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Preface

In the recent years, the mathematical–chemistry literature is flooded by countless graph–based topo-
logical indices, proposed to serve as molecular structure descriptors.

Topological indices have attracted much attention of chemical and mathematical researchers, espe-
cially those focussing on graph theory, from all over the world. Nowadays many interesting results and
lot of open problems on it have been reported in literature. In most cases, the mathematical investigation
of these indices consist of finding lower and upper bounds for them, and characterizing the graphs for
which these inequalities become equalities. Again, the number of results obtained along these lines,
and the number of respective publications, is so large that no human can satisfactorily follow them and
recognize what is significant and what is not.

In order to help colleagues to find their way through the data jungle, we decided to devote one book
in our “Mathematical Chemistry Monographs” series to bounds on topological indices and the related
extremal graphs. To this end, in the Summer of 2016 we invited a number of colleagues to contribute
chapters to our book. The scholars invited were among those who are currently active and who publish in
this field of chemical graph theory. Their response was beyond anything what we could have expected.

Thus, instead of a single “Mathematical Chemistry Monograph”, we had to produce three volumes,
that is:

• Mathematical Chemistry Monograph No. 19:
Bounds in Chemical Graph Theory – Basics
Faculty of Science & University, Kragujevac, 2017

• Mathematical Chemistry Monograph No. 20:
Bounds in Chemical Graph Theory – Mainstreams
Faculty of Science & University, Kragujevac, 2017

• Mathematical Chemistry Monograph No. 21:
Bounds in Chemical Graph Theory – Advances
Faculty of Science & University, Kragujevac, 2017

The present book is the “Mathematical Chemistry Monograph” No. 19, completed in January 2017.

Editors:

Ivan Gutman
Boris Furtula
Kinkar Ch. Das
Emina I. Milovanović
Igor Ž. Milovanović
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1. Introduction

The appeal of the research on molecular descriptors in Mathematical Chemistry stems, in no small mea-
sure, from the wide variety of approaches to the subject and their fruitful interactions. In the paragraphs
that follow we will focus on one of those viewpoints, the majorization technique, with some support
from the theory of electric networks.

Majorization allows to find upper and lower bounds for many descriptors through the identification
of maximal and minimal tuples in some subsets of the n-dimensional real space, endowed with a partial
order, and the monotonicity of the descriptors when thought of as Schur-convex functions defined on
those suitable subspaces.

On the other hand, the theory of electric networks provides a number of sum rules for the effective
resistances, such as Foster’s theorems, and also a monotonicity notion, Rayleigh’s monotonicity princi-
ple. These electric ideas are applicable not only to the resistive descriptors, such as the Kirchhoff index
and its relatives, but also to other descriptors defined in terms only of the degrees of the vertices, such as
the ABC and AZI indices. In these cases, the majorization is performed on the effective resistances, not
on the degrees of the vertices or on the eigenvalues of the graph.

In general, proofs are omitted for the sake of brevity, although these can be found in the references
provided. A final section on numerical results compares in some specific instances our results obtained
with majorization and those found in the literature.

2. Notations and preliminaries

In this Section we present the notations and some basic facts used in the sequel. For the sake of clarity,
we have split the section in three subsections addressing the main topics of majorization, graphs and
effective resistance in electric networks.
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2.1 Majorization order and Schur convex functions

This section concerns some reminds about the notions of majorization and its extension known as p-
majorization. The main references are the classical book [104], the technical report [26] and the recent
paper [13].
Let D = {x ∈ Rn : x1 ≥ x2 ≥ ... ≥ xn} and denote by [xα1

1 , xα1
2 , · · · , xαp

p ] a vector in Rn with αi

components equal to xi, where
∑p

i=1 αi = n. If αi = 1 we use xi instead of xαi
i for convenience, while

x0
i means that the component xi is not present.

Let e j, j = 1, ...n, be the fundamental vectors of Rn, s j = [1j, 0n−j], with j = 1, 2, · · · , n and v j =

[0j, 1n−j], with j = 0, · · · , n
The Hadamard product of two vectors x,y ∈ Rn is defined as follows:

x ◦ y = [x1y1, x2y2, ..., xnyn]
T ,

Denoting by 〈·, ·〉 the inner product in Rn, the following properties hold:

i) 〈x ◦ y, z〉 = 〈x,y ◦ z〉

ii) 〈sh,vk〉 = h−min {h, k}

iii) sk ◦ sj = sh, h = min {k, j}

iv) vk ◦ sj = sj − sh = vh − vj, h = min {k, j}

Definition 1. Fix p > 0. Given two vectors y, z ∈ D, the p-majorization order y Ep z means:

〈
p ◦ y, sk

〉
≤
〈
p ◦ z, sk

〉
, k = 1, ..., (n− 1)

and

〈p ◦ y, sn〉 = 〈p ◦ z, sn〉 .

