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Identification of the Stress-Strain State 
of a Cylindrical Tank with Walls of 
Variable Thickness 
 
This paper presents the stress-strain analysis of a cylindrical tank shell 
made of two segments with different thickness, loaded by the hydrostatic 
pressure of water. Physical and mathematical models relevant for the 
analysis of deflection and stresses of the tank shell as a function of 
hydrostatic pressure are built. Functions of distribution of deflection, 
transverse forces and appropriate moments of the tank shell, i.e. tank 
segments, as well as stresses are determined. The mutual influences among 
the tank segments, depending on the length and thickness of the plate of 
applied segments, are identified, which creates the possibilty of optimum 
design of tanks that are symmetrically loaded in relation to the axis. The 
results obtained by the analytical procedure correspond to the results of 
FEM. Diagrams of distribution of deflection, moments, transverse forces 
and stresses are identical, while the maximum deviation of those values 
does not exceed 5 %. 
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1. INTRODUCTION 
 

This paper presents the identification of the stress-strain 
state of a cylindrical tank by the application of the 
general theory of cylindrical shells, i.e. theory of 
cylindrical shells loaded symmetrically in relation to the 
axis. The subject of the analysis is a cylindrical tank 
composed of two segments, heights h1 and h2, i.e. 
thicknesses δ1 and δ2 (Fig. 1). The methodology applied 
in this example does not reduce the generality of 
application in the tanks composed of several segments 
made of plates with different thicknesses. Namely, the 
conditions that hold in the section of joint between two 
segments (section “A-A”, according to Figure 1) are 
identical to the conditions, when there are several 
segments (e.g. 4, in sections “B-B”, “C-C” and “D-D”, 
according to Figure 2). That is why the analysis of the 
tank from Figure 1 will be carried out in the further 
procedure. 

Also, the analysis procedure is based on accurate 
expressions, which is very important in the cases when 
the thickness of tank segment walls cannot be neglected 
in relation to the height and diameter. Then the 
application of expressions which hold for an infinitely 
long tank according to [1] is not sufficiently correct, and 
hence it is necessary to consider the mutual influences 
among certain segments of the observed tank. The 
theoretical postulates of the mentioned analysis are 
given in [1-3]. The tanks made of segments with 
different thicknesses and loaded by hydrostatic pressure 
are frequently used in practice because of the rational 
exploitation of material. The segments that are exposed 
to higher hydrostatic pressure are made of thick plates 

(segments closer to the tank bottom), while thin plates 
are used for the other segments (closer to the top of the 
tank), due to lower pressure. The subject of stress-strain 
identification is primarily the tank shell, while the 
bottom is supposed to be supported by a sufficient 
surface, so that there are no significant deformations, 
i.e. the influence of the bottom on the tank shell is 
negligible in relation to the load by hydrostatic pressure. 
Recent research into cylindrical shells [4-7] shows 
modern approaches in the analysis of stress state based 
on FEM and experimental testing. In this paper, the 
methodology of stress-strain identification of cylindrical 
shells, within the mentioned research, points out the 
effect of rational exploitation of material. The fact that 
utilization of shells with variable thickness has 
favourable influences on the phenomenon of local stress 
is of particular importance. Stresses at critical points of 
the tank can be reduced by inserting reinforcements 
(ring), but the consequence would be a negative effect 
of local stress in their neighbourhood, which was in 
detail analysed in research [2]. 
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Figure 1. Cylindrical tank with two segments 
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Figure 2. Cylindrical tank with four segments 

 
2. METHODOLOGY OF THE THEORETICAL 

ANALYSIS 
 

Mathematical modelling of the cylindrical tank shell 
will be performed in the example given in Figure 3. As 
the tank shell consists of two segments (pos. 1 and 2), 
besides the fixed-end reactions (Q0 and M0), there are 
internal reactions in the contact between two segments 
(Q1 and M1), according to Figure 4. 
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Figure 3. Model of the cylindrical tank with two segments 
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Figure 4. Internal and external reactions of two segments 

