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Survey of Graph Energies
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Abstract

The graph energy is a graph–spectrum–based quantity, introduced in
the 1970s. After a latent period of 20–30 years, it became a popular topic of
research both in mathematical chemistry and in “pure” spectral graph theory,
resulting in over 600 published papers. Eventually, scores of different graph
energies have been conceived. In this article we provide the basic facts on
graph energies, in particular historical and bibliographic data.
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1. Introduction

The number of papers concerned with various graph energies, published since 2001
(i.e., in the 21st century), increased well over 600, showing no sign of attenuation.
To be more precise: these > 600 are the publications known to the authors of
this survey (at the moment of writing it in March 2016). There certainly exists
a non-negligible number of additional publications, in particular in the nowadays
mushrooming obscure electronic journals. Anyway, in good fate that all hitherto
published, scientifically significant, contributions to the theory of graph energy
have been noticed and recorded, it may be purposeful to offer a few statistical
data on their bibliography.

Throughout this article, the number of vertices and edges of the graph G will be
denoted by n and m, respectively. For the definitions of other graph–theoretical
notions and the meaning of the symbols used, the readers should consult the
references quoted or the books [105,115,116].
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2. History

The first paper in which graph energy was defined as the sum of absolute values
of the eigenvalues of the (0, 1)-adjacency matrix, namely as

E(G) =

n∑
i=1

|λi| (1)

appeared in 1978 [3]. The paper [3] is based on a series of lectures held by the
author on a graph–theoretical conference in Stift Rein, Austria, in 1978. It is
published (in English language) in a difficult-to-find journal whose full title is
“Berichte der Mathematisch–Statistischen Sektion im Forschungszentrum Graz ”.
A scanned copy of [3] is appended at the end of this article.

The idea to define E(G) as in Eq. (1) and to name it “energy” comes from
quantum chemistry.

If the eigenvalues of a molecular graph (of a conjugated π-electron system) are
labeled as

λ1 ≥ λ2 ≥ · · · ≥ λn (2)

then the total π-electron energy Eπ (of the underlying molecule in its ground
electronic state), as calculated within the Hückel molecular orbital (HMO) ap-
proximation, is equal to

Eπ = nα+ β

2

n/2∑
i=1

λi


if n is even, and

Eπ = nα+ β

λ(i+1)/2 + 2

(n−1)/2∑
i=1

λi


if n is odd, with α and β being constants.

For many molecular graphs, the conditions

λn/2 > 0 > λn/2+1 (3)

in the case of even n, and
λ(n+1)/2 = 0 (4)

in the case of odd n, hold, which in the 1970s was a well known fact. For such
graphs, it is elementary to show that

Eπ = nα+ β

[
n∑
i=1

|λi|

]
.



Survey of Graph Energies 87

Studying HMO theory, one of the authors of the present survey noticed that
two important earlier discovered results, namely Coulson’s integral formula [1]

Eπ = nα+ β
1

π

+∞∫
−∞

[
n− ix φ′(G, ix)

φ(G, ix)

]
dx

and McClelland’s inequality [7]2

n/2∑
i=1

λi

 ≤ √2mn or

λ(i+1)/2 + 2

(n−1)/2∑
i=1

λi

 ≤ √2mn

hold if and only if the conditions (3) or (4) are satisfied. In other words, the actual
results of Coulson and McClelland were

n∑
i=1

|λi| =
1

π

+∞∫
−∞

[
n− ix φ′(G, ix)

φ(G, ix)

]
dx

and
n∑
i=1

|λi| ≤
√

2mn .

This observation was the prime motivation to move from the mathematically
repelling expressions for HMO total π-electron energy, equal to

2

n/2∑
i=1

λi or λ(i+1)/2 + 2

(n−1)/2∑
i=1

λi

to the much simpler expression
n∑
i=1

|λi|. By means of this change, the previous

HMO results would anyway remain valid for the majority (but not all!) chemically
interesting cases.

The other motivation was that the right–hand side of Eq. (1) is independent
of the labeling of graph eigenvalues, i.e., it does not require the validity of (2), i.e.,
the graph energy is a symmetric function of graph eigenvalues. By this, graph
energy belongs among the algebraically much studied symmetric functions.

By introducing the concept of graph energy, Eq. (1), the author of [3] hoped
that it will attract the attention of “pure” mathematicians, and that the Coulson
and McClleland formulas are just the first in a long series of exact and non-trivial
mathematical results for E(G) to be discovered.