For p = sn, p-majorization reduces to the usual majorization. Thus in the sequel all our results entail as
particular cases the results known for classical majorization. In this case we will use the notation y E z.

The class of functions which preserve the p-majorization order are known as p-Schur-convex func-
tions (see [26] ). Let ρ be a permutation of {1, · · ·n} and xρ be the vector obtained exchanging the
components of x according to ρ.

Definition 2. Given a fixed vector of positive components p, a function φ(·,p) : Rn −→ R, is said to be

p-Schur-convex if

φ(x,p) = φ(xρ,pρ) for all ρ (1)

φ(x,p) ≤ φ(y,p) whenever x,y ∈ D and x Ep y. (2)

If in addition, φ(x) <φ(y) for x Ep y but x is not a permutation of y, φ is said to be p-strictly Schur-

convex. A function φ is (strictly) p-Schur-concave if −φ is (strictly) p- Schur-convex.
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Note that for p = sn, we recover the classical notion of Schur-convex and strictly Schur-convex
functions.

Next result gives an important characterization of differentiable p-Schur-convex functions.

Theorem 3. (see [26]) Let p > 0 be fixed and φ : Rn −→ R be a differentiable function satisfying (1).

Then the function φ is p-Schur-convex if and only if for all x,

(xi − xj)

(
1

pi

∂φ(x;p)

∂xi

− 1

pj

∂φ(x;p)

∂xj

)
≥ 0 for all i,j=1,...,n. (3)

Another useful criterion to prove the p-Schur-convexity is given by the following proposition.

Proposition 4. Let I ⊂ R be an interval and let φ(x,p) =
∑n

i=1 pig(xi), where g : I → R. If g is

(strictly) convex on I , then φ is (strictly) p-Schur-convex on In = I × · · · × I︸ ︷︷ ︸
n−times

.

The above results can be restated, letting p = sn, to prove the Schur-convexity of a function.

2.2 Graph theory

Let us now recall some basic concepts from graph theory (for more details we refer the reader to [16]
and [137]).

Let G = (V,E) be a simple, connected and undirected graph, where V = {v1, ..., vn} is the set of
vertices and E ⊆ V × V the set of edges. We consider graphs with fixed order |V | = n and fixed
size |E| = m, the cardinality of the sets V and E respectively. An undirected graph is a graph in which
(vi, vj) ∈ E whenever (vj, vi) ∈ E.When two vertices share a link, they are called adjacent. The degree
di of a vertex vi (i = 1, ..., n) is the number of edges incident with it. A walk is a sequence of adjacent
vertices v1, v2, ..., vl. A vi − vj path is a walk connecting vi and vj in which all vertices are distinct. A
shortest path joining vertices vi and vj is called a vi −vj geodesic. The distance dist (vi, vj) between two
vertices vi and vj is the length of the vi− vj geodesic. A graph is connected if for each pair of vertices vi
and vj there is a path connecting vi and vj . A graph is bipartite if V can be divided into two separate sets
V1 and V2 such that every node in V1 and V2 is not connected to each other. By simple graph we refer to
an unweighted, undirected graph contatining no-self-loops or multiple edges. Moreover, a weight wij is
possibly associated to each edge, in this case we will have a weighted (or valued) graph.
In the sequel we consider a particular class of graph, so-called c-cyclic graphs, where c is the cyclomatic
number of the graph G and it is given by c = |E| − n+ 1. It corresponds to the number of independent
cycles in G (see [16]). In particular, graphs with cyclomatic number c = 0 are trees and graphs with
cyclomatic number c = 1 are unicyclic graphs.
Let π = (d1, d2, .., dn) denote the degree sequence of G arranged in non increasing order d1 ≥ d2 ≥
· · · ≥ dn, where di is the degree of the vertex vi. We recall that the sequences of integers which are
degree sequences of a simple graph were characterized by Erdős and Gallai ( [50]). It is well known that∑n

i=1 di = 2m. Also, if G is a tree, i.e. a connected graph without cycles, then m = n− 1.
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If π is a fixed degree sequence and x ∈ Rm the vector whose components are dαi + dαj , α 6= 0,
(vi, vj) ∈ E, extending the result proved in [99], it is possible to show that

m∑

i=1

xi =
∑

(vi,vj)∈E

(
dαi + dαj

)
=

n∑

i=1

dα+1
i (4)

and thus
∑m

i=1 xi is a constant.
Associated with a graph there are certain types of matrices which have important properties related

to their eigenvalues. Let A(G) be the adjacency matrix of G , i.e. the non-negative n−square ma-
trix representing the adjacency relationships between vertices of G: the off-diagonal elements aij of
A are equal to 1 if vertices u and v are adjacent and 0 otherwise. Let D(G) be the diagonal matrix
of vertex degrees. The matrix L(G) = D(G) − A(G) is called the Laplacian matrix of G, while
L(G) = D(G)−1/2L(G)D(G)−1/2 is known as the normalized Laplacian.