The differential equation of the elastic surface of the 
cylindrical shell symmetrically loaded in relation to the 
axis, according to [1-3], is: 
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where the coefficient determined according to (2): 
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where the flexural rigidity of the shell: 
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The deflection of the round cylindrical shell, 
symmetrically loaded in relation to the axis, is given by 
the expression: 

 [ ]1 2cos( ) sin( )xw e C x C xβ β β= + +   

 [ ]3 4cos( ) sin( ) ( )x
pe C x C x w xβ β β−+ + + . (4) 

The particular solution will be assumed in the form: 

 ( )pw x Ax B= + . (5) 

A and B are indefinite coefficients, which are 
obtained according to (6) and (7) by substituting (4) in 
(1), we obtain: 
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The particular load (wp) which corresponds to the 
load by hydrostatic pressure (Z) has the form: 

 21 1
4
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The general solution of (1) has the form: 

 [ ]1 2( ) cos( ) sin( )xw x e C x C xβ β β= + +   

   [ ] 21
3 4
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cos( ) sin( )x g h x
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Since the tank is composed of two segments, with 
different stiffnesses, it is necessary to form two different 
distributions of the elastic surface in each tank segment. 

On the basis of that, we have: 
• for: 0 ≤ x ≤ h1 

 [ ]11 1 2( ) cos( ) sin( )xw x e C x C xβ β β= + +   

   [ ] 211 3 4
1

( )
cos( ) sin( )x g h x

e C x C x r
E
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δ
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i.e. 
• for: – h2 ≤ x ≤ 0 

 [ ]22 5 6( ) cos( ) sin( )xw x e C x C xβ β β= + +   

  [ ] 212 7 8
2

( )
cos( ) sin( )x g h x

e C x C x r
E
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δ
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The constants of integration (C1, C2, ... C8) are 
determined from the contour conditions at the ends of 



FME Transactions VOL. 39, No 1, 2011 ▪ 27
 

the tank (for x = h1 and x = – h2), as well as in the 
section of joint between two segments of the tank 
(section “A-A”, for x = 0, according to Figure 1). 

The contour conditions are: 
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The tank from Figure 3 is loaded by hydrostatic 
pressure of water, i.e. we have: 

 1( )Z g h xρ= − − . (21) 

The tank dimensions relevant for calculation are as 
follows: r = 4625 mm; h1 = 7200 mm; h2 = 3600 mm; 
δ1 = 6.0 mm; δ2 = 7.8 mm. 

 

The coefficients β1 and β2 are determined according 
to: 
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The derivatives of the function 
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are: 
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3 4 3 42 ( )sin( ) ( )cos( )xe C C x C C xββ β β−+ − + + + . (26) 

When the function w1 (x) is used, then there are the 
coefficients: C1, C2, C3 and C4. 

When the function w2 (x) is used, then there are the 
coefficients: C5, C6, C7 and C8. 

Substituting (20) to (25) in (12) to (19), taking care 
that (10) holds on segment “1”, i.e. (11) on segment “2”, 
we obtain: 

 

 { } { } { } { }1 1 1 1 1 1 1 11 1 1 2 1 1 3 1 1 4 1 1sin( ) cos( ) sin( ) cos( ) 0h h h hC e h C e h C e h C e hβ β β ββ β β β− −− + + + − =  (27) 
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The previous system of algebraic equations can be 
written in the matrix form: 

 { } [ ] { }iC K Q⋅ = . (35) 