This indeed happened, but more than a quarter-of-century later.
Already before the publication of [7], a few results that pertain to the energy of

trees were obtained [2]. Paper [3] was followed by several attempts to popularize
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the graph–energy concept (e.g., [4–6]), but the mathematical and mathematico–
chemical community remained uninterested until the beginning of the 21-st cen-
tury. The only exception was the Chinese mathematician Fuji Zhang (e.g. [8, 9]).
Then, however, a dramatic change happened, and almost suddenly a large number
of colleagues, from unrelated and geographically very distant places, started to
study graph energy. It may be that a conference lecture, later published as [5],
has triggered this turn.
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3. Statistics

Somewhere around the year 2007, the number of publications on graph energy
started to significantly increase. This trend is illustrated by the Table 1 and
Figure 1 where the distribution of graph–energy–papers by years in the last two
decades are shown.
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Table 1: Number of papers on graph energies published in the last twenty years,
a total of over 630 papers. In the last few years, such papers were produced faster
than one per week (= o.p.w.). Based on these data, an attenuation of this speed
is not to be expected in the foreseen future. The authors of this table are aware
of the fact that there must be numerous additional papers published in China
(especially those in Chinese language) that are not accounted for.

year no. comment year no. comment
1996 2 2007 34
1997 0 2008 54 > o.p.w.
1998 2 2009 68 > o.p.w.
1999 6 2010 62 > o.p.w.
2000 4 2011 56 > o.p.w.
2001 12 2012 57 > o.p.w.
2002 3 2013 57 > o.p.w.
2003 5 2014 59 > o.p.w.
2004 9 2015 77 > o.p.w.
2005 15 2016 35 as in March
2006 11

year

# papers

Figure 1: Distribution of the published graph energy papers by years.
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Table 2 and Figures 2 and 3 show the distribution of authors of graph–energy–
papers by the country of affiliations. In Figure 2 is shown a world map indi-
cating the countries in which these authors were employed, when creating their
graph–energy articles. Figure 3 indicates the relative number of authors who were
publishing graph–energy–papers by their affiliation’s countries.

country no. country no. country no. country no.
Australia 5 Georgia 1 Mexico 1 Slovenia 1
Austria 1 Germany 9 Norway 1 South Africa 2
Belgium 1 Greece 2 Netherlands 4 South Korea 7
Brazil 14 Hungary 2 Pakistan 7 Spain 2
Canada 9 India 91 Portugal 2 Sweden 1
Chile 11 Indonesia 1 Romania 2 Thailand 2
China 203 Iran 35 Russia 1 Turkey 11
Colombia 8 Ireland 1 Saudi Arabia 1 UK 6
Croatia 4 Italy 6 Serbia 32 USA 38
France 3 Japan 2 Slovakia 2 Venezuela 8

Table 2: Number of scholars from various countries who authored or coauthored at
least one article on graph energy in the period 1996–2016 (as on March 31, 2016).
Their true count is somewhat greater because we did not distinguish between
scholars with the same surname and different names beginning with the same
letter. Thus, Xia Li, Xuechao Li, and Xueliang Li were counted as one. Note that
all continents, with the regretful exception of Antarctica, are represented in this
field of research.

Figure 2: Countries where researches on graph energy were conducted.

The bibliography on which the data in Tables 1 and 2 are based, is the one
compiled by the authors of this survey. They made it as complete as they could,
but it certainly is not 100% complete. This implies that in reality, the count of
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Figure 3: Relative number of authors by countries where they have been work-
ing in the time when their graph–energy articles were produced. This pie-chart
emphasize countries where the percentage of authors is greater than 5% .

articles and authors, stated in Tables 1 and 2, is still greater. It also may be that
some more countries would need to be added to Table 2.

It should be noted that the mentioned bibliography does not include papers
that are not directly related to graph energies. Thus, among others, not included
are the papers concerned with the following topics:

• Excluded are the countless approximate formulas for total π-electron energy
(in terms of n, m, and other graph parameters), in particular such formulas
for Eπ of benzenoid hydrocarbons.

• Excluded are empirical correlations between Eπ and various structural pa-
rameters, in particular the “Hall rule” relating E(G) and the number of
perfect matchings.

• Excluded are researches on the Türker angle Θ, defined as cos Θ = E(G)/
√

2mn,
and on similar “angles”.

• Excluded are resonance energies, defined as the difference between Eπ and
an appropriately designed “reference energy”. This, in particular, applies to
the “topological resonance energy” equal to the difference between E(G) and
what nowadays is called “matching energy”.

• Excluded are studies of the energy effect of individual cycles in polycyclic
conjugated molecules, defined as the difference between E(G) and an appro-
priately designed cycle–dependent reference.
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4. The Multitude of Graph Energies

Graph energy, Eq. (1), is based on the eigenvalues of the ordinary (0, 1)-adjacency
matrix. Its mathematical examination resulted in scores of newly established
properties and, consequently, in scores of published papers. In view of this success,
a natural idea was to look for some variant of graph energy that would also provide
a basis for prolific mathematical researches.

