2)∆ +

1

3
(t3 − 3t2 + 2t+ 6)

with equality if and only if G ∈ Υ1 .

A caterpillar or caterpillar tree is a tree in which all the pendent vertices are within distance 1 of a
central path. In [133] it was noted that each even number, except 4 and 8 is the first Zagreb index of a
caterpillar.

From Theorem 4.8, it can easily be deduced that for a tree T with n vertices and maximum degree
∆ > 1 it is satisfied

M1(T ) ≤ 2(n− 1)(1 + ∆)− n∆+ (1− k)(∆− k)

where k is an integer defined via

k = n− 1− (∆− 1)

⌊
n− 2

∆− 1

⌋
.

Equality is attained if and only if at most one vertex of T has degree different from 1 and ∆.

Besides, Corollary 4.1 implies the upper bound for the first Zagreb index of chemical trees with
n ≥ 2 vertices. This upper bound is also obtained in [107]. As in [107], for n = 3` ≥ 6 let T3` be the
family of chemical trees with n vertices, such that ` − 1 vertices have degree 4, one vertex has degree
2 and the remaining vertices are pendent. Denote by T̃3` a subset of T3` such that for the unique vertex
v ∈ V (T ), T ∈ T̃3`, of degree 2, exactly one of its neighbors is pendent. For n = 3` + 1 ≥ 7, let T3`+1

be the family of chemical trees with n vertices such that ` − 1 vertices have degree 4, one vertex has
degree 3 and the remaining vertices are pendent, while T̃3`+1 denotes the family of trees T from T3`+1

such that for the unique vertex v ∈ V (T ) of degree 3 exactly one of its neighbors is pendent. Finally, for
n = 3` + 2 ≥ 5, let T3`+2 denotes the family of chemical trees with n vertices such that ` vertices have
degree 4, and the remaining vertices are pendent. Then,

M1(T ) ≤

 6n− 10 if n ≡ 2 (mod 3)

6n− 12 otherwise

with equality if and only if T ∈ Tn.

The trees with the maximum second Zagreb index among the trees with given n and ∆ are determined
in [56].

Theorem 6.6. [56] Let T be a tree with n vertices and the maximum degree ∆ ≥ 2. Then

M2(T ) ≤ ∆(2n−∆− 1− k) + k(k − 1)

where

k ≡ n− 1(mod (∆− 1)) , 1 ≤ k ≤ ∆− 1
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i.e.,

k = n− 1− (∆− 1)

⌊
n− 2

∆− 1

⌋
.

Equality is attained if and only if T has at most one vertex of degree k that is adjacent to a single vertex

of degree ∆, and all other vertices of T have degree either ∆ or 1.

As a simple corollary of the previous theorem, an upper bound for the second Zagreb index of
chemical trees, can easily be obtained. This upper bound was determined in [107].

M2(T ) ≤

 8n− 24 if n ≡ 2 (mod 3)

8n− 26 otherwise

with equality if and only if n ≡ 0, 1(mod 3) and G ∈ T̃n, or n ≡ 2(mod 3) and G ∈ Tn.
In order to state the results from [138] we need the following notations. Denote by mij (1 ≤ i, j ≤ ∆)

the number of edges that connect vertices of degrees i and j in a tree T , and by ni (i = 1, 2, . . . ,∆) the
number of vertices of degree i.

Theorem 6.7. [138] Let T be a tree with maximal second Zagreb index with ni vertices of degree i and

maximal degree ∆. Then,

1) m∆∆ = n∆ − 1;

2) mij = min

{
ni −

∆∑
k=j+1

mik , jnj −
j∑

k=i+1

mkj −
∆∑

k=j

mjk

}
for each 1 ≤ i < j ≤ ∆;

3) mii = ni −
∆∑

k=i+1

mik for each i = 1, . . . ,∆− 1.

Using this result, in the same paper, the authors presented a simple algorithm for calculating the
maximal value of the second Zagreb index for trees with prescribed number of vertices of given degree.
The user needs only to input values n1, n2, . . . , n∆ and the algorithm outputs the edge connectivity
values mij as well as the maximal value of the second Zagreb index. The complexity of algorithm is
proportional to ∆3. Since the complexity is independent of the number of vertices, for chemical trees
the algorithms works in constant time no matter how large the molecule is.

Let π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) be two different non-increasing degree sequences.

We write π C π′ if and only if
∑n

i=1 di =
∑n

i=1 d
′
i and

∑j
i=1 di ≤

∑j
i=1 d

′
i for all j = 1, 2, . . . , n. Such

an ordering is called to be a majorization [110]. Also, we use Γ(π) to denote the class of connected
graphs that have degree sequence π.

For a given degree sequence π, let M2(π) = max{M2(G)|G ∈ Γ(π)}. A graph G is called an
optimal graph in Γ(π) if G ∈ Γ(π) and M2(G) = M2(π).

Liu and Liu [104] characterized optimal trees in the set of trees with a given degree sequence.
A sequence π = (d1, d2, . . . , dn) is called a tree degree sequence if there exists a tree T having π as

its degree sequence, i.e., if and only if
n∑

i=1

di = 2(n− 1) . (32)
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In order to present the main results of the paper [104], we introduce some more notations. Assume
that G is a rooted graph with root v0. Let h(v), also called height of a vertex v, be the distance between
v and v0 and Vi(G) be the set of vertices at distance i from vertex v0. Then, according to [152], a
well-ordering ≺ of the vertices is called breadth–first search ordering with non-increasing degrees (BFS-
ordering, for short) if the following holds for all vertices u, v ∈ V (G):

(i) u ≺ v implies h(u) ≤ h(v);
(ii) u ≺ v implies d(u) ≥ d(v);
(iii) if there are two edges uu1 ∈ E(G) and vv1 ∈ E(G) such that u ≺ v, h(u) = h(u1) + 1 and

h(v) = h(v1) + 1, then u1 ≺ v1.
A tree that has a BFS-ordering of its vertices is said to be a BFS-tree.
In order to solve the problem of finding optimal trees in Γ(π), Liu and Liu [104] used the method

of [152] to define a special tree T ∗ ∈ Γ(π) as follows: Select a vertex v0 in layer 0 and create a sorted
list of vertices beginning with v0. Choose d1 new vertices in layer 1 adjacent to v0, say v11, v12, . . . , v1d1 ,
then d(v0) = d1. Choose d2 + . . . + dd1 − d1 new vertices in layer 2 such that d2 − 1 vertices, say
v21, v22, . . . , v2,d2−1, are adjacent to v11, d3 − 1 vertices are adjacent to v12, . . ., dd1 − 1 vertices are
adjacent to v1d1 . Then d(v11) = d2, (v12) = d3, . . . , d(v1,d1) = dd1 . Now choose dd1+1 − 1 new vertices
in layer 3 adjacent to v21 and hence d(v21) = dd1+1, . . . . Continue recursively with v22, v23, . . . until
all vertices in layer 3 are processed. Repeat the above procedure until all vertices are processed. In
this way, a BFS-tree T ∗ ∈ Γ(π) is obtained. For example, for a given tree degree sequence π1 =

(4, 4, 3, . . . , 3︸ ︷︷ ︸
4

, 2, 2, 2, 1, 1, . . . , 1︸ ︷︷ ︸
10

) a BFS-tree T ∗
1 is depicted in Fig. 5.

Fig. 5. The BFS-tree T ∗
1 with degree sequence (4, 4, 3, . . . , 3︸ ︷︷ ︸

4

, 2, 2, 2, 1, 1, . . . , 1︸ ︷︷ ︸
10

) .

Theorem 6.8. [152] For a given tree degree sequence π, there exists a unique BFS-tree T ∗ in Γ(π), i.e.,

T ∗ is uniquely determined up to isomorphism.

Now, the main result of paper [104] can be stated as follows.

Theorem 6.9. [104] Given a tree degree sequence π, the BFS-tree T ∗ has the maximum second Zagreb

index in Γ(π).
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Hence, by Theorems 6.8 and 6.9, there is a unique BFS-tree that has the maximum M2 in Γ(π). On
the other hand, this BFS-tree needs not be the only tree with the maximum M2 in Γ(π), as shown by an
example in [104].

Theorem 6.10. [104] Let π and π′ be two different non-increasing tree degree sequences with π C π′.

Let T ∗ and T ∗∗ be the trees with the maximum second Zagreb indices in Γ(π) and Γ(π′), respectively.

Then, M2(T
∗) < M2(T

∗∗).

In addition, as a simple corollary of Theorem 6.10, it is reproved that the star K1,n−1 has the maxi-
mum second Zagreb index among all n-vertex trees. Also, the following result is easily deduced.

Theorem 6.11. [104] If T is a tree of order n with k pendent vertices, then M2(T ) ≤ M2(Fn(k)), where

Fn(k) is the tree on n vertices obtained by attaching k paths of almost equal lengths (i.e., paths whose

lengths differ by at most one) to one common vertex.

Denote by Tn,k the class of trees with n vertices and with exactly k vertices of maximum degree ∆

(k ≤ n−2). The extremal trees whose Zagreb indices are maximum (minimum) in Tn,k are characterized
by Borovićanin and Alekstić Lampert [21]. Obviously, a path Pn is the unique element of Tn,n−2. Thus,
it may be assumed that k ≤ n− 3, in which case it was shown [21] that 1 ≤ k ≤ n/2− 1.

Theorem 6.12. [21] Let T ∈ Tn,k, where 1 ≤ k ≤ n/2− 1. Then

M1(T ) ≤ k∆2 + p(∆− 1)2 + µ2 + n− k − p− 1

and the equality holds if and only if T has the vertex degree sequence

(∆, . . . ,∆︸ ︷︷ ︸
k

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
p

, µ, 1, . . . , 1︸ ︷︷ ︸
n−k−p−1

)

where ∆ = bn−2
k
c+ 1 , p = bn−2−k(∆−1)

∆−2
c and µ = n− 1− k(∆− 1)− p(∆− 2).

Theorem 6.13. [21] Let T ∈ Tn,k where 1 ≤ k ≤ n
2
− 1. Then

M1(T ) ≥ 2k + 4n− 6

and the equality holds if and only if the tree T has the vertex degree sequence

(3, . . . , 3︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
n−2k−2

, 1, . . . , 1︸ ︷︷ ︸
k+2

) .

Extremal trees which maximize (minimize) the second Zagreb index in the class Tn,k are character-
ized in the sequel.

Theorem 6.14. [21] Let T ∈ Tn,k, where 1 ≤ k ≤ n/2− 1. Then

M2(T ) ≤ (k − 1)∆2 + 2p(∆− 1)2 + µ(∆ + µ− 1) + ∆(n− k − (∆− 1)p− µ)

where ∆ = bn−2
k
c+ 1, p = bn−2−k(∆−1)

∆−2
c and µ = n− 1− k(∆− 1)− p(∆− 2). The equality holds if

and only if the following conditions are satisfied.
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(i) The tree T has the vertex degree sequence

(∆, . . . ,∆︸ ︷︷ ︸
k

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
p

, µ, 1, . . . , 1︸ ︷︷ ︸
n−k−p−1

) .

(ii) Every vertex of degree ∆− 1 is adjacent to a vertex of degree ∆ and to ∆− 2 pendent vertices.

(iii) The vertex of degree µ (when µ > 1) is adjacent to a vertex of the degree ∆ and to µ− 1 pendent

vertices.

(iv) The remaining pendent vertices are attached to the vertices of degree ∆.

Theorem 6.15. [21] Let T ∈ Tn,k, where 1 ≤ k ≤ n/2− 1. Then

M2(T ) ≥

3k + 4n− 10, if n ≥ 3k + 1

6k + 3n− 9, if n < 3k + 1 .

The equality holds if and only if the following three conditions are satisfied.

(i) The tree T has the vertex degree sequence (3, . . . , 3︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
n−2k−2

, 1, . . . , 1︸ ︷︷ ︸
k+2

).

(ii) Between any two vertices of degree 3 in T there should be at least one vertex of degree 2, if

possible.

(iii) The remaining vertices of degree 2 (if they exist) in T are placed either between two vertices of

degree 2 or between a vertex of degree 2 and a vertex of degree 3.

Goubko [59] discovered an interesting property of trees with a given number of pendent vertices,
which enabled him to determine a lower bound for M1 of trees that depends only on the number of
pendent vertices of a tree, irrespective the number of its vertices.

Theorem 6.16. [59, 67] Let T be a tree with n1 ≥ 2 pendent vertices and first Zagreb index M1.

(a) If n1 is even, then M1(T ) ≥ 9n1 − 16 with equality if and only if all non-pendent vertices of T

are of degree 4.

(b) If n1 is odd, then M1(T ) ≥ 9n1−15, and the equality holds if and only if all non-pendent vertices

of T , except one, are of degree 4, and a single vertex of T is of degree 3 or 5.