Let λ1(L) ≥ λ2(L) ≥ ... ≥ λn(L) be the set of (real) eigenvalues of L(G) and λ1(L) ≥ λ2(L) ≥
... ≥ λn(L) be the (real) eigenvalues of L(G). Given a connected graph G of order n ≥ 2,the following
properties of the spectra of L(G) and L(G) hold:

n∑

i=1

λi(L) = tr(L(G)) = 2m; λ1(L) ≥ 1 + d1 ≥
2m

n
; λn(L) = 0, λn−1(L) > 0;

n∑

i=1

λi(L) = tr(L(G)) = n;
n∑

i=1

λ2
i (L) = tr(L2(G)) = n+ 2

∑

(vi,vj)∈E

1

didj
; λn(L) = 0.

Furthermore n
n−1

≤ λ1(L) ≤ 2 and the left inequality is attained if and only if G is a complete graph,
while the right inequality holds when G is a bipartite graph.

Note that the condition λn−1(L) > 0 characterizes the connected graphs.
Finally, we cite the transition matrix P = D−1A which arises in the simple random walk on G. This is
the process that jumps from a vertex vi to any adjacent vertex vj with equal transition probabilities 1

di
.

In other words, this process is the Markov chain with transition matrix P and its real eigenvalues are
1 = λ1 (P ) > λ2 (P ) ≥ · · · ≥ λn (P ) ≥ −1. For a bipartite graph, the spectrum of P is symmetric and,
in particular, λn(P ) = −1.

For any square matrix M of order n let µ(M) = tr(M)
n

and σ2(M) = tr(M2)
n

−
(

tr(M)
n

)2
. If M admits

real eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn, the inequalities below hold ( [138]):

µ(M)− σ(M)

√
i− 1

n− i+ 1
≤ λi ≤ µ(M) + σ(M)

√
i− 1

n− i+ 1
, i = 1, · · · , n. (5)

and, in particular, more binding inequalities hold for the smallest and largest eigenvalues:

λ1 ≥ µ(M) +
σ(M)√
n− 1

, λn ≤ µ(M)− σ(M)√
n− 1

(6)

In the case of the normalized Laplacian we get

σ2(L(G)) =

(
2

n

) ∑

(vi,vj)∈E

1

didj
,
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and inequality (6) yields

λ1(L) ≥ 1 +

√√√√ 2

n(n− 1)

∑

(vi,vj)∈E

1

didj
(7)

Notice that for every connected graph of order n we have

1 > σ(L(G)) ≥ 1√
n− 1

,

and the right inequality is attained for the complete graph G = Kn.

2.3 Effective resistance in general electric networks

We can view any connected graph G(V,E) with n vertices and m edges as an electric network, where
to each edge (i, j) ∈ E of the graph is associate a resistance rij (rij = 1 in case of simple graphs), and
this viewpoint enables us to apply a number of results taken from the theory of electric networks. This
will be expanded below, but for the time being, if we denote by Rij the effective resistance between the
vertices i and j found using Ohm’s law, we will use these results:

1) Foster’s first formula (see [56]) ∑

(i,j)∈E
Rij = n− 1 (8)

2)
2

n
≤ Rij ≤ 1.

The inequality on the left hand side of 2) follows taking di = dj = n − 1 in the general bound proved
in [118]

1 ≥ Rij ≥
di + dj − 2

didj − 1
≥ 2

n
, (9)

where (i, j) ∈ E. The inequality on the right hand side follows noting that the effective resistance Rij

between two adjacent vertices i and j is equal to one if there is only one path connecting them, otherwise
it is strictly less than one.

It is worth mentioning that (9) holds when (i, j) ∈ E, otherwise if (i, j) /∈ E we have:

Rij ≥
1

di
+

1

dj
. (10)

In addition to the electrical formulas (8) and (9) used previously, Foster’s second law, given in [57],
is also fundamental: ∑

i<j;v

Rij

dv
= n− 2, (11)

where the summation is taken over all adjacent edges (i, v) and (v, j) and where dv is the degree of the
common vertex v.

We recall also the monotonicity law (see [47], p. 67), which states that if in a given network the
resistance of an individual resistor is decreased then the effective resistance between any two nodes of
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the network can only decrease. Thus, when we add an edge to a graph, since the resistance between
the nodes where the edge is added decreases from infinity to 1, the effective resistance between any two
nodes of the new graph is bounded above by the effective resistance between those same nodes in the
original graph.

For a general electric network, assuming k ≤ rij ≤ K, the previous relations 1) and 2) generalize as
follows

1’) Generalized Foster’s first formula: ∑

(i,j)∈E

Rij

rij
= n− 1

2’)
2k

n
≤ Rij ≤ K

Relation 2’) can be obtained via electric arguments as we will show below. Indeed, we can prove a
more general result that extends the lower bound (9).