The column matrix {Ci} is determined on the basis 
of the matrix equation: 
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The matrix coefficients (37) are given in Table 1. 
By solving (35), we obtain the required coefficients: 
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On the basis of the values of these coefficients, the 
 

diagrams of distribution of deflections w1 (x) and w2 (x) 
can be formed. 
Table 1. Coefficients of introduced replacements 

k1 1 1 1 1sin( )he hβ β−  

k2 1 1 1 1cos( )he hβ β  

k3 1 1 1 1sin( )he hβ β−  

k4 1 1 1 1cos( )he hβ β−−  

k5 [ ]1 1 1 1 1 1sin( ) cos( )he h hβ β β− +  

k6 [ ]1 1 1 1 1 1cos( ) sin( )he h hβ β β−  

k7 [ ]1 1 1 1 1 1cos( ) sin( )he h hβ β β− −  

k8 [ ]1 1 1 1 1 1sin( ) cos( )he h hβ β β− +  

k9 1β  

k10 2β  

k11 2
12β  

k12 2
2 1 22( / )δ δ β  

k13 3
12β  

k14 3
2 1 22( / )δ δ β  

k15 2 2 2 2cos( )he hβ β−− −  

k16 2 2 2 2sin( )he hβ β− −  

k17 2 2 2 2cos( )he hβ β−  

k18 2 2 2 2sin( )he hβ β−  

k19 [ ]2 22 2 2 2 2cos( ) sin( )he h hββ β β− − − −  

k20 [ ]2 22 2 2 2 2sin( ) cos( )he h hββ β β− − + −  

k21 [ ]2 22 2 2 2 2sin( ) cos( )he h hββ β β− + −  

k22 [ ]2 22 2 2 2 2cos( ) sin( )he h hββ β β− − −  
 

 
Figure 5. Diagram of distribution of deflections of the tank 
shell 

The moment of the cylindrical shell of the tank is 
determined from the expression: 
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The transverse force of the cylindrical shell of the 
tank is determined from the expression: 

 
3

3x
wQ D

x

⎛ ⎞∂
= − ⎜ ⎟⎜ ⎟∂⎝ ⎠

. (42) 

The moment in the circular direction (Mϕ) is: 

 xM Mϕ ν= . (43) 

The moment for segment “1” of the tank is: 

 ( )
2

1
11 2x

w
M D

x

⎛ ⎞∂
= − =⎜ ⎟⎜ ⎟∂⎝ ⎠

  

 [ ]{2 11 1 1 1 2 12 sin( ) cos( )xD e C x C xββ β β= − − + +   

 [ ]}1 3 1 4 1sin( ) cos( )xe C x C xβ β β−+ − . (44) 

The transverse force for segment “1” of the tank is: 

 ( ) [{3 11 1 1 2 11 2 ( )sin( )x
xQ D e C C xββ β= − − − +   

] [11 2 1 3 4 1( )cos( ) ( )sin( )xC C x e C C xββ β−+ − + + − + +  

                    ]}3 4 1
1 ( )cos( )C C xβ+ + . (45) 

The moment for segment “2” of the tank is: 

 ( )
2

2
22 2x

w
M D

x

⎛ ⎞∂
= − =⎜ ⎟⎜ ⎟∂⎝ ⎠

  

 [ ]{2 22 2 5 2 6 22 sin( ) cos( )xD e C x C xββ β β= − − + +   

 [ ]}2 7 2 8 2sin( ) cos( )xe C x C xβ β β−+ − . (46) 

The transverse force for segment “2” of the tank is: 

 ( ) [{3 22 2 5 6 22 2 ( )sin( )x
xQ D e C C xββ β= − − − +   

] [25 6 2 7 8 2( )cos( ) ( )sin( )xC C x e C C xββ β−+ − + + − + +  

                    ]}7 8 2
1 ( ) cos( )C C xβ+ + . (47) 

The diagrams of distribution of moments, transverse 
forces and stresses are given in Figures 6, 7 and 8, 
respectively. 