The most obvious step in this direction was to employ eigenvalues of another
graph matrix. The most obvious candidate for this was the Laplacian matrix. Let
its eigenvalues be denoted by µ1, µ2, . . . , µn. Then, in analogy with Eq. (1) one
could conceive the Laplacian energy of the graph G as

LE!(G) =

n∑
i=1

|µi| .

However, because all Laplacian eigenvalues are non-negative, and because their
sum is equal to 2m, we would arrive at the trivial result LE!(G) = 2m. The way
out of this difficulty was found by defining the Laplacian energy as [39]

LE(G) =

n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ .
Alas, as a consequence of this definition, LE(G1∪G2) = LE(G1) +LE(G2) is not
satisfied in the general case.

The Laplacian energy was the first in a long series of energies based on other
graph matrices. It was followed by the distance energy (based on the eigenvalues
of the distance matrix) [41], signless Laplacian energy (based on the eigenvalues
of the signless Laplacian matrix) [10], normalized Laplacian energy (based on the
eigenvalues of the normalized Laplacian matrix) [24], resistance–distance or Kirch-
hoff energy (based on the eigenvalues of the resistance–distance matrix) [28, 50],
skew energy (based on the eigenvalues of the skew adjacency matrix) [13], Seidel
energy (based on the eigenvalues of the Seidel matrix) [40], etc. Consonni and
Todeschini [26] defined the energy of any real symmetric matrix with eigenvalues
ξ1, ξ2, . . . , ξn as

ECT =

n∑
i=1

∣∣∣∣ξi − S

n

∣∣∣∣
where S = ξ1 + ξ2 + · · · + ξn . The definition of the Hermitian energy [48] is
analogous.

An often used method for designing a new graph energy is to start from a
topological index of the form

TI(G) =
∑
vi,vj

f(vi, vj)
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where v1, v2, . . . , vn are the vertices of the graph G and the summation goes over
all pairs of its adjacent vertices. Based on the above formula, one defines the
matrix MTI = (mij) as

mij =

{
f(vi, vj) if vi and vj are adjacent

0 otherwise.

The respective energy is then the sum of absolute values of the eigenvalues ofMTI .
Such are the Randić [23], Szeged [30], geometric–arithmetic [64], and common–
neighbourhood energy [20], based on the Randić, Szeged, geometric–arithmetic,
and common–neighbourhood indices, respectively.

Nikiforov extended the energy–concept to any matrix [58]. If M is a p × q
matrix (where p and q need not be equal), then the positive square roots of the
eigenvalues of MMt are the singular values of M. Their sum if defined as the
energy of the matrix M. In the case of real and symmetric (square) matrices, the
new and the old energy–concepts coincide.

The first non-square matrix to which Nikiforov’s concept was applied was the
incidence matrix, resulting in the incidence energy IE(G) [44]. Short time earlier,
Liu and Liu [49] introduced the so-called Laplacian–energy–like invariant , defined
as

LEL(G) =

n∑
i=1

√
µi .

From a formal point of view, LEL is not a graph energy. However, it was soon
discovered that for bipartite graphs, LEL(G) = IE(G), whereas in the general
case (including non-bipartite graphs),

IE(G) =

n∑
i=1

√
µ+
i

where µ+
1 , µ

+
2 , . . . , µ

+
n are the eigenvalues of the signless Laplacian matrix.

Followed the oriented incidence energy [66], normalized incidence energy [25],
Laplacian incidence energy [65], Randić incidence energy [31], etc.

A subset D of the vertex set V of the graph G is said to be a dominating set
of G if every vertex of V \D is adjacent to some vertex in D. Any dominating set
with minimum cardinality is said to be a minimum dominating set. The minimum
dominating adjacency matrix of G, denoted by AD = (aDij), is the n × n matrix
defined as

aDij =


1 if vi ∼ vj

1 if i = j , vi ∈ D

0 otherwise.

The minimum dominating energy is defined as [61]
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ED(G) =

n∑
i=1

|λDi |

where λDi , i = 1, 2, . . . , n, are the eigenvalues of AD.
A subset C of V is said to be a covering set of G if every edge of G is incident

to at least one vertex of C. Any covering set with minimum cardinality is called
a minimum covering set. The minimum covering matrix of G, denoted by AC =
(aCij), is the n× n matrix defined as

aCij =


1 vi ∼ vj

1 i = j, vi ∈ C

0 otherwise.