Proposition 5. If (i, j) ∈ E then

Rij ≥
k(di + dj − 2)

didj − 1
. (12)

Corollary 6. If di ≤ d for all i ∈ V then

Rij ≥
2k

d+ 1
(13)

for all (i, j) ∈ E.

For the detailed proofs of Proposition 5 and Corollary 6 we refer the reader to [9]. Note that the
bound (13) holds in particular if the graph is d-regular. Finally, since di ≤ n− 1 for all i ∈ V , it follows
that

Rij ≥
2k

n
, for all (i, j) ∈ E.

3. Majorization techniques

Optimization problems involving Schur-convex or Schur-concave functions have received much atten-
tion in the literature providing some useful applications in different fields: for example they became
a convenient tool to localize eigenvalues of a real spectrum matrix ( [14], [127]) or more generally to
obtain bounds for an arbitrary order statistic distribution ( [19]). More recently some issues related to the
structural properties of graphs, characterized in terms of their topological invariants, have been explored
solving suitable optimization problems via majorization techniques ( [12], [63])
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In this section we present our general methodology based on the majorization order and Schur-
convexity, already introduced in Section 1.2.1, that provides a unified approach to recover many well-
known bounds of some graph topological indices, which can be expressed as Schur-convex functions,
as well as to obtain better ones. Furthermore, applying the majorization technique, we will show how
better estimate the subset on which the topological indices are defined.

3.1 A class of constrained optimization problems

Fix positive real numbers a and p. Let

Σa(p) = D ∩ {x ∈ Rn
+ : 〈x,p〉 = a}.

We set, in particular Σa(s
n) = Σa.

To undestand the manner in which the majorization technique works for bounding topological indices,
let F (x,p) be any topological index which is a p-Schur-convex (p-Schur-concave) function and consider
the following constrained optimization problem

{
max (min)F (x,p)

subject to x ∈ S
(P)

where S is a closed subset of Σa(p).
By the order preserving property of p-Schur-convex (p-Schur-concave) functions, the solution of the

non linear constrained nonlinear optimization problem (P) can be obtained in a straightforward way.
To this aim, let us recall that given a subset S of Σa(p), a vector x∗p(S) ∈ S is said to be maximal

for S with respect to the p-majorization order if x Ep x∗p(S) for each x ∈ S. Analogously, a vector
x∗p(S) ∈ S is said to be minimal for S with respect to the p-majorization order if x∗p(S) Ep x for each
x ∈ S.

The maximal and the minimal elements of a subset S of Σa with respect to the majorization order
will be denote by x∗(S) and x∗(S), respectively.
Now, if the set S admits maximal vector x∗p(S) and minimal vector x∗p(S) with respect to the p-
majorization order, the maximum and the minimum are attained at x∗p(S) and x∗p(S) respectively;
the opposite holds if φ is a p-Schur-concave function. This allows us to solve problem (P) in a more
direct way, avoiding the extensive numerical computations performed through the standard approach of
Karush-Kuhn-Tucker method.

Indeed, if F is a p-Schur-convex function, we get

F (x∗p(S),p) ≤ F (x,p) ≤ F (x∗p(S),p),∀x ∈ S.

Analogously, if if F is a p-Schur-concave function:

F (x∗p(S),p) ≤ F (x,p) ≤ F (x∗p(S),p),∀x ∈ S.

We note that tighter bounds for the elements of the subsets S, will imply sharper bounds for the p-
Schur-convex (p-Schur-concave) functions representing the topological indices, as shown in the follow-
ing proposition:
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Proposition 7. Let us consider two sets S
′′

and S ′, with S
′′ ⊆ S ′, which admit maximal and minimal

elements with respect to the majorization order. If F is a p-strictly Schur-convex function, then

F (x∗p (S ′′) ,p) ≤ F (x∗p (S ′) ,p)

F (x∗p (S
′) ,p) ≤ F (x∗p (S

′′) ,p)

and the equality holds if and only if x∗p (S ′′) = x∗p (S ′) and x∗p (S ′′) = x∗p (S ′).

In a straitghforward way the result for a p-Schur-concave function can be derived.

Now, it is worth pointing out that, in virtue of the above proposition, the more accurate is the estimate
of the set S, the tighter is the bound of the index.

It is evident that all the considerations above hold if we consider the problem (P) for p = sn and
S ⊆ Σa.