 
Figure 6. Diagram of distribution of the bending moment 
(Mx) of the tank shell 

 
Figure 7. Diagram of distribution of the transverse force 
(Qx) of the tank shell 

 
Figure 8. Diagram of distribution of the equivalent stress 
(σe) of the tank shell 

Equivalent stress (Fig. 8), is: 

 2 2 2
e max doz3x xϕ ϕσ σ σ σ σ τ σ= + − + < . (48) 

For 1
r
δ
<< : 

 2
6 x

x
M

σ
δ

= ; 2

6Mϕ
ϕσ

δ
= ; max

3
2

xQ
τ

δ
= . (49) 

The importance of analytical methods in stress 
identification, especially in highly stressed tanks [8], is 
evident primarily in establishing correlations between 
certain parameters of the tank (e.g. between the lengths 
and heights of tank segments, depending on the 
pressure). The knowledge of such regularities is 
significant for determination of the stress-strain state, 
particularly in the zones of change of section, such as 
the transition from the spherical into the elliptical shape 
[9,10], but also for the optimum design of tanks [11]. In 
addition to analytical identifications of tank stress, there 
are significant results obtained by using FEM, [12-18]. 
A lot of engineering problems are solved by using this 
method. However, it is not suitable for the optimisation 
process, because it requires a large number of iterations, 
which extends the design period. The key activity in the 
application of FEM is the generation of a finite element 
mesh, and the triangle mesh [19] is most suitable for 
cylindrical shells. 

 
3. RESULTS OBTAINED BY FEM 

 
By using ANSYS software, which is based on FEM, the 
analysis of stress and strain, i.e. the analysis of 
deflection of the tank shell was carried out for the 
purpose of verifying the applied theory and the 
performed methodology of the identification considered. 
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The subject of analysis by applying FEM is the tank 
shell composed of 2 segments of different thicknesses. 
The value of hydrostatic pressure of water to which the 
tank shell is exposed as well as its dimensions are 
identical to the values used in the theoretical analysis, 
while the connection between the tank shell and the 
base is represented by fixed-end reactions. The FEM 
model is thus, with respect to load, geometry and 
constraints, identical to the theoretical model. The 
tetrahedral finite elements, size 22 mm, were applied for 
generation of the FEM model. Software calculation of 
the stress-strain state was performed on the basis of the 
model created, while the values read are presented in 
comparative diagrams of deflection and equivalent 
stress (Figs. 11 and 12). The trends of distribution of 
deflection and comparative stress, obtained by means of 
FEM, are in accordance with the trends of the same 
distributions calculated by the analytical procedure. 

 
Figure 9. Total deformation tank of the shall (ANSYS) 

 
Figure 10. Equivalent stress (σe) 

The FEM results for deflection and equivalent stress 
are presented in Figures 9 and 10, respectively. 

 
3.1 Comparative analysis of the calculation 

procedure and the finite element method 
 

By using the diagrams presented in Figures 11 and 12, 
the comparative analysis for the tank loaded by 
hydrostatic action of water, shown in Figure 1, can be 
carried out. The key values that are the subject of 
comparison are the deflection w (x) and the bending 
stress σ (x) of the tank shell. 

 
Figure 11. Diagram of deflections of the tank shell obtained 
by FEM 

 
Figure 12. Diagram of distribution of equivalent stress of 
the tank shell obtained by the application of FEM 

Table 2. Comparative analysis of the value 

Name of the value
Analytical 
procedure 

(max. value) 

FEM 
(max. value) 

Deviation 
[%] 

Shell deflection 
w (x) [mm] 1.41 1.35 4.2 

Equivalent stress 
σe (x) [kN/cm2] 11.46 11.89 3.6 

 
 

4. FINAL CONSIDERATIONS 
 

The previous presentation shows the analysis of the 
stress-strain state of the tank with two segments, where, 
on the basis of the diagram of the equivalent stress (Fig. 
12), it can clearly be established that there is 
insufficiently rational exploitation of the material for the 
given dimensions of the tank. Therefore, in the 
considered case we should tend towards the increase in 
the number of segments in order to have the optimum 
tank structure. The increase in the number of segments 
for the constant height of the tank results in a more 
uniform distribution of the equivalent stress σx (without 
larger oscillation, i.e. peaks). It provides more rational 
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exploitation of the material inserted. Also, the influence 
of the tank bottom on the stress-strain state of the tank 
shell is not taken into account and such an analysis 
gives results on the side of safety. Namely, if a certain 
deformation of the tank bottom were allowed, then it 
would be transferred to the shell through the 
corresponding moments, and the deformation would be 
smaller than in the case considered. By analyzing the 
stress diagram (Fig. 12), three characteristic zones of the 
tank shell can be established, i.e.: 