The minimum-covering energy is defined as [14]

EC(G) =

n∑
i=1

|λCi |

where λCi , i = 1, 2, . . . , n, are the eigenvalues of AC .
If T is a tree of order n, then its ordinary energy satisfies the Coulson integral

formula

E(T ) =
1

π

+∞∫
−∞

[
n− ix α′(T, ix)

α(T, ix)

]
dx (5)

where α(G,λ) denotes the matching polynomial of the graph G. Extending the
validity of the right–hand side of (5) to all graphs, one arrived at the concept of
matching energy [38]:

ME(G) =
1

π

+∞∫
−∞

[
n− ix α′(G, ix)

α(G, ix)

]
dx .

A coloring of a graph G is a coloring of its vertices such that adjacent vertices
have different colors. The minimum number of colors needed for coloring of a graph
is the its chromatic number. For such a coloring, the color matrix is defined so
that its (i, j)-entry is equal to +1 (resp. −1) if the vertices vi and vj are adjacent
and thus differently colored (resp. non-adjacent and equally colored), and is zero
otherwise. The sum of the absolute values of the eigenvalues of the color matrix
is referred to as the color energy [15].

The “ultimate” generalization of the energy–concept is achieved by consider-
ing an n-tuple X of real numbers, x1, x2, . . . , xn which need not have a graph–
theoretical or any other interpretation. If the arithmetic average of these numbers
is x, then the ultimate energy of X is [36]
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UE(X ) =

n∑
i=1

∣∣xi − x∣∣ .
It is remarkable that already such a poorly defined energy is bounded as√

nV ar(x) + n(n− 1)|P (x)|2/n ≤ UE(X ) ≤ n
√
V ar(x) (6)

where V ar(x) is the variance of the numbers x1, x2, . . . , xn, whereas P (x) =
n∏
i=1

(x−

xi). The bounds (6) were first established in 1971 by McClelland (for the ordinary
graph energy), and were then repeatedly “discovered” for dozens of other graph
energies.

* * * * *

In our records, we have data on more than 60 different graph energies. In
what follows, we give a list thereof, ordered according to the time of their first
occurrence in the literature, with reference to the place where these have been
considered for the first time. In reality, the number of existing graph energies may
be still greater, and more such will for sure appear in the future.

no graph energy reference

1 (ordinary) graph energy [35]
2 Laplacian energy [39]
3 energy of matrix [58]
4 robust domination energy [11]
5 energy of set of vertices [12]
6 distance energy [41]
7 Laplacian–energy–like invariant [49]
8 Consonni–Todeschini energies [26]
9 energy of (0, 1)-matrix [45]
10 incidence energy [44]
11 maximum-degree energy [16]
12 skew Laplacian energy [17]
13 oriented incidence energy [66]
14 skew energy [13]
15 Randić energy [23]
16 normalized Laplacian energy [24]
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no graph energy reference

17 energy of matroid [19]
18 energy of polynomial [52]
19 Harary energy [34]
20 sum-connectivity energy [69]
21 second–stage energy [21]
22 signless Laplacian energy [10]
23 PI energy [55]
24 Szeged energy [30]
25 He energy [27]
26 energy of orthogonal matrix [22]
27 common-neighbourhood energy [20]
28 matching energy [38]
29 ultimate energy [36]
30 minimum-covering energy [14]
31 resistance-distance energy [28]
32 Kirchhoff energy [50]
33 color energy [15]
34 normalized incidence energy [25]
35 Laplacian distance energy [68]
36 Laplacian incidence energy [65]
37 Laplacian minimum dominating energy [60]
38 minimum-domination energy [61]
39 minimum-covering distance energy [59]
40 Seidel energy [40]
41 domination energy [46]
42 general Randić energy [32]
43 Randić incidence energy [31]
44 Laplacian minimum-covering energy [62]
45 e-energy [54]
46 n-energy [54]
47 Hermitian energy [48]
48 minimum hub distance energy [51]
49 minimum monopoly energy [56]
50 minimum monopoly distance energy [57]
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no graph energy reference

51 complementary dominating energy [53]
52 minimum-maximal-domination energy [29]
53 minimum-covering color energy [63]
54 α-distance energy [47]
55 α-incidence energy [47]
56 so-energy [42]
57 Nikiforov energy [18]
58 resolvent energy [37]
59 Laplacian resolvent energy [67]
60 signless Laplacian resolvent energy [67]
61 skew Randić energy [33]
62 geometric–arithmetic energy [64]
63 o-energy [43]
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sometimes mentioned only in a few lines. The list that follows is believed to be
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7. Appendix
The seminal paper on graph energy [I. Gutman, The energy of a graph, Ber.
Math–Statist. Sekt. Forschungsz. Graz 103 (1978) 1–22.] is frequently cited even
though it is quite hard to acquire its copy. In order to help authors in the future,
the scanned copy of this article is given below.
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