Although Goubko’s theorem 6.16 provides simple structural conditions for graphs with minimal first
Zagreb indices, it is restricted to graphs with very special number of vertices. In fact, this theorem
determines extremal trees only if n = 3

2
n1 − 1 and n = 3

2
n1, respectively, and requires that n1 be even.

This limitation can be circumvented, as follows.
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Theorem 6.17. [68] Let T be a tree of order n with n1 pendent vertices. Then

M1(T ) ≥ 4n− 6 + (n+ n1 − 4)

⌊
n− 2

n− n1

⌋
− (n− n1)

⌊
n− 2

n− n1

⌋2
.

Equality is attained if and only if T consists of n1 pendent vertices, nt = (n − n1)
⌊

n−2
n−n1

⌋
− n1 + 2

vertices of degree t =
⌊

n−2
n−n1

⌋
+ 1, and nt+1 = n− 2− (n− n1)

⌊
n−2
n−n1

⌋
vertices of degree t+ 1.

Sharp lower bounds for the second Zagreb index for trees with a given number of pendent vertices,
were derived in papers [59, 61]. The corresponding optimal trees were determined, too.

As in [28,59], a non-pendent vertex in a tree is called a stem vertex if it has incident pendent vertices.
The edge connecting a stem with a pendent vertex will be referred to as a stem edge.

Theorem 6.18. [59,61] For any tree T with n1 ≥ 9 pendent vertices M2(T ) ≥ 11n1 − 27. The equality

holds if each stem vertex in T has degree 4 or 5, while other non-pendent vertices are of degree 3. At

least one such tree exists for any n1 ≥ 9.

An analogous type of problem was considered in the paper [60]. There a dynamic programming
method was elaborated, enabling the characterization of trees with a given number of pendents, for
which a vertex–degree–based topological index achieves its extremal value. This method was applied to
the first and second Zagreb indices.

A vertex of a tree with degree at least three is called a branching vertex and a segment of a tree is a
path-subtree whose terminal vertices are branching or pendent vertices.

In papers [20, 97], sharp lower and upper bounds on Zagreb indices of trees with fixed number
of segments are determined and the corresponding extremal trees are characterized. As the number of
segments in a tree is determined by the number of vertices of degree two (and vice versa), in this way also
the extremal trees with prescribed number of vertices of degree two whose Zagreb indices are minimum
(or maximum) are determined.

Denote, by STn,k the set of all n-vertex trees with exactly k segments. Then, as noted in [97], the
path Pn is the unique element of STn,1, the star Sn is the unique element of STn,n−1 and the set STn,2 is
empty. Accordingly, only the set STn,k for 3 ≤ k ≤ n− 2 needs to be considered.

Theorem 6.19. [97] Let T ∈ STn,k, where 3 ≤ k ≤ n− 2. Then,

4n+ k2 − 3k − 4 ≥ M1(T ) ≥

 4n+ k − 7 if k is odd

4n+ k − 4 if k is even.

The upper bound is attained if and only if T is a starlike tree of degree k. For odd k, the lower bound is

attained if and only if T is an n-vertex tree with vertex degree sequence (3, . . . , 3︸ ︷︷ ︸
k−1
2

, 2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k+3
2

).

For even k the bound is attained if and only if T is an n-vertex tree with vertex degree sequence

(4, 3, . . . , 3︸ ︷︷ ︸
k−4
2

, 2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k+4
2

).
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Denote by STO(n, k), for odd k, the set of all n-vertex trees with the degree sequence (3, . . . , 3︸ ︷︷ ︸
k−1
2

,

2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k+3
2

), whose vertices of degree 2 are placed between the vertices of degree 3 so that there

is at least one vertex of degree 2 between any two vertices of degree 3, and the remaining vertices of
degree 2 (if such do exist) are arranged arbitrarily so that a vertex of degree 2 has no pendent neighbor.

Denote by STE(n, k), for even k, the set of all n-vertex trees with the degree sequence (4, 3, . . . , 3︸ ︷︷ ︸
k−4
2

,

2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k+4
2

), whose vertices are arranged as follows. The unique vertex of degree 4 has three

pendent neighbors and a neighbor of degree 2. Then, the vertices of degree 2 are placed between the
vertices of degree 3 (at least one vertex of degree 2 between any two vertices of degree 3, if it is possible)
and the remaining vertices of degree 2 are arranged arbitrarily so that a vertex of degree 2 has no pendent
neighbor.

Theorem 6.20. [20] Let T ∈ STn,k, where 3 ≤ k ≤ n− 2. Then

M2(T ) ≥



8n+ 3k − 23

2
, n ≥ (3k − 1)/2 and k odd

3n+ 3k − 12 , n < (3k − 1)/2 and k odd

8n+ 3k − 18

2
, n ≥ (3k − 2)/2 and k even

3n+ 3k − 10 , n < (3k − 2)/2 and k even .

The equality holds if and only if T ∈ STO(n, k), for odd k, or T ∈ STE(n, k), for even k.

Theorem 6.21. [20] Let T ∈ STn,k, where 3 ≤ k ≤ n− 2. Then

M2(T ) ≤

 2k2 − 6k + 4n− 4 , n ≥ 2k + 1

k(n− 3) + 2n− 2 , n < 2k + 1 .

The upper bound is attained if and only if T is an n-vertex starlike tree of degree k, such that an arbitrary

pendent vertex is adjacent to a vertex of degree 2, for 2k + 1 ≤ n, or the central vertex of degree k has

exactly 2k + 1− n pendent neighbors, for n < 2k + 1.

In the paper [20], sharp lower and upper bounds for Zagreb indices of trees with given number
of branching vertices are determined, and the corresponding extremal trees characterized. For further
details, see [20].

In the paper [40], extremal trees with maximal first (second) Zagreb index among trees of order n
and independence number α are characterized. Let Sn,α be a tree (known as a spur) obtained from the
star K1,α by attaching a pendent edge to its n− α− 1 pendent vertices. If ∆ = α in a tree T of order n
with independence number α, then T ∼= Sn,α.
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Theorem 6.22. [40] Let T be a tree of order n with independence number α. Then,

M1(T ) ≤ α2 − 3α + 4n− 4

and

M2(T ) ≤ nα− 3α + 2n− 2 .

Equality in both inequalities holds if and only if T ∼= Sn,α.

In the paper [135], extremal trees with minimal first Zagreb index among trees of order n and in-
dependence number α are characterized. The extremal tree is the path Pn for α = dn/2e and the star
K1,n−1 for α = n− 1. For dn/2e < α < n− 1 define the set Tn,α consisting of all trees T = (V,E) with
n vertices and independence number α such that the degrees of the vertices in its maximum independent
set S differ by at most one, and such that the complement S = V \ S is also an independent set whose
vertex degrees differ by at most one. In fact, the set Tn,α consists of the coalescence of stars having
almost equal order (i.e., differing by at most one), with the pair of leaves identified in neighboring stars
(see Fig. 6).

Fig. 6. Three non-isomorphic trees with n = 10 , α = 6 and minimum value of M1 = 36 .

The following holds:

Theorem 6.23. [135] If T is a tree with n vertices and independence number α, then

M1(T ) ≥ 2(n− 1)− α

⌊
n− 1

α

⌋2
− (n− α)

⌊
n− 1

n− α

⌋2
+ (2n− α− 2)

⌊
n− 1

α

⌋
+ (n+ α− 2)

⌊
n− 1

n− α

⌋
with equality if and only if T ∈ Tn,α.
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As noted in [135], it appears that the problem of characterization of extremal trees with minimal
second Zagreb index among trees of order n and independence number α cannot be solved as easily as
it was the case with the first Zagreb index. Hence, the characterization of trees with minimal second
Zagreb index remains an open problem.

The domination number γ(G) of a graph G is the minimum cardinality of a subset D of V (G) such
that each vertex of G that is not contained in D is adjacent to at least one vertex of D. A subset D is
called minimum dominating set of G.

In paper [21], upper bounds on Zagreb indices of trees in terms of domination numbers are pre-
sented. These bounds are strict and extremal trees are characterized. In addition, a lower bound for
the first Zagreb index of trees with a given domination number is determined and the extremal trees are
characterized.

Note that γ(T ) = 1 if and only if T ∼= K1,n−1. It is well known [120] that every graph of order n
without isolated vertices has domination number at most n

2
. Also, it was proved by Fink et al. [55] that

equality holds only for C4 and for graphs of the form H ◦K1, for some H .

Theorem 6.24. [21] Let T be a tree with domination number γ. Then

M1(T ) ≤ (n− γ)(n− γ + 1) + 4(γ − 1)

and

M2(T ) ≤ 2(n− γ + 1)(γ − 1) + (n− γ)(n− 2γ + 1) .

Equality in both cases holds if and only if G ∼= Sn,n−γ , where Sn,n−γ is a spur obtained from the star

K1,n−γ by attaching a pendent edge to its γ − 1 pendent vertices.

In order to state the results from [21] concerning minimum first Zagreb index we need a few defini-
tions.

Suppose first that 1 ≤ γ ≤ n/3. Define D(n, γ) as a set of n-vertex trees T with domination number
γ such that T consists of the stars of orders

⌊
n−γ
γ

⌋
and

⌈
n−γ
γ

⌉
with exactly γ− 1 pairs of adjacent leaves

in neighboring stars. Then, it holds:

Theorem 6.25. [21] Let T be a tree on n vertices with domination number γ, where 1 ≤ γ ≤ n/3.

Then,

M1(T ) ≥ −γ

⌊
n− 1

γ

⌋2
+ (2n− γ)

⌊
n− 1

γ

⌋
+ 6(γ − 1) .

The equality holds if and only if T ∈ D(n, γ).

Next, suppose that n
3
≤ γ ≤ n

2
and define G(n, γ) as a set of trees T on n vertices with domination

number γ, such that every vertex from T has at most one pendent neighbor and

(i) there exists a minimum dominating set D of T containing 3γ − n − 2 vertices of degree 3 and
2n−4γ vertices of degree 2, while the set D contains n−2γ+2 vertices of degree 2 and 3γ−n pendent
vertices, or
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(ii) there exists a minimum dominating set D of T containing n− 2γ vertices of degree 2 and 3γ−n

pendent vertices, while the set D contains 2n−4γ+2 vertices of degree 2, 3γ−n−2 vertices of degree
3 and every vertex from D has exactly one neighbor in D.

Theorem 6.26. [21] Let T be a tree on n vertices with domination number γ, where n
3
≤ γ ≤ n

2
. Then,

M1(T ) ≥


4n− 6 if γ =

⌈n
3

⌉
2n+ 6γ = 10 if

n+ 3

3
≤ γ ≤ n

2

with equality if and only if T ∼= Pn, for γ = dn/3e, or T ∈ G(n, γ), otherwise.

Huang and Deng [83], and independently Li and Zhao [91] and Sun and Chen [128], characterized
the trees with perfect matchings having the largest and the second largest Zagreb indices. Denote by Tm

the set of trees with perfect matchings on 2m vertices. Let T 1
m ∈ Tm be the tree on 2m vertices obtained

by attaching a pendent edge together with m − 1 paths of lengths 2 at a single vertex (see Fig. 7), and
let T 2

m ∈ Tm be the tree displayed in Fig. 7.

...
{ m-1

..
.

Tm
1 Tm

2

{m-3

Fig. 7. The trees occurring in Theorem 6.27.

Theorem 6.27. [83, 91, 128]
a) Let T be any tree in Tm, m ≥ 3. If T is different from T 1

m, then Mi(T ) < Mi(T
1
m), i = 1, 2;

b) Let T be any tree in Tm \ {T 1
m, T

2
m}, m ≥ 3, then Mi(T ) < Mi(T

2
m).

At the end of this section we present results from [49] concerning the so-called k-trees, class of
graphs which is the generalization of trees.

The k-tree T k
n , k ≥ 1, introduced in [12], is defined recursively as follows.

(i) The smallest k-tree is the k-clique Kk.
(ii) If G is a k-tree with n vertices and a new vertex v of degree k is added and joined to the vertices

of a k-clique in G, then the larger graph is a k-tree with n+ 1 vertices.
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The (k, n)-path P k
n , has vertex set {v1, v2, . . . , vn} where G[{v1, v2, . . . , vk}] ∼= Kk. For k+1 ≤ i ≤

n, let vertex vi be adjacent to the vertices {vi−1, vi−2, . . . , vi−k}.
A helpful characteristic of the k-path P k

n is that we may order the vertices v1, v2, . . . , vn so that
P k
n − {v1, v2, . . . , vi} is a k-path on n− i vertices for 1 ≤ i ≤ n− k − 1.

The (k, n)-star Sk,n−k, has vertex set {v1, v2, . . . , vn} where G[{v1, v2, . . . , vk}] ∼= Kk and N(vi) =

{v1, v2, . . . , vk} for k + 1 ≤ i ≤ n.
The 3-path and the 3-star on 7 vertices are presented in Fig. 8.