In the following section we will evaluate the maximal and minimal elements of particular subsets of
Σa(p) given by

Sa(p) = Σa(p) ∩ {x ∈ Rn : Mi ≥ xi ≥ mi, i = 1, ...n} , (14)

where m = [m1,m2, ...,mn]
T and M = [M1,M2, ...,Mn]

T are two assigned vectors arranged in non-
increasing order with 0 ≤ mi ≤ Mi, for all i = 1, ...n, and a is a positive real number such that
〈m,p〉 ≤ a ≤ 〈M,p〉 . However, it may happen that the bounds on the variable xi, i = 1, · · · , n are not
directly available. In such cases, we will show how majorization technique could efficiently provide the
required bounds.

3.2 Extremal elements with respect to the majorization order

Given a positive real number a, let us consider the sets Σa(p) and Σa. By direct calculations we can
easily show that the maximal and the minimal elements of Σa(p) with respect to the p-majorization
order are respectively:

x∗p (Σa(p)) =
a

p1
e1 and x∗p (Σa(p)) =

(
a∑n
i=1 pi

)
sn =

[(
a∑n
i=1 pi

)n]

(see [26] and [9]), while the maximal and the minimal elements of the set Σa with respect to the ma-
jorization order are

x∗ (Σa) = ae1 = [a, 0n−1], and x∗ (Σa) =
a

n
sn =

[(a
n

)n]

(see [104]).
In this section we extend the previous result finding the maximal and the minimal elements, with respect
to the p-majorization order, of the set Sa(p).

The existence of maximal and minimal elements of Sa(p) with respect to the p-majorization are
ensured by the compactness of the set Sa(p) and by the closure of the upper and lower level sets:

U(x) = {z ∈ Sa(p) : x Ep z} , L(x) = {z ∈ Sa(p) : z Ep x} .
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3.2.1 Maximal elements

We start computing the maximal element of the set Sa(p). For the reader’s convenience the proof will
be included.

Theorem 8. ( [9]) Let k ≥ 0 be the smallest integer such that

〈
p ◦M, sk

〉
+
〈
p ◦m,vk

〉
≤ a <

〈
p ◦M, sk+1

〉
+
〈
p ◦m,vk+1

〉
, (15)

and θ =
a−

〈
p ◦M, sk

〉
−
〈
p ◦m,vk+1

〉

pk+1

. Then

x∗p(Sa(p)) = M ◦ sk + θek+1 +m ◦ vk+1. (16)

Proof. First of all we verify that x∗p(Sa) ∈ Sa(p).

It easy to see that 〈p ◦ x∗p(Sa(p)), s
n〉 = a and that mi ≤ [x∗p(Sa)]i ≤ Mi for i 6= k + 1. To prove

that mk+1 ≤ x∗p
k+1(Sa(p)) ≤ Mk+1, notice that from (15)

pk+1mk+1 ≤ a−
〈
p ◦M, sk

〉
−
〈
p ◦m,vk+1

〉
= θpk+1 < pk+1Mk+1.

Now we show that x Ep x
∗p(Sa(p)) for all x ∈ Sa(p). By property i) it follows

〈
p ◦ x∗

p(Sa(p)), s
j
〉
=
〈
p ◦M, sk ◦ sj

〉
+ θpk+1

〈
ek+1, sj

〉
+
〈
p ◦m,vk+1 ◦ sj

〉
, j = 1, ...(n− 1)

and by iii) and iv)

〈
p ◦ x∗

p(Sa(p)), s
j
〉
=

{ 〈
p ◦M, sj

〉
1 ≤ j ≤ k〈

p ◦M, sk
〉
+ θpk+1 +

〈
p ◦m, sj − sk+1

〉
(k + 1) ≤ j ≤ (n− 1)

.

Thus, given a vector x ∈ Sa(p), for 1 ≤ j ≤ k we obtain

〈
p ◦ x, sj

〉
≤
〈
p ◦M, sj

〉
=
〈
p ◦ x∗(Sa(p)), s

j
〉
,

while for (k + 1) ≤ j ≤ (n− 1), by iii),

〈p ◦ x, sj〉 = 〈p ◦ x, sn〉 −
〈
p ◦ x,vj

〉

≤ a−
〈
p ◦m,vj

〉

=
〈
p ◦M, sk

〉
+ θpk+1 + 〈p ◦m,vk+1〉 − 〈p ◦m,vJ〉 =

=
〈
p ◦M, sk

〉
+ θpk+1 +

〈
p ◦m, sj − sk+1

〉
=

=
〈
p ◦ x∗p(Sa(p)), s

j
〉

and the result follows.

For the particular case p = sn, letting Sa(p) = Sa, we get the following



13

Corollary 9. ( [13]) Let k ≥ 0 be the smallest integer such that

〈
M, sk

〉
+
〈
m,vk

〉
≤ a <

〈
M, sk+1

〉
+
〈
m,vk+1

〉
, (17)

and θ = a−
〈
M, sk

〉
−
〈
m,vk+1

〉
. Then

x∗(Sa) = M ◦ sk + θek+1 +m ◦ vk+1 = [M1,M2, · · · ,Mk, θ,mk+2, · · ·mn]. (18)

Remark 10.
In the following list we recall the maximal elements of particular subsets of Sa(p) and Sa useful in

forthcoming Sections. We denote by bxc the integer part of the real number x.