1. The zone of joining between two segments 
(section “A-A”, according to Figure 1); 

2. The zone immediately before joining with the 
tank bottom (according to the case considered, it 
is the zone around the value x = – 3.4 m); 

3. The zone of joining between the tank shell and 
the tank bottom (x = – 3.6 m), where the 
maximum value of stress occurs.  

In the example considered, with two segments, there 
is a very uneven distribution of stresses, with 
pronounced peaks, and hence such a solution cannot be 
regarded as economical. The aspect for its improvement 
is seen in the increase of the number of segments (e.g. 4, 
according to Figure 2), so that segment no. 4 would 
have the role of elimination of the peak with the value 
11.464 (kN/cm2), and segment no. 3 would eliminate 
the value – 2.416 (kN/cm2). Selection of plate thickness 
of certain segments defines the bending stress as well as 
the mutual influence between the segments. The 
optimum dimensions of the tank imply that the 
equivalent stress σx (Fig. 12) has a relatively uniform 
shape (close to the rectilinear line, without significant 
peaks) and the value immediately below the allowed 
stress (σdoz). 

Generally, the methodology used in tanks with two 
segments can be successfully applied to tanks with 
several segments, which is especially significant in 
design of tanks with large overall dimensions, where the 
techno-economic aspect cannot be neglected. Thus the 
condition for optimum design of the tank is provided. 
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NOMENCLATURE 

w (x,y) deflection of the tank shell 



 

32 ▪ VOL. 39, No 1, 2011 FME Transactions
 

Z load symmetrically in relation to the axis of 
the cylinder 

E modulus of elasticity 
r radius of the tank 
wp (x) particular integral of equation (1) 
C1, C2, 
C3, C4 

constants of integration 

g acceleration of gravity 
h height of the tank 
h1 height of segment “1” 
h2 height of segment “2” 
Mx bending moment in the direction x 
Mϕ moment in the circular direction 
Qx transverse force in the direction x 

Greek symbols 

β coefficient 
ν Poisson’s ratio 
δ thickness of the tank shell plate 
δ1 thickness of segment “1” 
δ2 thickness of segment “2” 
ρ fluid density 
σx bending stress in the direction x 
σϕ stress in the circular direction 
τmax maximum shear stress 
σe equivalent stress 
σdoz allowed stress 
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РЕЗЕРВОАРА СА ЗИДОВИМА ПРОМЕНЉИВЕ 
ДЕБЉИНЕ 

 
Мирко Ђелошевић, Драган Петровић, Милан 

Бижић 
 
У овом раду је извршена деформацијско-напонска 
анализа омотача цилиндричног резервоара, 
израђеног из два сегмента различитих дебљина, 
оптерећеног хидростатичким притиском воде. 
Формирани су физички и математички модели 
меродавни за анализу угиба и напона омотача у 
функцији од хидростатичког притиска. Одређене су 
функције расподеле угиба, трансверзалних сила и 
одговарајућих момената омотача односно сегмената 
резервоара, као и напона. Идентификован је 
међусобан утицај појединог сегмента резервоара на 
остале, у зависности од дужине и дебљине лима 
примењених сегмената, чиме је створена могућност 
оптималног пројектовања резервоара симетрично 
оптерећених у односу на осу. Добијени резултати 
аналитичким поступком су у сагласности са 
резултатима МКЕ, дијаграми расподеле угиба, 
момената, трансверзалних сила и напона су 
идентични, док максимално одступање тих 
величина не прелази 5 %. 

 
 
 