Fig. 8. The 3-path and 3-star with 7 vertices.

The first and second Zagreb indices of k-paths and k-stars are obtained in [49].

Theorem 6.28. [49] Let P k
n be the k-path on n ≥ k + 3 vertices. Then

M1(P
k
n ) = 2nk(n− 2)− 1

3
n(n− 1)(n− 2)− 1

3
k(k + 1)(2k − 5)

for k + 3 ≤ n ≤ 2k and k ≥ 3

M1(P
k
n ) = 4nk2 − 1

3
k(10k − 1)(k + 1) for n ≥ max (4, 2k + 1) .

Theorem 6.29. [49] Let P k
n be the k-path on n ≥ k + 3 vertices. Then

M2(P
k
n ) =

1

2
(k4 + 9k3 + 12k2 − 8k + 2), n = k + 3

M2(P
k
n ) =

1

24
((10− 4k)n3 − n4 + (54k2 − 18k − 23)n2

− (44k3 + 66k2 − 54k − 14)n+ 7k4 + 38k3 + 5k2 − 26k)

for k + 4 ≤ n ≤ 2k

M2(P
k
n ) =

1

24
(n4 − (12k + 6)n3 + (54k2 + 54k + 11)n2

− (12k3 + 162k2 + 66k + 6)n− (25k4 − 70k3 − 109k2 − 14k))

for 2k + 1 ≤ n ≤ 3k − 1

M2(P
k
n ) =

1

24
(48nk3 − 53k4 − 46k3 + 5k2 − 2k) for n ≥ max(5, 3k) .
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Theorem 6.30. [49] Let Sk,n−k be the k-star on n ≥ k + 1 vertices. Then

M1(Sk,n−k) = n2k + (k2 − 2k)n− k3 + 1

M2(Sk,n−k) =
1

2

[
(3k2 − k)n2 − (2k3 + 4k2 − 2k)n+ k(2k − 1)(k + 1)

]
.

Sharp upper and lower bounds for M1 and M2 of k-trees are determined as follows.

Theorem 6.31. [49] Let T k
n be a k-tree on n ≥ k vertices. Then

M1(P
k
n ) ≤ M1(T

k
n ) ≤ M1(Sk,n−k)

and

M2(P
k
n ) ≤ M2(T

k
n ) ≤ M2(Sk,n−k)

and the left–hand side equality in both inequalities is reached if and only if T k
n

∼= P k
n whereas the

right–hand side equality holds if and only if G ∼= Sk,n−k.

Accordingly, by this theorem, the results of the papers [37,66] (valid in the case k = 1) are extended
to the k-tree, k > 1. Also, it can be proven that maximal outerplanar graphs are 2-trees, and consequently,
the results obtained for k-trees also extend the result of Hou, Li, Song and Wei from [80], who determined
sharp upper and lower bounds for M1- and M2-values of maximal outerplanar graphs.

7. On c-cyclic graph, c ≥ 1

For connected graphs, the cyclomatic number, i.e., the number of independent cycles, is equal to c =

m− n+ 1. Graphs with c = 0, 1, 2, 3, 4 are referred to as trees, unicyclic, bicyclic graphs, tricyclic and
tetracyclic graphs, respectively.

Zhang and Zhang in [150] determined the first three unicyclic graphs from the class U(n) of all
connected unicyclic graphs with n vertices whose M1 is maximum (minimum). The part of this result,
concerning the first three largest values of M1, was reproved in [103] using a different approach.

Theorem 7.1. [103, 150] Let G ∈ U(n). If n ≥ 9 and G ∈ U(n) \ {U1, U2, U3, U4}, then M1(U1) >

M1(U2) > M1(U3) = M1(U4) > M1(G), where U1 − U4 are unicyclic graphs depicted in Fig. 9.

...

U1

...

U2

...

U3

...

U4

Fig. 9. The graphs occurring in Theorem 7.1.



114

Theorem 7.2. [150] Let G ∈ U(n), n ≥ 7. Then

(i) M1(G) attains the smallest value if and only if G ∼= Cn;

(ii) M1(G) attains the second smallest value if and only if G is a cycle Cn−1 with a pendent edge

attached;

(iii) M1(G) attains the third smallest value if and only if G is a cycle Cn−2 with two pendent edges

attached at different vertices.

Sharp bounds for the second Zagreb index of unicyclic graphs were established in the paper [146].

Let Un,k be the set of unicyclic graphs with n vertices and k pendent vertices, 0 ≤ k ≤ n − 3.
Denote by Cq(p1, p2, . . . , pk), k ≥ 1, a unicyclic graph with n vertices created from Cq by attaching
paths of lengths p1, p2, . . . , pk to one vertex of the cycle Cq, respectively, where n = q+

∑k
i=1 pi, pi ≥ 1,

i = 1, 2, . . . , k. In addition, denote

U∗
n,0 = {Cn}

U∗
n,k = {Cq(p1, p2, . . . , pk) : pi ≥ 2, 1 ≤ i ≤ k, q ≥ 3} , k ≥ 1

Un
k = C3(1, 1, . . . , 1, 2, 2, . . . , 2︸ ︷︷ ︸

n−k−3

)

see Fig. 10. Obviously, U∗
n,k ⊆ Un,k and Un

k ∈ Un,k.

Fig. 10. (a) An element of U∗
n,k , and (b) the graph Un

k . These graphs are mentioned in Theorem 7.3.

Let U+
n,k be the set of all graphs from Un,k such that ∆(G) ≤ 3 and each pendent vertex of G is

adjacent to another vertex of degree 3 and every pair of vertices of degree 3 are nonadjacent. Clearly,
U+

n,0 = {Cn}. As an illustration, in Fig. 11, the graphs G1, G2, G3, G4 ∈ U+
13,4 are presented.
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Fig. 11. For graphs belonging to the set U+
13,4. These graphs are mentioned in Theorem 7.4.

Theorem 7.3. [146] Let G ∈ Un,k, 0 ≤ k ≤ n− 3. Then

M2(G) ≤

4n+ 2k(k + 1) if n ≥ 2k + 3

4n+ (n− 1)k, if n ≤ 2k + 2 .

Equalities hold if and only if G ∈ U∗
n,k, for n ≥ 2k + 3, and G ∼= Un

k , for n ≤ 2k + 2.

Theorem 7.4. [146] Let G ∈ Un,k, 0 ≤ k ≤ n− 3. Then

M2(G) ≥ 4n+ 3k

and the equality holds if and only if n ≥ 3k and G ∈ U+
n,k.

Let ϕ(n, k) = 4n + 2k(k + 1) and φ(n, k) = 4n + 3k, where n and k are integers such that
0 ≤ k ≤ n − 3. The functions ϕ(n, k) and φ(n, k) increase strictly monotonically in 0 ≤ k ≤ n − 3

[146]. As the set of all unicyclic graphs with n vertices is
⋃n−3

k=0 Un,k, by Theorems 7.3 and 7.4, Un
n−3

and Cn have the maximum and the minimum second Zagreb index among all unicyclic graphs with n

vertices [146].

In the paper [105], an extremal unicyclic graph that achieves the maximum second Zagreb index in
the class of unicyclic graphs with given degree sequence is characterized.

Let π = (d1, d2, . . . , dn) be a degree sequence of a c-cyclic graph, where c is an integer and c ≥ 0,
then

n∑
i=1

di = 2(n+ c− 1) , d1 ≥ d2 ≥ c+ 1 . (33)

We now present the construction of the graph G∗ ∈ Γ(π) as in [104, 105, 148, 152].

Select v1 as the root vertex and begin with v1 of the zeroth layer. Select the vertices v2, v3, . . . , vd1+1

as the first layer such that

N(v1) = {v2, v3, . . . , vd1+1} .
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Then append d2 − 1 vertices to v2, d3 − 2 vertices to v3,. . ., dc+2 − 2 vertices to vc+2 such that

N(v2) = {v1, v3, . . . , vc+2, vd1+2, vd1+3, . . . , vd1+d2−c}

N(v3) = {v1, v2, vd1+d2−c+1, . . . , vd1+d2+d3−c−2}

. . .

N(vc+2) = {v1, v2, v(∑c+1
i=1 di)−3c+3, . . . , v(∑c+2

i=1 di)−3c} .

After that, append dc+3 − 1 vertices to vc+3 such that

N(vc+3) = {v1, v(∑c+2
i=1 di)−3c+1, . . . , v(

∑c+3
i=1 di)−3c−1} .

Repeat the above procedure until all vertices are processed. As noted in [148], the vertices v1v2v3,
. . . , v1v2vc+2 form c triangles in G∗ and G∗ has a BFS-ordering. In particular, if c = 0 there are no
triangles and the graph G∗ coincides with the tree T ∗ specified in Theorem 6.9. If c = 1, then G∗ is a
unicyclic graph denoted by U∗ whereas if c = 2, then G∗ is bicyclic graph, denoted by B∗.

Let π = (d1, d2, . . . , dn), where dn = 1, be an unicyclic degree sequence (c = 1 in (33)). Let U∗ be
the unique unicyclic graph such that the unique cycle of U∗ is a triangle with V (C3) = {v1, v2, v3}, and
the remaining vertices appear in BFS-ordering with respect to C3 starting from v4 that is adjacent to v1.
In fact, U∗ can be constructed by the BFS method as described above.

Theorem 7.5. [105] If dn = 1, then U∗ achieves the maximum second Zagreb index in the class of

unicyclic graph with degree sequence π.

Remark. [105] For a given unicyclic degree sequence π, U∗ is the unique BFS-graph with the
maximum M2 in Γ(π), but it needs not be the unique unicyclic graph with maximum M2 in Γ(π), which
is illustrated by an example in [105].

In addition, it is proven in [105], that if π C π′, π and π′ are unicyclic degree sequences and U∗ and
U∗∗ have the maximum second Zagreb indices in Γ(π) and Γ(π′), respectively, then M2(U

∗) < M2(U
∗∗).

As a simple corollary of Theorem 7.5, the result from [146], which is concerned with unicyclic
graphs with n vertices and k pendent vertices whose second Zagreb index is maximum is reproven
in [105]. Furthermore, the first to ninth largest second Zagreb indices together with the corresponding
extremal unicyclic graphs in the class of unicyclic graphs with n ≥ 17 vertices have been determined
in [105].

Theorem 7.6. [105] Let U be a unicyclic graph on n ≥ 17 vertices. If

U /∈ {U1, U2, . . . , U10}, then M2(U) < M2(U10) < M2(U9) < M2(U8) < M2(U7) = M2(U6) <

M2(U5) < M2(U4) < M2(U3) < M2(U2) < M2(U1), where U1 − U10 are unicyclic graphs displayed in

Fig. 12.
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Fig. 12. The unicyclic graphs U1, U2, . . . , U10 occurring in Theorem 7.6.

In the paper [135], unicyclic graphs of order n and independence number α with minimal first Zagreb
index are determined. Let Un,α denote the set consisting of all unicyclic graphs G = (V,E) with n

vertices and independence number α, such that the degrees of the vertices in its maximum independent
set S differ by at most one among each other, and such that the complement S = V \S is also independent
set whose vertex degrees differ by at most one among each other. These graphs, in fact, consist of
coalescence of stars, whose orders differ by at most one, with pairs of leaves identified in neighboring
stars (see Fig. 13).

Fig. 13. Four non-isomorphic unicyclic graphs with n = 10 , α = 7 and minimum value of M1 = 50 .

Theorem 7.7. [135] If G is a unicyclic graph with n vertices and the independence number α, then

M1(G) ≥ 4n− 2α− (n− α)

⌊
n

n− α

⌋2
+ (n+ α)

⌊
n

n− α

⌋
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with equality if and only if G ∈ Un,α when α ≥ n/2 and G ∼= C2α+1 when α = (n− 1)/2.

Huang and Deng in [83] characterized unicyclic graphs with perfect matchings which attain the
largest and the second largest values of Zagreb indices. Denote by Um the set of unicyclic graphs with
perfect matchings on 2m vertices. Let U1

m ∈ Um be the graph on 2m vertices obtained from C3 by
attaching a pendent edge together with m − 2 paths of lengths 2 at the vertex u (see Fig. 14). Let
U2
m ∈ Um be the graph on 2m vertices obtained from C3 by attaching a pendent edge and m − 3 paths

of lengths 2 at the vertex u, and single pendent edges at the other vertices, respectively (see Fig. 14).

Fig. 14. The graphs occurring in Theorem 7.8.

Theorem 7.8. [83]
a) Let G ∈ Um. If m = 2 or m ≥ 5, then U1

m and U2
m are the graphs with the largest and second

largest Zagreb indices, respectively.

b) Let G ∈ U3. Then M1(G) < M1(U
2
3 ) = M1(U

1
3 ) and M2(G) < M2(U

1
3 ) < M2(U

2
3 ).

c) Let G ∈ U4. Then M1(G) < M1(U
2
4 ) < M1(U

1
4 ) and M2(G) < M2(U

2
4 ) = M2(U

1
4 ).