I. S1
a(p) = Σa(p) ∩ {x ∈ Rn : M ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ m}

where 0 ≤ m ≤ a∑n
i=1 pi

≤ M. Then

x∗p(S1
a(p)) = Msk + θek+1 +mvk+1,

where k is the first integer such that

M

k∑

i=1

pi +m

n∑

i=k+1

pi ≤ a < M

k+1∑

i=1

pi +m

n∑

i=k+2

pi

and θ =
a−M

∑k
i=1 pi −m

∑n
i=k+2 pi

pk+1

(see [9]).

When p = sn we obtain k =

⌊
a− nm

M −m

⌋
and θ = a −Mk −m (n− k − 1) . In particular when

m = 0 we have x∗(S1
a) = Msk + θek+1, where k =

⌊ a

M

⌋
and θ = a−Mk (see [104] and [13]).

II. S2
a = Σa ∩ {x ∈ Rn : xi ≥ α, i = 1, ...h}

where 1 ≤ h ≤ n and 0 < α ≤ a/h. Then

x∗(S2
a) = (a− hα) e1 + αsh.

(see [14])

III. S
[h]
a = Σa ∩ {x ∈ Rn : M1 ≥ x1 ≥ ... ≥ xh ≥ m1,M2 ≥ xh+1 ≥ ... ≥ xn ≥ m2}

where 1 ≤ h ≤ n, 0 ≤ m2 ≤ m1, 0 ≤ M2 ≤ M1, mi < Mi, i = 1, 2 and hm1 + (n − h)m2 ≤
a ≤ hM1 + (n− h)M2.

Let a∗ = hM1 + (n− h)m2 and

k =





⌊
a− h(m1 −m2)− nm2

M1 −m1

⌋
if a < a∗

⌊
a− h(M1 −M2)− nm2

M2 −m2

⌋
if a ≥ a∗

.
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Then

x∗(S[h]
a ) =





[
Mk

1 , θ,m
h−k−1
1 ,mn−h

2

]
if a < a∗

[
Mh

1 ,M
k−h
2 , θ,mn−k−1

2

]
if a ≥ a∗

,

where θ = a−
〈
M, sk

〉
−
〈
m,vk+1

〉
, M = [Mh

1 ,M
n−h
2 ], m = [mh

1 ,m
n−h
2 ] (see [13]).

Remark 11. The assumption mi < Mi in point III Remark 10 can be relaxed to mi ≤ Mi. Indeed if
mi = Mi, i = 1, 2, the set S[h]

a reduces to the singleton {m1s
h +m2v

h}, while if m1 = M1,m2 < M2

the first h components of any x ∈ S
[h]
a are fixed and equal to m1 and the maximal element of S[h]

a can be
computed by the maximal element of Sa−hm1 ∈ Rn−h (see point II.). The case m2 = M2,m1 < M1 is
similar.

3.2.2 Minimal elements

In this section we discuss only the computation of the minimal element of the set

Sa = Σa ∩ {x ∈ n : Mi ≥ xi ≥ mi, i = 1, ...n} , (19)

where m = [m1,m2, ...,mn]
T and M = [M1,M2, ...,Mn]

T are two assigned vectors arranged in non-
increasing order with 0 ≤ mi ≤ Mi, for all i = 1, ...n, and a is a positive real number such that
〈m, sn〉 ≤ a ≤ 〈M, sn〉 .

We have already recalled that the minimal element of Σa is x∗(Σa) = [( a
n
)n]. If it belongs to Sa then

it is its minimal element, too. Otherwise we have to apply the following theorem.

Theorem 12. ( [13]) Let k ≥ 0 and d ≥ 0 be the smallest integers such that

1) k + d < n

2) mk+1 ≤ ρ ≤ Mn−d where ρ =
a− 〈m, sk〉 − 〈M,vn−d〉

n− k − d
.

Then

x∗(Sa) = m ◦ sk + ρ(sn−d − sk) +M ◦ vn−d = [m1, · · · ,mk, ρ
n−d−k,Mn−d+1 · · · ,Mn].

Remark 13.
In the following list we derive the minimal element of particular subsets of Sa useful in the sequel.