Horoldagva and Das in [76] gave lower bounds for M1 of unicyclic graphs of order n with maximum
degree ∆ and cycle length k. Denote by Bn(k,∆) the set of graphs of order n obtained by attaching
∆− 2 paths to one vertex of Ck.

Theorem 7.9. [76] Let G be a connected unicyclic graph of order n with maximum degree ∆ and cycle

length k (3 ≤ k ≤ n−∆+ 2). Then

M1(G) ≥ ∆(∆− 3) + 4n+ 2
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with equality if and only if G ∈ Bn(k,∆) .

Let Bk
n (k ≤ n) be the unicyclic graph of order n with n − k pendent vertices such that its each

pendent vertex is adjacent to one vertex of Ck. In particular, Bn
n
∼= Cn, a cycle of order n. Denote by

Ck
n, ∆ (∆ ≥ 4) , the unicyclic graph obtained by identifying two pendent vertices of the path Pn−∆−k+2

with the center of the star K1,∆−1 and one vertex of the cycle Ck, respectively. Denote by Dk
n,∆ (∆ ≥ 4) ,

the unicyclic graph of order n, obtained by identifying a pendent vertex of Pn−∆−k+3 with a pendent
vertex of Bk

∆+k−2. Let Ak
n be the unicyclic graph obtained by identifying one pendent vertex of Pn−k+1

with a vertex of Ck.

Let G be a connected unicyclic graph of order n with maximum degree ∆ and cycle length k. Then
obviously ∆ + k ≤ n + 2. If ∆ + k = n and the maximum degree vertex does not lie on the cycle of
G, then G is isomorphic to Ck

n,∆. If ∆+ k ≥ n and G is different from Ck
n,∆, then the maximum degree

vertex of G must lie on the cycle. In this case one can easily characterize graphs with minimum M2.
In [76], Horoldagva and Das obtained the following lower bound on M2(G) and characterize extremal
graphs when ∆+ k < n.

Theorem 7.10. [76] Let G be a connected unicyclic graph of order n with maximum degree ∆ and cycle

length k (∆ + k < n). Then

M2(G) ≥


∆(∆− 3) + 4n+ 6 if ∆ ≥ 5

4n+ 10 if ∆ = 4

4n+ 4 if ∆ = 3

(34)

where ∆ is the maximum degree in G. Moreover, the equalities hold in (34) if and only if G ∼= Ck
n,∆,

G ∼= Ck
n,4 or G ∼= Dk

n,4, G ∼= Ak
n, respectively.

Zhao and Li [153] determined sharp lower and upper bounds for both M1 and M2 of n-vertex bicyclic
graphs with k pendent vertices, as well as the corresponding extremal graphs which attain these bounds.

The set of n-vertex bicyclic graphs consists of graphs of two types: graphs whose two independent
cycles have no common edge and graphs whose two independent cycles have at least one edge in com-
mon. The arrangement of cycles contained in a bicyclic graph has three possible cases [45,153], depicted
in Fig. 15, and denoted by B1(a, b), B2(a, b, r) and B3(a, b, r), respectively.

Let Bn,k be a set of n vertex bicyclic graphs with k pendent vertices and let Bi
n,k be a subset of Bn,k

consisting of those graphs G whose arrangement of cycles is Bi, where Bi is depicted in Fig. 15, for
i = 1, 2, 3.
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Cb

{

r+1
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n-k-5
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2k-n+5

}n-4

B1(a,b) B2(a,b,r)

B3(a,b,r)

B2(3,3,1)(1,1,...,1)

B6B5

B4

{

n-4

Fig. 15. The different types of bicyclic graphs.

Denote by Bi(a, b)(p1, p2, . . . , pk), i = 1, 2, 3, k ≥ 1, the n-vertex bicyclic graphs obtained from
B1(a, b) and Bi(a, b, r), i = 2, 3, respectively, by attaching k pendent paths of lengths p1, p2, . . . , pk

to exactly one vertex of maximum degree in B1(a, b), i.e., in Bi(a, b, r), i = 2, 3, where pj ≥ 1,
j = 1, 2, . . . , k. Also, let

B∗
n,k =

{
B1(a, b)(p1, p2, . . . , pk) : pi ≥ 2, 1 ≤ i ≤ k

}
B∗∗

n,k =
{
B1(a, b)(p1, p2, . . . , pk) : pi ≥ 1, 1 ≤ i ≤ k

}
Bn

k = B1(3, 3)(1, . . . , 1︸ ︷︷ ︸
2k−n+5

, 2, . . . , 2︸ ︷︷ ︸
n−k−5

) .

The graphs B4 ∈ B∗
n,k, B5 ∈ B∗∗

n,k and B6 ∼= Bn
k are depicted in Fig. 15.

Let B+
n,k be a set of graphs G from B2

n,k ∪ B3
n,k such that ∆(G) ≤ 3, each pendent vertex from G is

adjacent to a vertex of degree 3 and every pair of vertices of degree 3 are nonadjacent. Also, let B++
n,k be

a set of graphs G from Bn,k such that |d(u)− d(v)| ≤ 1 for all non-pendent vertices u, v ∈ V (G).
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Theorem 7.11. [153] Let G ∈ Bn,k with 0 ≤ k ≤ n− 5. Then

M1(G) ≤ 4n+ k2 + 5k + 12

with equality attained if and only if G ∈ B∗∗
n,k.

Theorem 7.12. [153] Let G ∈ Bn,k with 0 ≤ k ≤ n− 5. Then

M2(G) ≤

4n+ 2k2 + 10k + 20 if n ≥ 2k + 5

6n+ nk + k + 10 if n ≤ 2k + 4 .

Equalities hold if and only if G ∈ B∗
n,k, for n ≥ 2k + 5, and G ∼= Bn

k , for n ≤ 2k + 4.

Theorem 7.13. [153] Let G ∈ Bn,k with 0 ≤ k ≤ n− 4, d =
⌈
2k+2−n
n−k

⌉
. Then

M1(G) ≥

4n+ 2k + 10 if n ≥ 2k + 2

(−d2 − d+ 3)n+ (d2 + 3d+ 2)k + (4d+ 10) if n ≤ 2k + 1 .
(35)

Equalities in (35) hold if and only if G ∈ B++
n,k .

Theorem 7.14. [153] Let G ∈ Bn,k with 0 ≤ k ≤ n− 4, d =
⌈
2k+2−n
n−k

⌉
. Then

M2(G) ≥ 4n+ 3k + 16 .

Equality holds if and only if n ≥ 3k + 3 and G ∈ B+
n,k.

On the basis of Theorems 7.11 and 7.12, Zhao and Li [153] deduced that if 0 ≤ k ≤ n−5, then each
member G ∈ B∗∗

n,n−5 and Bn
n−5, respectively, have the maximum first and second Zagreb indices among

graphs from
⋃n−5

k=0 Bn,k, and furthermore

M1(G) = n2 − n+ 12 , for G ∈ B∗∗
n,n−5 , M2(B

n
n−5) = n2 + 2n+ 5 .

If k = n− 4, then [153]

G ∼= B2(3, 3, 1)(1, . . . , 1︸ ︷︷ ︸
n−4

) , and M1(G) = n2 − n+ 14 , M2(G) = n2 + 2n+ 9 .

Hence, the graph B2(3, 3, 1)(1, . . . , 1︸ ︷︷ ︸
n−4

), depicted in Fig. 15, has the maximum M1-value and M2-

value among all bicyclic graphs with n vertices, which represents in fact the reproved result of Deng [45].
The same result concerning bicyclic graphs with maximal M1 was obtained independently in [27] using
a different approach.

Also, it was easy to deduce [153] that each member in B++
n,0 (resp. B+

n,0) has the minimum first (resp.
second) Zagreb index among all n-vertex bicyclic graphs, and in such a way the corresponding results
of Deng [45] were reproved.

The study of optimal graphs in the set of all connected graphs with a given degree sequence π which
satisfy some conditions was continued in the paper [148] and some results that generalize the main
results of the papers [104, 105] were obtained. In addition, some optimal graphs in the set of bicyclic
graphs with a given degree sequence were determined. First, it was proven:
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Theorem 7.15. [148] Let π = (d1, d2, . . . , dn) be a degree sequence. If it satisfies the following condi-

tions

(i)
∑n

i=1 di = 2(n+ c− 1), c is an integer and c ≥ 0,

(ii) d1 ≥ d2 ≥ c+ 1,

(iii) d3 ≥ d4 = d5 = · · · = dc+2, for c ≥ 1,

(iv) dn = 1,

then the graph G∗, constructed as described in the explanation of Theorem 7.5, is an optimal graph in

Γ(π), i.e., for any graph G ∈ Γ(π), M2(G) ≤ M2(G
∗).

The previous theorem implies the results of Theorems 6.9 and 7.5. Also, the corresponding result
for bicyclic graphs was obtained. A bicyclic graph has the so-called bicyclic degree sequence π which
satisfies the condition (33) for c = 2. We will use the notation from [153], introduced previously. By
B2(a, b, 1) we denote a bicyclic graph such that two independent cycles Ca and Cb, contained in it, have
exactly one edge in common. Also, let B3(a, b, 1) be a bicyclic graph formed by joining two independent
cycles Ca and Cb by an edge (see Fig. 15, where r = 1). Finally, let Bπ be the set of bicyclic graphs
with a degree sequence π.

Theorem 7.16. [148] Let π = (d1, d2, . . . , dn) be a bicyclic degree sequence and let k be the number of

pendent vertices of a graph G ∈ Bπ.

(1) If dn = 2 and d2 ≥ 3, then M2(G) ≤ 4n + 17 with equality if and only if G ∼= B3(a, b, 1) or

G ∼= B2(a, b, 1), where a+ b = n or a+ b− 2 = n, respectively.

(2) If dn = 2 and d2 = 2, then M2(G) ≤ 4n + 20 with equality if and only if G ∼= B1(a, b), where

a+ b− 1 = n.

(3) If dn = 1, d2 = 2 and k ≤ (n − 5)/2, then M2(G) ≤ 4n + 2k2 + 10k + 20 with equality if and

only if G ∈ B∗
n,k.

(4) If dn = 1, d2 = 2 and k > (n− 5)/2, then M2(G) ≤ kn+ 6n+ k + 10 with equality if and only

if G ∼= Bn
k ;

(5) If dn = 1 and d2 ≥ 3, then the graph B∗, defined previously (see the explanation of Theorem 6.9),

is an optimal graph in the set Bπ.

Remark. [148] B∗ is not the unique optimal graph in Bπ for dn = 1 and d2 ≥ 3, as illustrated by an
example in [148].

Besides, in paper [148], it was proven:

Theorem 7.17. [148] Let π and π′ be two non-increasing bicyclic degree sequences. If π C π′, then

M2(π) ≤ M2(π
′), with equality if and only if π = π′.

By Theorem 7.16 (parts (3) and (4)) the results of Theorem 7.12, concerned with bicyclic graphs
with n vertices and k pendent vertices whose second Zagreb index is maximum are reproved.

Recall that Goubko (see Theorem 6.16) determined the lower bound for M1 of trees with a given
number of pendent vertices. This result was extended in [68] to any connected graph with a given
number of pendents and fixed cyclomatic number.
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Theorem 7.18. [68] Let G be a connected graph with k pendent vertices and cyclomatic number c.

Then,

M1(G) ≥ 9k + 16(c− 1) . (36)

Equality in (36) holds if and only if all non-pendent vertices of G are of degree 4, provided such graphs

exist.

The corresponding result for trees (c = 0) is stated in Theorem 6.17, and the result for unicyclic
graphs is stated below.

Theorem 7.19. [68] Let U be a unicyclic graph of order n with k pendent vertices. Then

M1(U) ≥ 4n+ (n+ k)

⌊
n

n− k

⌋
− (n− k)

⌊
n

n− k

⌋2
.

Equality is attained if and only if U consists of k pendent vertices, nt = (n − k)
⌊

n
n−k

⌋
− k vertices of

degree t =
⌊

n
n−k

⌋
+ 1, and nt+1 = n− (n− k)

⌊
n

n−k

⌋
vertices of degree t+ 1.

Unicyclic graphs of order n with k pendent vertices and minimal first Zagreb index, of the form
specified in Theorem 7.19, exist for any value of n and k, provided n ≥ 3 and k ≥ 0.

Besides, in [68], the result from [153] were reproved, with some additional conditions proposed.
In fact, it was shown in [68] that the extremal n-vertex bicyclic graphs with k pendent vertices which
attain the minimum value of M1, contain additional nt = (n − k)

⌊
n+2
n−k

⌋
− k − 2 vertices of degree

t =
⌊
n+2
n−k

⌋
+ 1 = d + 2, and nt+1 = n + 2 − (n − k)

⌊
n+2
n−k

⌋
vertices of degree t + 1 = d + 3, where

d =
⌈
2k+2−n
n−k

⌉
(cf. Theorem 7.13).

In the paper [132], Tache considered some degree–based topological indices for bicyclic graphs,
including the first Zagreb index. Extremal bicyclic graphs with fixed number of pendents with maximal
value of M1 were determined, reproving in such a way the results from [153]. Besides, the results on
extremal bicyclic graphs with fixed girth which attain the maximum value of M1 were obtained.

Denote by B∗2(a, b, r) a bicyclic graph B2(a, b, r)(1, . . . , 1︸ ︷︷ ︸
n−4

) obtained by attaching k pendent edges

to exactly one vertex of maximum degree to the graph B2(a, b, r) from Fig. 15.

Theorem 7.20. [132] Let G be a bicyclic graph of order n and girth g ≥ 3. If G maximizes the index

M1, then G ∼= B∗2(g, g, g
2
) for g an even number and G ∼= B∗2(g, g, g−1

2
) for g odd.

Li and Zhao in [90] determined sharp upper bounds for M1 and M2 of bicyclic graphs with perfect
matchings. Besides, in [90], sharp upper bounds for Zagreb indices of bicyclic graphs with an m-
matching were also obtained.

Denote by Bn,m the set of n-vertex bicyclic graphs with an m-matching, and let Bn,m, B1, B2, B3

and B4 be the graphs depicted in Fig. 16.
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...

...{m-3 {n-2m+1

Bn,m B1

B2 B3

B4

Fig. 16. Bicyclic graphs playing role in Theorems 7.21 and 7.22.

Let

f1(n,m) = (n−m+ 2)2 + n+ 3m+ 2

f2(n,m) = (n−m+ 2)(n+ 3) + 2m+ 2 .

Theorem 7.21. [90] Let G ∈ B2m,m \ {B1, B4}, where m ≥ 3. Then

Mi(G) ≤ fi(2m,m) , i = 1, 2

and for each of the inequalities, the equality holds if and only if G ∼= B2m,m.

As noted in [90], B6,3 has the maximum first Zagreb index in B6,3, while B1 has the maximum
second Zagreb index in B6,3. Also, B8,4 has the maximum first Zagreb index in B8,4, while B4 has the
maximum second Zagreb index in B8,4.

For bicyclic graphs with an m-matching it holds

Theorem 7.22. [90] Let G ∈ Bn,m \ {B1, B4}, where m ≥ 3. Then

Mi(G) ≤ fi(n,m) , i = 1, 2

and for each of the inequalities, the equality holds if and only if G ∼= Bn,m.
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Also, by [90], B7,3 has the maximum first Zagreb index in B7,3, while B7,3 and B2 both have the
maximum second Zagreb index in B7,3. Similarly, B9,4 has the maximum first Zagreb index in B9,4,
while B9,4 and B3 both have the maximum second Zagreb index in B9,4.

In the paper [44], the first and second maximum values of the first and second Zagreb indices of
n-vertex tricyclic graphs are determined.

Let qn(n1, n2, n3, n4, n5) be a graph obtained from a simple graph G with vertex set V (G) =

{v1, v2, v3, v4, v5} and edge set E(G) = {v1vi, v2vj : 2 ≤ i ≤ 5, 3 ≤ j ≤ 5} by adding ni − 1

pendent vertices to vertex vi, 1 ≤ i ≤ 5, such that n1 ≥ n2 ≥ n3 ≥ n4 ≥ n5 and ni ≥ 1 (see Fig. 17).
Denote by Kn(n1, n2, n3, n4) a graph obtained from K4 by adding ni − 1 pendent vertices to vertex

vi, 1 ≤ i ≤ 4, such that ni ≥ 1 and n1 = max{n1, n2, n3, n4}, see Fig. 17.

Fig. 17. (a) The graph qn(n1, n2, n3, n4, n5) ; (b) The graph Kn(n1, n2, n3, n4) .

It was concluded in [44] that if the number of non-pendent vertices decreases, then the first and
second Zagreb indices of the graphs under consideration will increase. This implies that the maximum
of Zagreb indices among all tricyclic graphs is attained at graphs with a few number of non-pendent
vertices. By inspecting all possible sets of tricyclic graphs with specified number of non-pendent vertices,
the authors came to the following result.

Theorem 7.23. [44]
(i) Among all n-vertex tricyclic graphs, n ≥ 5, Kn(n − 3, 1, 1, 1) and qn(n − 4, 1, 1, 1, 1) have the

maximum values of the first Zagreb index.

(ii) If n = 6, 7, then K6(2, 2, 1, 1) and q7(2, 2, 1, 1, 1) have the second–maximum value of the first

Zagreb index. If n ≥ 5, then qn(n−4, 1, 1, 1, 1) has the second–maximum value of the first Zagreb index.

(iii) The graph Kn(n− 3, 1, 1, 1) has the maximum value of the second Zagreb index.

(iv) For n = 6, 7, 8, the graph Kn(n − 4, 2, 1, 1) and for n = 5 and n ≥ 9, the graph qn(n −
4, 1, 1, 1, 1) have the second–maximum value of the second Zagreb index.
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This research was continued and in the paper [72], using similar techniques, the first three maximum
values of M1 and the first and second maximum values of M2 in the class of n-vertex tetracyclic graphs
with n ≥ 6 was determined. In order to state the obtained results we need few definitions.

Let F5 be a graph obtained from K4 by adding a vertex v5 and connecting it to two vertices of K4,
whereas the vertices of F5 are labeled so that d(v1) = d(v2) = 4, d(v3) = d(v4) = 3 and d(v5) = 2, as
shown in Fig. 18.

Define Fn(n1, n2, n3, n4, n5) as a graph, depicted in Fig. 18, obtained from F5 by adding ni − 1

pendent vertices to each vi such that ni ≥ 1, n1 ≥ n2 ≥ n3 ≥ n4 ≥ n5, 1 ≤ i ≤ 5. Notice that∑5
i=1 ni = n.

Let W5 be the wheel with center v1 and construct a graph Wn(n1, n2, n3, n4, n5) from W5 by adding
ni − 1 pendent vertices to each vi such that

∑5
i=1 ni = n, n1 = max{n1, n2, n3, n4, n5} and ni ≥ 1,

1 ≤ i ≤ 5 (see Fig. 18).

Next, let Q(6, 3, 3, 3, 3) is a tetracyclic graph, depicted in Fig. 18, such that all of its cycles of length
3 have a common edge. Construct the graph Qn(n1, n2, n3, n4, n5, n6) from Q(6, 3, 3, 3, 3) by adding
ni − 1 pendent vertices to each vi such that

∑6
i=1 ni = n, n1 ≥ n2 ≥ n3, n3 = max{n3, n4, n5, n6} and

ni ≥ 1, 1 ≤ i ≤ 6.

Fig. 18. (a) F5 ; (b) Fn(n1, n2, n3, n4, n5) ; (c) W5 ; (d) Wn(n1, n2, n3, n4, n5) ; (e) Q(6, 3, 3, 3, 3) (f)
Qn(n1, n2, n3, n4, n5, n6) ; (g) Qn(n− 5, 1, 1, 1, 1, 1) .
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By considering tetracyclic graphs with a few non-pendent vertices, the authors came to the following
conclusions.

Theorem 7.24. [72] The graph Qn(n − 5, 1, 1, 1, 1, 1) attains the maximum value of the first Zagreb

index among all n-vertex tetracyclic graphs, n ≥ 6. Moreover, M1(Qn(n−5, 1, 1, 1, 1, 1)) = n2−n+36.

Theorem 7.25. Among n-vertex tetracyclic graphs, n ≥ 6, the graphs with the second–maximal M1-

values (cases a and b) and third–maximal M1-values (cases c, d, e) are as follows:

a) Fn(n− 4, 1, 1, 1, 1) with M1(Fn(n− 4, 1, 1, 1, 1)) = n2 − n+ 34, where n ≥ 6 and n 6= 8;

b) F8(4, 1, 1, 1, 1) and Q8(2, 2, 1, 1, 1, 1) with the first Zagreb index equal to 90;

c) W7(3, 1, 1, 1, 1) and F7(2, 2, 1, 1, 1) with the first Zagreb index equal to 74;

d) W9(5, 1, 1, 1, 1) and Q9(3, 2, 1, 1, 1, 1) with the first Zagreb index equal to 104;

e) Wn(n− 4, 1, 1, 1, 1) with M1(Wn(n− 4, 1, 1, 1, 1)) = n2 − n+ 32, where n = 8 or n ≥ 10.

Theorem 7.26. [72] Among n-vertex tetracyclic graphs, n ≥ 6, Fn(n− 4, 1, 1, 1, 1) has the maximum

second Zagreb index equal to M2(Fn(n− 4, 1, 1, 1, 1)) = n2 + 6n+ 34. The second–maximum value of

M2 is as follows:

a) Qn(n− 5, 1, 1, 1, 1, 1) with second Zagreb index n2 + n+ 33, where n ≥ 6 and n 6= 7;

b) F7(2, 2, 1, 1, 1) and Q7(2, 1, 1, 1, 1, 1) with second Zagreb index 124.

A connected graph is a cactus if any of its cycles have at most one common vertex. In [88], Li et
al. investigated the first and second Zagreb indices of cacti with k pendent vertices. If all cycles of the
cactus G have exactly one common vertex, we say that they form a bundle. Denote by Cn,k the set of all
connected cacti on n vertices with k pendent vertices.

Theorem 7.27. [88] Let G be a graph in Cn,k.

(i) If n− k ≡ 1 (mod 2), then M1(G) ≤ n2 + 2n− 3k − 3 and M2(G) ≤ 2n2 − (k + 2)n− k, with

equality in both cases if and only if G ∼= C1(n, k), where C1(n, k) is depicted in Fig. 19.

(ii) If n − k ≡ 0 (mod 2), then M1(G) ≤ n2 − 3k, with equality if and only if G ∼= C2(n, k) or

G ∼= C3(n, k), where C2(n, k) and C3(n, k) are depicted in Fig. 19.

(iii) If n−k ≡ 0 (mod 2), then M2(G) ≤ 2n2−(k+5)n+4, with equality if and only if G ∼= C2(n, k),

where C2(n, k) is depicted in Fig. 19.

Fig. 19. Cacti occurring in Theorem 7.27.
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As a consequence, the n-vertex cacti with maximal Zagreb indices were determined, as well as the
cactus with the perfect matching having maximal Zagreb indices.

Theorem 7.28. [88] Let G be connected cactus on n vertices.

(i) M1(G) ≤ n2 + 2n− 3 and M2(G) ≤ 2n2 − 2n, for odd n, and the equality holds in both cases if

and only if G ∼= C1
n, where C1

n is the graph depicted in Fig. 20.

(ii) M1(G) ≤ n2 + 2n − 6 and M2(G) ≤ 2n2 − 3n − 1, for even n, and the equality holds in both

cases if and only if G ∼= C2
n, where C2

n is the graph depicted in Fig. 20.

Fig. 20. Cacti occurring in Theorem 7.28.

Theorem 7.29. [88] Let G be 2k-vertex cactus with perfect matching. Then, Mi(G) ≤ Mi(C
2
2k) for

i = 1, 2, and the equality holds if and only if G ∼= C2
2k.

In addition, in [88], the authors determined sharp lower bounds for M1 and M2 of graphs from Cn,k.
It is assumed that for all G ∈ Cn,k, G contains at least one cycle. Recall that by U+

n,k we denote the set of
unicyclic graphs G with n vertices and k pendent vertices, such that ∆(G) ≤ 3 and each pendent vertex
of G is adjacent to another vertex of degree 3 and every pair of vertices of degree 3 are non-adjacent.
Also, denote by U++

n,k the set of unicyclic graphs G with n vertices and k pendent vertices, such that
∆(G) ≤ 3 and the number of vertices of degree 3 is equal to the number of pendent vertices k. Then,
the following statement holds.

Theorem 7.30. [88] Let G ∈ Cn,k and 0 ≤ k ≤ n − 3. Then M1(G) ≥ 4n + 2k with equality if and

only if n ≥ 2k and G ∈ U++
n,k . In addition, M2(G) ≥ 4n + 3k with equality if and only if n ≥ 3k and

G ∈ U+
n,k.

At the end of this section we mention few results from [45], [15], and [14] which provide a unified
approach to the largest and smallest Zagreb indices of trees and cyclic graphs. In the paper [45], Deng
introduced some transformations that increase (decrease) the Zagreb indices. First, we present two
transformations from [45] which increase Zagreb indices.