I. S
[h]
a = Σa ∩ {x ∈ Rn : M1 ≥ x1 ≥ ... ≥ xh ≥ m1,M2 ≥ xh+1 ≥ ... ≥ xn ≥ m2}

where 1 ≤ h ≤ n, 0 ≤ m2 ≤ m1, 0 ≤ M2 ≤ M1, mi < Mi, i = 1, 2 and hm1 + (n − h)m2 ≤
a ≤ hM1 + (n− h)M2.
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i) If m1 ≤ M2 then

x∗(S
[h]
a ) =





[
( a
n
)n
]

if m1 ≤
a

n
≤ M2

[
mh

1 ,
(
a−hm1

n−h

)n−h
]

if
a

n
< m1

[(
a−M2(n−h)

h

)h
,Mn−h

2

]
if

a

n
> M2

. (20)

ii) If M2 < m1 then

x∗(S
[h]
a ) =





[
mh

1 ,

(
a− hm1

n− h

)n−h
]

if a < ã

[(
a−M2(n− h)

h

)h

,Mn−h
2

]
if a ≥ ã

(21)

(see [13]).

II. S1
a = Σa ∩ {x ∈ Rn : M ≥ x1 ≥ ... ≥ xn−1 ≥ xn ≥ m} where 0 ≤ m < M and m ≤ a

n
≤ M.

Then x∗(S1
a) =

a

n
sn =

[(a
n

)n]
(see [104]).

III. S2
a = Σa ∩ {x ∈ Rn : xi ≥ α, i = 1, ...h}, where 1 ≤ h ≤ n and 0 < α ≤ a/h. Then

x∗(S
2
a) =





[(a
n

)n]
if α ≤ a

n

(αh, ρn−h) with ρ =
a− αh

n− h
if α >

a

n
,

(see ( [14]).

IV. S3
a = Σa ∩ {x ∈ Rn : xi ≤ α, i = h+ 1, ...n} where 1 ≤ h ≤ (n− 1) and

0 < α < a. Then

x∗(S
3
a) =





[(a
n

)n]
if α ≥ a

n

(ρh, αn−h) with ρ =
a− (n− h)α

h
if α <

a

n
,

(see ( [14]).

Remark 14. We note that the minimal element of the set S[h]
a does not necessarily have integer com-

ponents, while this is not the case for the maximal element. For our purposes it is crucial to find the
minimal vector in Sa with integer components which can be constructed by the following procedure (see
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Remark 12 in [13]). Let us consider, for instance, the vector x∗(S
[h]
a ) =

[(a
n

)n]
which corresponds to

the case m1 ≤
a

n
≤ M2. If

a

n
is not an integer, let us find the index k, 1 ≤ k ≤ n, such that

(⌊ a

n

⌋
+ 1
)
k +

⌊ a

n

⌋
(n− k) = a

i.e., k = a−
⌊ a

n

⌋
n. The vector

x1
∗ =

[(⌊ a

n

⌋
+ 1
)k

,
(⌊ a

n

⌋)n−k
]

is the minimal element of S[h]
a with integer components. With slight modifications the same procedure

can be applied also in the other cases discussed in (20), (21) or in Theorem 12.

3.3 A majorization procedure to get xi’s bounds

It may happen that the bounds on the variable xi, i = 1, · · · , n are not directly available. To overcome
this problem, we will now show that, if S assumes a particular expression, choosing the function F (x,p)

as the h−component of the vector x and p = sn, the solution of the problem (P ) provides the required
bounds.

To this aim we introduce a real, continuous, homogeneous of degree τ ≥ 1 and strictly Schur-convex
function g. We refer the reader to [14] for the proofs of Lemma and Theorems stated below

Lemma 15. (see Lemma 2.1 in [14]). Fix b ∈ R and consider the set

S = Σa ∩ {x ∈ Rn
+ : g(x) =

n∑

i=1

xτ
i = b}.

Then either b = aτ

nτ−1 or there exists a unique integer 1 ≤ h∗ < n such that:

aτ

(h∗ + 1)τ−1 < b ≤ aτ

(h∗)τ−1 ,

where h∗ =
⌊

τ−1

√
aτ

b

⌋
.

We can now deduce upper and lower bounds for xh (with h = 1, ..., n) by solving the following
optimization problems P (h) and P ∗(h):

max(xh) subject to x ∈ S P (h)

min(xh) subject to x ∈ S P ∗(h)

For the proof of the following Theorems, see [14], Theorems 3.1 and 3., respectively.

Theorem 16. The solution of the optimization problem P (h) is ( a
n
) if b = aτ

nτ−1 .

If b 6= aτ

nτ−1 , the solution of the optimization problem P (h) is α∗ where
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1. for h > h∗, α∗ is the unique root of the equation

f(α, τ) = (h− 1)ατ + (a− hα + α)τ − b = 0 (22)

in I =
(
0, a

h

]
;

2. for h ≤ h∗, α∗ is the unique root of the equation

f(α, τ) = hατ +
(a− hα)τ

(n− h)τ−1
− b = 0 (23)

in I =
(
a
n
, a
h

]
.

Theorem 17. The solution of the optimization problem P ∗(h) is ( a
n
) if b = aτ

nτ−1 .