Transformation A. Let uv be an edge of G, dG(v) ≥ 2, NG(u) = {v, w1, w2, . . . , wt} and dG(wi) =

1 for i = 1, 2, . . . , t. Let

G′ = G− {uwi | 1 ≤ i ≤ t}+ {vwi | 1 ≤ i ≤ t}

see Fig. 21.
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Fig. 21. The transformations A, B, C, and D.

Transformation B. Let u and v be two vertices in G with u1, u2, . . . , ur being pendent vertices
adjacent to u and v1, v2, . . . , vt being pendent vertices adjacent to v. Let

G′ = G− {uu1, uu2, . . . , uur}+ {vu1, vu2, . . . , vur}

G′′ = G− {vv1, vv2, . . . , vvt}+ {uv1, uv2, . . . , uvt}

see Fig. 21.

It has been proven in [45], that for a graph G′ obtained from G by the transformation A it holds
Mi(G

′) > Mi(G) i = 1, 2. Also, by [45], for the graphs G′ and G′′ obtained from G by the transforma-
tion B, it holds that either Mi(G

′) > Mi(G) or Mi(G
′′) > Mi(G), i = 1, 2.

By using transformations A and B, results from [37, 66], concerning extremal trees with maximal
values of Zagreb indices were reproven. Also, Deng [45] obtained the corresponding results for unicyclic
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and bicyclic graphs with maximal Zagreb indices and in such a way some previously known results
from [103, 146, 150] were reproven.

Deng [45] also presented two transformations which decrease Zagreb indices.
Transformation C. Let G 6= P1 be a connected graph and choose u ∈ V (G). By G1 is denoted the

graph resulting from identifying u with the vertex vk of a path v1v2 . . . vn, 1 < k < n. By G2 is denoted
the graph obtained from G1 by deleting vk−1vk and adding vk−1vn (see Fig. 21).

Transformation D. Let u and v be two vertices in a graph G. G1 denotes the graph that results
from identifying u with the vertex u0 of a path u0u1 . . . ur and identifying v with the vertex v0 of a path
v0v1 . . . vt. Graph G2 is obtained from G1 by deleting uu1 and adding vtu1 (see Fig. 21).

It was proven in [45], that for the graphs G1 and G2, obtained by transformation C, it holds Mi(G1) >

Mi(G2), i = 1, 2. Also, for graphs G1 and G2, obtained by transformation D, the following statement
holds.

Theorem 7.31. [45] Let G1 and G2 be the graphs depicted in Fig. 21. If dG(u) ≥ dG(v) > 1, r ≥ 1

and t ≥ 0, then

(i) if t > 0, then M1(G1) > M1(G2) and M2(G1) > M2(G2);

(ii) if t = 0 and dG(u) > dG(v), then M1(G1) > M1(G2);

(iii) if t = 0 and
∑

x∈NG(u)−{v} dG(x) >
∑

y∈NG(v)−{u} dG(y), then M2(G1) > M2(G2) .

By using transformations C and D, and the previous theorem, trees, unicyclic and bicyclic graphs
whose Zagreb indices are minimum can be obtained, as shown in [45], and in such a way some earlier
known results for trees and unicyclic graphs have been confirmed [37, 66, 103, 150] and new results on
extremal bicyclic graphs with minimal Zagreb indices, presented in the previous discussions, have been
obtained.

In the papers [14, 15] Bianchi et al. established a unified approach aimed at determining upper and
lower bounds for M1 and M2 of trees and c-cyclic graphs, 1 ≤ c ≤ 6, by using of a majorization
technique and Schur–convexity introduced in [110]. In fact, in the class of c-cyclic graphs, Bianchi et
al. [14, 15] were interested in finding graphs associated to the maximal (minimal) degree sequence with
respect to the majorization order. Before we present the results of [14, 15], we need few observations.

As mentioned before, the degree sequence π = (d1, d2, . . . , dn) of c-cyclic graph satisfies the condi-
tion

∑n
i=1 di = 2(n+c−1), i.e., for short, π ∈

∑
2(n+c−1). Let now F (d1, d2, . . . , dn) be any topological

index which is a Schur–convex function of its arguments, defined on a subset S ⊆
∑

a, where

∑
a

=

{
x = (x1, x2, . . . , xn) ∈ Rn : x1 ≥ x2 ≥ . . . ≥ xn ≥ 0,

n∑
i=1

xi = a

}
.

Since the Schur–convex functions have the order preserving property, it holds

F (x∗(S)) ≤ F (d1, d2, . . . , dn) ≤ F (x∗(S))

where x∗(S) and x∗(S) are the minimal and maximal elements of S, respectively, with respect to the
majorization order. Using these arguments, extremal degree sequences of c-cyclic graphs (0 ≤ c ≤ 6)
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were determined and, consequently, extremal c-cyclic graphs with respect to M1 were obtained in [14].
In such a way, some existing results mentioned previously [44, 66, 72, 103, 105, 150, 153] for 0 ≤ c ≤ 4

were recovered and some new results were obtained as well. Here we mention only the new ones.
Since the upper and lower bounds for M1 and corresponding extremal trees, unicyclic, and bicyclic

graphs have already been presented, we start with tricyclic graphs.
Tricyclic graphs. The upper bounds for M1 of tricyclic graphs and the corresponding extremal

graphs have earlier been outlined (Theorem 7.23). Thus we present here only the lower bounds arising
from considerations in the paper [14].

(i) For n = 4, there is only one tricyclic graph associated to the sequence (3, 3, 3, 3), and thus
M1 = 36.

(ii) For n ≥ 5, there is one minimal degree sequence (3, . . . , 3︸ ︷︷ ︸
4

, 2, . . . , 2︸ ︷︷ ︸
n−4

), corresponding to the graph

(a) in Fig. 22, for n = 8, hence M1 ≥ 4n+ 20.

a) b)

c) d)

e) f)

Fig. 22. Tricyclic and higher-cyclic graphs with minimal M1, according to [14].

Tetracyclic graphs. Similarly to the previous case, we present only the lower bounds for M1 of
tetracyclic graphs, since the upper bounds and the corresponding extremal graphs have been presented
in Theorem 7.24.

(i) For n = 5, the maximal degree sequence is (4, 4, 3, 3, 2) and the minimal one is (4, 3, 3, 3, 3),
hence 52 ≤ M1 ≤ 54.

(ii) For n ≥ 6 there is one minimal degree sequence (3, . . . , 3︸ ︷︷ ︸
6

, 2, . . . , 2︸ ︷︷ ︸
n−6

) corresponding to the graph

(b) in Fig. 22 for n = 8, hence M1 ≥ 4n+ 30.
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Pentacyclic graphs.
(i) For n = 5, there is only one pentacyclic graph with the degree sequence (4, 4, 4, 3, 3), hence

M1 = 66.

(ii) For n = 6, there exist two maximal incomparable degree sequences (5, 5, 3, 3, 2, 2) and (5, 4, 4,

3, 3, 1), and one minimal degree sequence (4, 4, 3, 3, 3, 3). As suggested in [14], when more maximal
(or minimal) elements are identified, the best one depends on the topological index under consideration.
Hence, for M1 it can easily be deduced that 68 ≤ M1 ≤ 76.

(iii) For n = 7, the minimal degree sequence is (4, 3, . . . , 3︸ ︷︷ ︸
6

), whereas for n ≥ 8, the minimal one is

(3, . . . , 3︸ ︷︷ ︸
8

, 2, . . . , 2︸ ︷︷ ︸
n−8

).

For n ≥ 7, there are three incomparable maximal degree sequences

(n− 1, 6, 2, . . . , 2︸ ︷︷ ︸
5

, 1, . . . , 1︸ ︷︷ ︸
n−7

) , (n− 1, 5, 3, 3, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−6

) , (n− 1, 4, 4, 3, 3, 1, . . . , 1︸ ︷︷ ︸
n−5

) .

Thus, it is easily deduced that for n = 7 it holds 70 ≤ M1 ≤ 92 and for n ≥ 8 we have 4n + 40 ≤
M1 ≤ n2 − n + 50, wherein the graphs (c) and (d) in Fig. 22 achieve, for n = 9, the latter lower and
upper bounds, respectively.

Hexacyclic graphs.
(i) For n = 5, there is only one hexacyclic graph associated to the degree sequence (4, . . . , 4︸ ︷︷ ︸

5

), hence

M1 = 80.

(ii) For n = 6, we have two incomparable maximal degree sequences (5, 5, 4, 3, 3, 2) and (5, 4, 4, 4,

4, 1), and one minimal degree sequence (4, 4, 4, 4, 3, 3). Simple calculation yields 82 ≤ M1 ≤ 90.

(iii) For n = 7, there exist three maximal incomparable degree sequences
(6, 6, 3, 3, 2, 2, 2), (6, 5, 4, 3, 3, 2, 1), and (6, 4, 4, 4, 4, 1, 1), and one minimal degree sequence (4, 4, 4, 3,

3, 3, 3), from which one concludes that 84 ≤ M1 ≤ 102.

(iv) For n = 8 and n = 9, the minimal degree sequences are (4, 4, 3, . . . , 3︸ ︷︷ ︸
6

) and (4, 3, . . . , 3︸ ︷︷ ︸
8

),

respectively, whereas for n ≥ 10, the minimal one is (3, . . . , 3︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
n−10

). Thus, for n = 8 and 9, the the

lower bounds for M1 are 86 and 88, respectively, whereas for n ≥ 10 it holds M1 ≥ 4n + 50, wherein
the graph (e) in Fig. 22 achieves, for n = 11, the lower bound.

For n ≥ 8, there are four incomparable maximal degree sequences

(n− 1, 7, 2, . . . , 2︸ ︷︷ ︸
6

, 1, . . . , 1︸ ︷︷ ︸
n−8

) , (n− 1, 6, 3, 3, 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−7

)

(n− 1, 5, 4, 3, 3, 2, 1, . . . , 1︸ ︷︷ ︸
n−6

) , (n− 1, 4, . . . , 4︸ ︷︷ ︸
4

, 1, . . . , 1︸ ︷︷ ︸
n−5

)

and hence, by a simple calculation, it holds M1 ≤ n2 − n + 66 and the graph (f) in Fig. 22, achieves,
for n = 11, this upper bound.
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It was suggested in [14] that this approach can be extended to other topological indices whenever
they can be expressed as Schur–convex or Schur–concave functions of the degree sequence of the graph.

An analogous approach was applied in the paper [15] where an analysis was presented aimed at es-
tablishing maximal and minimal vectors with respect to the majorization order under sharper constraints
than those obtained by Marshall and Olkin [110]. This methodology was applied to the calculation of
bounds for M2 and it was shown that the bounds obtained by this technique are often sharper than those
earlier communicated [39, 146, 153].

8. Zagreb coindices of graphs

In the paper [46], bearing in mind Eq. (2), Došlić introduced the Zagreb coindices, opposities to the
Zagreb indices, defined by

M1(G) =
∑

vivj /∈E

(di + dj) , M2(G) =
∑

vivj /∈E

didj .

The Zagreb coindices are closely related to the Zagreb indices [9]:

M1(G) = 2m(n− 1)−M1(G) (37)

M2(G) = 2m2 −M2(G)− 1

2
M1(G) . (38)

The Zagreb coindices of G are not the Zagreb indices of G, since the defining sums run over E(G),
but the degrees are with respect to G. Still, those quantities are closely related. If we denote by m the
number of edges in G, then it holds, by [9],

M1(G) = M1(G) + 2(n− 1)(m−m)

implying, as noted in [9], that
M1(G) = M1(G) .

Also, by [9], for the second Zagreb coindex we have

M2(G) = M2(G)− (n− 1)M1(G) +m(n− 1)2 .

By (37), for trees, the sum M1(G) +M1(G) = 2(n − 1)2 is constant for fixed n, implying that the
problem of determining the minimum (maximum) first Zagreb coindex is equivalent to the problem of
determining the maximum (minimum) first Zagreb index, which yields

Theorem 8.1. [10] If T is an n-vertex tree, then M1(K1,n−1) ≤ M1(T ) ≤ M1(Pn) and M2(K1,n−1) ≤
M1(T ) ≤ M1(Pn).

By Corollary 4.1 and Theorem 6.6, the following result concerning chemical trees, obtained in [56]
by Fonseca and Stevanović, is immediately deduced.

M1(T ) ≥ 2(n− 1)2 −

 6n− 10 if n ≡ 2 (mod 3)

6n− 12 otherwise
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with equality as stated in Corollary 4.1.
Also, by relation (38) and Theorem 6.6, the lower bound for the second Zagreb coindex over chemical

trees was obtained in [56] as follows

M2(T ) ≥ 2(n− 1)2 −

 11n− 29 if n ≡ 2 (mod 3)

11n− 32 otherwise

with equality if and only if either (i) every vertex of T is of degree 1 or 4 (in which case n ≡ 2 (mod 3)),
or (ii) one vertex of T has degree 2 or 3 and it is adjacent to a single vertex of degree 4, while all other
vertices are of degree 1 or 4.

In [10] the following results on Zagreb coindices of unicyclic and bicyclic graphs were obtained.

Theorem 8.2. [10] If G is an n-vertex unicyclic graph, then (n + 2)(n − 3) ≤ M1(G) ≤ 2n(n −
3). Moreover, the left and right equalities hold if and only if G is isomorphic to K1,n−1 + e and Cn,

respectively.

Theorem 8.3. [10] If G is an n-vertex bicyclic graph, then n2 + n − 16 ≤ M1(G) ≤ 2n2 − 4n − 12.

The left equality is satisfied if and only if G is isomorphic to K1,n−1+e+f , where e and f are two edges

with a common vertex forming two adjacent triangles in K1,n−1. The right equality holds if and only if

G is isomorphic to a graph constructed from Cp and Cq joined by a path Pn−p−q, 3 ≤ p, q ≤ n− 3 (see

Fig. 23).

e f

Cp CqPn-p-q

K1,n-1+e+f

Fig. 23. Extremal graphs mentioned in Theorem 8.3.

Theorem 8.4. [10] Suppose that G is a triangle– and quadrangle–free connected graph with n vertices,

m edges and radius r. Then M2(G) ≥ 2m2 − (n + 1 − r)(m + 1
2
n) with equality if and only if G is a

Moore graph of diameter 2 or G ∼= C6.

In addition, by [10], for a connected graph G it holds

M2(G) ≤ 2m2 − 1

2

∑
v∈V (G)

d(v)
[
d(v) + n2(v)

]
− 1

2

∑
v∈V (G)

[
d(v) + n2(v)

]
.

The equality holds if and only if G is a triangle– and quadrangle–free connected graph.
Recently, Das et al. [41], by using the relation (37) and Theorem 4.4 obtained the following lower

bound for M1 in terms of n, m and ∆.
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Theorem 8.5. [41] Let G be an (n,m)-graph with maximum degree ∆. Then

M1(G) ≥ (n− 3)m+∆(n−∆)− 2(m−∆)2

n− 2

with equality holding if and only if G ∼= K∗
2,n−2 or G ∼= Kn or G ∼= Kin,n−1.

Besides, in the paper [41], some upper and lower bounds on the second Zagreb coindex in terms of
n, m, δ, ∆, and ∆2 were established.

Theorem 8.6. citedasnum Let G be an (n,m)-graph with minimal degree δ, maximum degree ∆ and

second–maximal degree ∆2. Then

(i)

M2(G) ≥ 1

2
(n− 3)mδ +

1

2
δ∆(n−∆)− δ(m−∆)2

n− 2

with equality if and only if G ∼= K∗
2,n−2 or G ∼= Kn;

(ii)

M2(G) ≤ m(n− 1)∆− 1

2
∆3 − ∆(2m−∆)2

2(n− 1)
− ∆(n− 2)

(n− 1)2
(∆2 − δ)2

with equality if and only if G is a regular graph.

The lower bounds for Zagreb coindices of series–parallel graphs were determined in [10].

Theorem 8.7. [10] Suppose that G is an (n,m)-series–parallel graph without isolated vertices. Then

M1(G) ≥ m(n− 4) + n and M2(G) ≥ (m− n)(m− 1). The equality holds if and only if G ∼= K2 or

G ∼= K1,1,n−2.

In [82], two estimations on Zagreb coindices of connected graphs involving the number of pendent
vertices were given.

Theorem 8.8. [82] Let G be a connected graph of order n with n1 pendent vertices. Then

M1(G) ≥ −2n2
1 + 3nn1 − 4n1

M2(G) ≥ −3

2
n2
1 −

5

2
n1 + 2nn1 .

As suggested in [82], when n1 = 0, the complete graph Kn and the graph Kn attain both bounds.
When n1 = 2, the 4-vertex path P4 attains both bounds in the previous theorem.

9. Nordhaus–Gaddum type of inequalities for
Zagreb indices

In 1956, Nordhaus and Gaddum [117] established inequalities involving the chromatic number χ(G) of
a graph G and its complement. Motivated by this result, different inequalities of that kind, known as
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Nordhaus–Gaddum type inequalities, have been communicated in the literature. Here we present those
pertaining to the first and second Zagreb indices.

Zhang and Wu in [149] established the following lower and upper bounds on M1(G) +M1(G) and
M2(G) +M2(G), respectively, in terms of n only.

Theorem 9.1. [149] Let G be a graph of order n, then

n(n− 1)2

2
≤ M1(G) +M1(G) ≤ n(n− 1)2

(
n

2

)(
n− 1

2

)2

≤ M2(G) +M2(G) ≤
(
n

2

)
(n− 1)2 .

In both inequalities the left–hand–side equalities are attained if and only if G ∼= Kn and the right–hand–

side equalities hold if and only if G is a (n−1
2
)-regular graph, with n = 4k + 1, k ≥ 1.

In the paper [39], Das et al. obtained the following upper bounds on M1(G)+M1(G) (resp. M2(G)+

M2(G)), in terms of n, m, δ, ∆, and ∆2, by using Theorem 4.15.

Theorem 9.2. [39] Let G be a graph with n vertices, m edges, maximum degree ∆, second–maximum

degree ∆2 and minimum degree δ. Then

M1(G) +M1(G) ≤ [n(n− 2)− 2m+ δ + 1]2

n− 1
+ ∆2 + (n− 1− δ)2

+
n− 1

4
[(∆− δ)2 + (∆2 − δ)2]

with equality if and only if G is the path P3 or G is a regular graph.

In addition,

M2(G) +M2(G) ≤ n(n− 1)3

2
+ 2m2 − 3m(n− 1)2

+

(
n− 3

2

)[
(2m−∆)2

n− 1
+ ∆2 +

n− 1

4
(∆2 − δ)2

]
with equality if and only if G is isomorphic to a graph H1, such that d2(H1) = d3(H1) = · · · =

dn(H1) = δ or G is isomorphic to a graph H2 such that d2(H2) = d3(H2) = · · · = dp+1(H2) = ∆2 and

dp+2(H2) = dp+3(H2) = · · · = d2p+1(H2) = δ, n = 2p+ 1.

Recently, Das et al. in [41] established new lower and upper bounds on M1(G) + M1(G) (resp.
M2(G) +M2(G)) in terms of n, m, δ, ∆, and ∆2.

Theorem 9.3. [41] Let G be a graph with n vertices, m edges, maximum degree ∆, second–maximum

degree ∆2, and minimum degree δ. Then

(i)
M1(G) +M1(G) ≥ n(n− 1)2 − 4(n− 1)m

+ 2

[
∆2 +

(2m− δ)2

n− 1
+

2(n− 2)

(n− 1)2
(∆2 − δ)2

]
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with equality if and only if G is a regular graph or G is isomorphic to a graph H , such that d2(H) =

d3(H) = · · · = dn(H) = δ;

(ii)

M1(G) +M1(G) ≤ n(n− 1)2 − 2(n− 3)m+ 2

[
2(m−∆)2

n− 2
−∆(n−∆)

]
with equality if and only if G ∼= Kn or G ∼= K∗

2,n−2 or G ∼= Kin,n−1.

Theorem 9.4. [41] Let G be a graph with n vertices, m edges, maximum degree ∆, second–maximum

degree ∆2, and minimum degree δ. Then

(i)

M2(G) +M2(G) ≥ n(n− 1)3

2
+ 2m2 − 3m(n− 1)2

+

(
n− 3

2

)[
∆2 +

(2m−∆)2

n− 1
+

2(n− 2)

(n− 1)2
(∆2 − δ)2

]
with equality if and only if G is a regular graph or G is isomorphic to a graph H , such that d2(H) =

d3(H) = · · · = dn(H) = δ;

(ii)

M2(G) +M2(G) ≤ n(n− 1)3

2
+ 2m2 − 3m(n− 1)2

+

(
n− 3

2

)[
(n+ 1)m−∆(n−∆) +

2(m−∆)2

n− 2

]
with equality if and only if G ∼= Kn or G ∼= K∗

2,n−2 or G ∼= Kin,n−1.

In [82], several Nordhaus–Gaddum type bounds for the first Zagreb coindex were given. Let
even(n) = 1 if n is even, and 0 otherwise.

Theorem 9.5. [82] (i) If G is a graph with n ≥ 2 vertices and m edges, then

M1(G) +M1(G) ≥ 2mn− 4m2

n− 1

with equality if and only if G ∼= K1,n−1 or G ∼= Kn.

(ii) If G is a connected Kr+1-free graph, 2 ≤ r ≤ n− 1, then

M1(G) +M1(G) ≥ 4m−
(n
r
− 1
)

with equality if and only if G is a bipartite graph for r = 2 and regular complete r-partite graph for

r ≥ 3.

(iii) If G is a connected quadrangle–free graph, then

M1(G) +M1(G) ≥ 4mn− 2n2 + 2n− 8m+ 4 even(n)

with equality if and only if G is a graph obtained from the star K1,n−1 by adding b(n−1)/2c independent

edges.
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(iv) If G is a connected triangle– and quadrangle–free graph, then

M1(G) +M1(G) ≥ 2(n− 1)(2m− n)

with equality if and only if G ∼= K1,n−1 or a Moore graph of diameter 2.

The corresponding Nordhaus–Gaddum type bounds for the second Zagreb coindices were determined
in [79].

Theorem 9.6. [79] Let G be a graph of order n containing m edges. Then

M2(G) +M2(G) ≥ 2(m2 +m2)−
(
n

2

)
(n− 1)2 − n(n− 1)2

2
(39)

and

M2(G) +M2(G) ≤ 2(m2 +m2)−
(
n

2

)(
n− 1

2

)2

− n(n− 1)2

2
. (40)

The equality in (39) is satisfied if and only if G is isomorphic to the complete graph Kn. The equality in

(40) is satisfied if and only if n ≡ 1 (mod 4) and G is n−1
2

-regular.

10. Relations between Zagreb indices

Recently, there has been much interest in comparing the values taken by the Zagreb indices M1 and M2

on the same graphs. Let
∆M(G) = M2(G)−M1(G)

and define the set Φ(z), for z ∈ Z, as

Φ(z) = {G : G is connected and ∆M(G) = z} .

If G ∈ Φ(z), it is said [111] that G is z-Zagreb-balanced.
Direct approaches to comparing Zagreb indices were used in [26,136]. The case of trees was studied

in [136]. The main result is that
M1 −M2 ≤ dv (41)

where v is a vertex of degree dv ≥ 2. Thus, for a tree T , the difference M1 − M2 is bounded by the
smallest degree of a non-pendent vertex of T .

In the paper [26], lower bounds on ∆M(G) = M2 −M1 for cyclic graphs were studied.

Theorem 10.1. [26] Let G be a simple and connected graph with n vertices and m edges.

a) If m ≤ 6n/5, then ∆M(G) ≥ 6(m − n), with equality attained if and only if G is a graph with

vertices of degree 2 and 3 only, and the vertices of degree 3 form an independent set.

b) If m ≥ n, then ∆M(G) ≥ 11m − 12n, with equality attained if and only if G is a graph with

vertices of degree 2 and 3 only and, when m ≥ 6n/5, no pair of vertices of degree 2 are adjacent.
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From Theorem 10.1, the following result of Liu [98] can be deduced.

Theorem 10.2. [98] Let G be a simple, connected and unicyclic graph. Then M1 ≤ M2 with equality if

and only if G is a cycle.

In paper [111], two examples were provided showing that Φ(z) is non-empty for each z ∈ Z. First,
for a star K1,z, z ≥ 1, it holds ∆M(K1,z) = −z. Next, for z ≥ 0, let PC(z) be a tree on 3z + 3

vertices obtained from the path P2z+3 with vertex set {v1, . . . , v2z+3} by adding a pendent edge to vertices
v3, v5, . . . , v2z+1. Then, ∆M(PC(z)) = z − 2.

Hence, Φ(z) contains a star K1,−z for z ≤ −1, and a tree PC(z+2) for z ≥ −2. Besides, two simple
constructions of new elements of Φ(z) from the existing ones by adding an arbitrary number of new
vertices were presented in [111]. Both of these constructions can be applied to the graph PC(z + 2) ∈
Φ(z) for z ≥ −2, provided that each set Φ(z), z ≥ −2, is infinite.

Unlike the case z ≥ −2, it was proven in [111] that Φ(z) contains only the star K1,−z for z < −2. In
fact, it was proven that for a connected graph G, different from the star,

∆M(G) ≥ −2 .

Obviously, the previous inequality improves the inequality (41).
By considerations in [111], the first non-trivial sets Φ(z) are Φ(−2), Φ(−1) and Φ(0) and these have

the property that all of their elements are trees, with exception of the cycles Cn which are the only non-
tree elements of Φ(0). Also, it was proven in [111] that for a connected graph G which is neither a tree
nor a cycle, it holds that ∆M(G) ≥ 1.

In order to present some further results on ∆M(G), recall that by the relations (1) and (2) it holds
that [57]

∆M(G) =
∑

vivj∈E(G)

(di − 1)(dj − 1)−m

i.e.,
∆M(G) = RM2(G)−m

where RM2(G) is a vertex-degree-based graph invariant, introduced in [57] by

RM2(G) =
∑

vivj∈E(G)

(di − 1)(dj − 1)

and called reduced second Zagreb index.

Theorem 10.3. [57] For almost all graphs and almost all edges e ∈ E(G), the condition RM2(G) −
RM2(G− e)− 1 > 0, i.e., ∆M(G)−∆M(G− e) is satisfied. Exceptionally:

(a) ∆M(G) = ∆M(G− e) holds if e is an edge between a pendent vertex u and a vertex v of degree

two, and the other neighbor of v is also a vertex of degree two.

(b) ∆M(G) = ∆M(G− e) holds if the graph G has a component which is a 4-vertex path, and e is

the central edge of this path.

(c) ∆M(G) < ∆M(G − e) holds if the graph G has a component which is a star, and e is an edge

of this star.
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Extremal trees of order n with maximal ∆M(G) were determined in [57].

Let n and k be fixed integers, n ≥ 4, 2 ≤ k ≤ n − 2. Construct the set T(n, k) of n-vertex trees by
attaching (in any possible way) n − k − 1 pendent vertices to the pendent vertices of the star K1,k on
k + 1 vertices.

Theorem 10.4. [57] If T is a tree of order n, n ≥ 4, then

∆M(G) ≤
⌊
n− 2

2

⌋⌈
n− 2

2

⌉
+ 1− n .

Equality holds if and only if T ∈ T(, n/2) for even n, and T ∈ T(n, bn/2c)
⋃

T(n, dn/2e) for odd n.

Let Ck
n,∆ be the unicyclic graph specified in connection with Theorem 7.10. Denote by C∆ the set

{Ck
n,∆ | 3 ≤ k ≤ n−∆− 1}. The following lower bound on M2 −M1 is obtained in [76]:

Theorem 10.5. [76] Let G be a unicyclic graph of order n with maximum degree ∆. Then

M2(G)−M1(G) ≥


∆− 2 if d = 0

∆ if d = 1

2 if d > 1

(42)

where d is the length of the shortest path from the maximum degree vertex u to the cycle C(G) (The

cycle of a graph G is denoted by C(G).) The equalities hold in (42) if and only if G ∼= Bk
n, G ∼= Ck

n,∆

(∆ + k = n), and G ∈ C∆, respectively.

For general graphs, the order of magnitude of M1 is O(n3) whereas for M2 is O(mn2), implying
that M1/n and M2/m have the same orders of magnitude O(n2). This implies that is more convenient
to compare M1/n and M2/m instead of M1 with M2. By using the AutoGraphiX conjecture–generating
system [8, 24, 25] the following conjecture was obtained.

Conjecture 10.1. [8, 24, 25] For all simple connected graphs with n vertices and m edges,

M1

n
≤ M2

m
(43)

with equality for complete graphs, among others.

The relation (43) is referred to as the Zagreb indices inequality. In 2007, Hansen and Vukičević [74]
showed that this conjecture does not hold for general graphs but it is true for chemical graphs.

Theorem 10.6. [74] For all chemical graphs G with n vertices and m edges, inequality (43) holds.

Moreover, the bound is tight if and only if all edges uv have the same pair (du, dv) of degrees or if

the graph is composed of disjoint stars K1,4 and cycles Cp, Cq, . . . of any length.
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Besides, Hansen and Vukičević [74] presented a non-connected counterexample (a star K1,5 together
with a cycle C3) and a complicated connected counterexample with 46 vertices and 110 edges to Con-
jecture 10.1.

On the other hand, it was proven that there are some other classes of graphs for which the conjecture
is true. Vukičević and Graovac in [136] first showed that relation (43) holds for all trees, with stars
as extremal trees. Later, new proofs were given in [7, 127]. In the paper [98], it was shown that the
conjecture is true for unicyclic graphs and the bound is tight with cycles as extremal graphs. In fact, as
m = n for unicyclic graphs, the relation (43) follows from Theorem 10.2.

Sun et al. [129] showed that the inequality (43) holds for bicyclic graphs except one class and char-
acterized extremal graphs as well. Besides, counterexamples of bicyclic graphs were obtained from the
excluded class. Using AutoGraphiX, Caporossi et al. [26] investigated the cases of bicyclic and tricyclic
graphs and constructed counterexamples to Conjecture 10.1 in both cases. Also, in [26], an infinite fam-
ily of counterexamples of c-cyclic graphs, for all c ≥ 2 is obtained, which are constructed by joining
complete bipartite graph K2,c+1 and a star K1,p by an edge from a pendent vertex of K1,p to a vertex of
the smallest side of K2,c+1, see Fig. 24.

{ {p-1 c+1

Fig. 24. An infinite family of counterexamples to Conjecture 10.1.

For other results concerning the validity or non-validity of (43) for various classes of graphs the
reader is referred to [5, 6, 17, 73, 77, 85, 125, 130, 158]. These studies are summarized in two surveys
[101, 102]. In addition, the equality case in (43) was also studied in [1, 137].

In the sequel, we present a few other results concerning the relations between M1 and M2.
For a connected graph G it was proven [37] that

M1 + 2M2 ≤ 4m2

with equality if and only if G is the complete graph Kn. Also, it was shown that [37]

M2(G) ≤ 2m2 − (n− 1)mδ +
1

2
(δ − 1)M1(G)

with equality if and only if G is isomorphic to K1,n−1 or Kn.
In [123], Réti presented some new inequalities related to the first and second Zagreb indices.
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Theorem 10.7. [123] If G is a simple connected graph, then

M1(G) ≥ M2(G)

∆
+ δm

with equality if G is regular.

Theorem 10.8. [123] If G is a simple connected graph, then

M1(G) ≤ M2(G)

δ
+ δm (44)

and

M1(G) ≤ M2(G)

∆
+∆m. (45)

Equality in both cases holds if and only if G is a regular or bidgreed (biregular) graph with no adjacent

vertices of the same degree.

From (44) and (45), the following relations were deduced [123].

Corollary 10.1. [123] For a connected (n,m)-graph G with maximum degree ∆ and minimum degree

δ,

M1(G) ≤ M2(G)

δ
+

2m2

n

and

M1(G) ≤ nM2(G)

2m
+∆m

with equality in both cases if G is regular.

Corollary 10.2. [123] For a connected graph G it holds

M1(G) ≤ ∆+ δ

2

(
M2(G)

∆δ
+m

)
and

M1(G) ≤

√(
M2(G)

δ
+ δm

)(
M2(G)

∆
+∆m

)
.

Equality in both cases hold if G is regular or bidgreed (biregular) with no adjacent vertices of the same

degree.

It was proven in [50] that for an arbitrary simple graph G it holds M1(G) ≤ 2M2(G) with equality if
and only if G is an empty graph or the complete graph with two vertices.

The following results were also obtained in [50].

Theorem 10.9. [50]

M1(G) ≤ ∆

2
+

√
∆2

4
+ 2M2(G) + 4m(m− 1)∆2

with equality if and only if G is ∆-regular.
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Theorem 10.10. [50]

M1(G) ≥ δ

2
+

√
δ2

4
+ 2M2(G) + 4m(m− 1)δ2

with equality if and only if G is δ-regular.

In the papers [40, 41], Das et al. established some new relations between the Zagreb indices.

Theorem 10.11. [40, 41] Let G be a connected (n,m)-graph with maximum degree ∆ and minimum

degree δ. Then

M1(G)(∆− 1)− 2M2(G) ≤ 2m[(n− 1)∆− 2m]

and

2M2(G)−∆2δ ≥ (n− 1)(M1(G)−∆2)2

(2m− δ)(n− 1) + (∆− δ)
[
n(n− 1)− 2m

] . (46)

Equality in both inequalities hold if and only if G is a regular graph.

Besides, in the same paper [41], a result better than (46) was obtained:

Corollary 10.3. [41] Let G be a connected (n,m)-graph with maximum degree ∆ and minimum degree

δ. Then

2M2(G)−∆2δ ≥ (n− 1)(M1(G)−∆∆2)
2

(2m− δ)(n− 1) + (∆− δ)
[
n(n− 1)− 2m

] .
The above equality holds if and only if G ∼= K1,n−1 or G is a regular graph.

11. An exceptional property of first Zagreb index

The generalized version of the first Zagreb index, namely

Zp = Zp(G) =
∑

vi∈V (G)

dpi

where p is some real number, was first considered by Li et al. [94,95], and the name first general Zagreb

index was proposed for Zp in [95]. Thus, the ordinary Zagreb index M1 is the special case of Zp, for
p = 2. If we denote by nk the number of vertices of G having degree equal to k, then

Zp(G) =
∑
k≥1

kp nk . (47)

In what follows, it will be assumed, as in [64], that the exponent p in Eq. (47) is a positive integer.
Since the case p = 1 is trivial (Z1(G) = 2m), we assume that p ≥ 2. Then, the following interesting
result is obtained.

Theorem 11.1. [64] Let G be a graph with n vertices, m edges, and n` vertices of degree `, ` 6= 3.

Then, for p ≥ 3,

Zp(G) ≥ 2 · 3p (m− n) + Θp(`)n` (48)

where Θp(`) = `p − 3p `+2 · 3p is a polynomial of degree p in the variable `. Equality is attained if and

only if all the remaining n− n` vertices of G are of degree 3.
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The equality case in (48) pertains to (n,m)-graphs with a fixed number of vertices of degree ` whose
Zp-value is minimal. The same graphs have minimal Zp-values for all p ≥ 3. If we focus to the case
` = 1, then it holds:

Theorem 11.2. [64] Let G be a graph with n vertices, m edges, and n1 pendent vertices. Then, for

p ≥ 3,

Zp(G) ≥ 2 · 3p (m− n) + (3p + 1)n1 . (49)

Equality is attained if and only if all the remaining n− n1 vertices of G are of degree 3.

This equality case pertains to (n,m)-graphs with a fixed number of pendent vertices whose Zp-value
is minimal and the same graphs have minimal Zp-values for all p ≥ 3.

The case p = 2, i.e., Z2 ≡ M1 is significantly different, as shown in [64], implying that the original
first Zagreb index is a kind of exception in the class of its generalized counterparts.

Theorem 11.3. [64] Let G be a graph with n vertices, m edges, and n1 pendent vertices. Then, for

p = 2,

Zp(G) ≡ M1(G) ≥ 16(m− n) + 9n1 .

Equality is attained if and only if the number of pendent vertices is even, and all the remaining n − n1

vertices of G are of degree 4.

This equality case pertains to (n,m)-graphs with a fixed number of pendent vertices whose first
Zagreb index is minimal; for illustrations see Fig. 25.

T3 T4 U3

U4 B3 B4

Fig. 25. Examples of trees (T3, T4), unicyclic graphs (U3, U4), and bicyclic graphs (B3, B4) with 10
pendent vertices, having minimal first Zagreb indices, but not minimal Zp-values for p = 2 .
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The special case of Theorem 11.3 for trees was proven earlier by Goubko [59], who also characterized
the trees with odd n1 and minimal M1-value (see also [67]). Analogous, but much more difficult results
were obtained also for the second Zagreb index [59–61].

Ismailescu and Stefanica [86] characterized the graph with smallest Zp(G)-values, 0 < p ≤ 1/2.

Theorem 11.4. [86] Let G be a graph of order n with m edges, and let 0 < p ≤ 1/2. Let k be the unique

positive integer such that
(
k−1
2

)
< m ≤

(
k
2

)
. If Zp(G) is minimum, then G is isomorphic to the graph

with n− k isolated vertices, a complete subgraph Kk−1, and one vertex of degree m−
(
k−1
2

)
connected

to vertices of the complete subgraph.

In the same paper immediately after Theorem 11.4, the authors mentioned the following problem:

An interesting open question is to decide what happens if α ∈ (1/2, 1). Numerical computations
strongly suggest that the result in Theorem 11.4 remains true.
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[125] S. Stevanović, On the relation between the Zagreb indices, Croat. Chem. Acta 84 (2011) 17–19.
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[158] B. Zhou, D. Stevanović, A note on Zagreb indices, MATCH Commun. Math. Comput. Chem. 56
(2006) 571–578.




	Introduction
	Historical remarks
	On the maximum and minimum first Zagreb indexof graphs with n vertices and m edges
	On graphs with given parameters whose M1-value is extremal
	Second Zagreb index
	On extremal Zagreb indices of trees
	On c-cyclic graph, c1
	Zagreb coindices of graphs
	Nordhaus–Gaddum type of inequalities for  Zagreb indices
	Relations between Zagreb indices
	An exceptional property of first Zagreb index