If b 6= aτ

nτ−1 , the solution of the optimization problem P ∗(h) is α∗ where

1. for h = 1, α∗ is the unique root of the equation

f(α, τ) = h∗ατ + (a− h∗α)τ − b = 0 (24)

in I =
(

a
h∗+1

, a
h∗
]
;

2. for 1 < h ≤ (h∗ + 1), α∗ is the unique root of the equation

f(α, τ) = (n− h+ 1)ατ +
(a− (n− h+ 1)α)τ

(h− 1)τ−1
− b = 0 (25)

in I = (0, a
n
];

3. for h > (h∗ + 1), α∗ is zero.

4. Topological indices

Structural properties of graphs can be characterized in terms of descriptors representing properties which
are preserved by a graph isomorphism (namely graph invariants). In particular, we focus on topological
indices and we classify them according the mathematical object they are based on. It is worth pointing
out that we restrict our attention to those indices which can be formulated as Schur-convex (Schur-
concave) functions of the degree sequence π as well as of the eigenvalues of some matrices associated
to the graph G such as Adjacency, Laplacian, normalized Laplacian and transition matrices. The first
category of descriptors can be grouped in two subsets: the degree-based indices over all vertices and the
degree-based indices over all edges. Then we have the eigenvalues-based indices and this category also
includes some weighted and unweighted resistance-based indices which can be reformulated in terms of
eigenvalues of suitable matrices associated to G.

For reader’s convenience we listed below the analyzed indices.
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• First general and first multiplicative Zagreb indices;

• General Randić index;

• Generalized sum-connectivity index;

• Atom-bond connectivity index;

• Augmented Zagreb index;

• Energy index;

• Laplacian energy;

• Normalized Laplacian Index;

• Normalized Laplacian Energy;

• Normalized Laplacian Estrada index;

• HOMO-LUMO index;

• Kirchhoff index;

• Multiplicative degree-Kirchhoff index;

• Additive degree-Kirchhoff index;

• Weighted global cyclicity index.

4.1 Degree-based indices over all vertices

We explore a class of topological indices of particular interest found in the literature and depending on
the degree sequence of a graph over all vertices.

4.1.1 First general and first multiplicative Zagreb indices1

The first general Zagreb index was firstly introduced by Li and Zheng ( [95]) and it is defined as

Mα
1 =

n∑

i=1

dαi (26)

where α is an arbitrary real number with α 6= 0; 1. For α = 2 we get the first Zagreb index while for
α = −1 the inverse degree.
In [10] the authors, exploiting the fact that Mα

1 is a Schur-convex (concave) function of the degree
sequence either for α < 0 or α > 1 (0 < α < 1), provided upper and lower bounds of Mα

1 for the

1For details we refer the reader to [8] and [10].
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classes of c-cyclic graphs with 0 ≤ c ≤ 6. In particular, after characterizing c-cyclic graphs as those
whose degree sequences belongs to particular subsets of Rn, the maximal and minimal elements of these
subsets with respect to the majorization order were identified and upper and lower bounds evaluated. For
convenience, the reported results in Table 1 have been restricted to the first general Zagreb index with
either α < 0 or α > 1 and n ≥ c+2. When 0 < α < 1 the upper and lower bounds in Table 1 are turned
over. Furthermore the specific case α = −1 ( [35], [36] and [94]) has been discussed. Notice that when
more maximal elements are identified, the best choice depends on α.

c Lower bounds Upper bounds

1 (n− 1)α + 2α+1 + (n− 3) n (2α)

2 (n− 1)α + 3α + 2α+1 + (n− 4) 2 (3α) + (2α) (n− 2)

3 4 (3α) + (2α) (n− 4)
(n− 1)α + 4α + 3 (2α) + (n− 5)

(n− 1)α + 3α+1 + (n− 4)

4 2 (3α+1) + (2α) (n− 6)
(n− 1)α + 5α + 2α+2 + (n− 6)

(n− 1)α + 2α(2α + 1) + 2 (3α) + (n− 5)

5 8 (3α) + (n− 8) 2α

(n− 1)α + 6α + 5 (2α) + (n− 7)

(n− 1)α + 5α + 2 (3α) + 2 (2α) + (n− 6)

(n− 1)α + 22α+1 + 2 (3α) + (n− 8)

6 10 (3α) + (n− 10) 2α

(n− 1)α + 7 + 6 (2α) (n− 8)

(n− 1)α + 6 + 2 (3α) + 3 (2α) + (n− 7)

(n− 1)α + 5 + 4 + 2 (3α) + 2 + (n− 6)

(n− 1)α + 22α+2 + (n− 5)

Table 1. Bounds for Mα
1 (α < 0 ∨ α > 1)

Gutman [67] introduced the first multiplicative Zagreb index, defined as

lnM1 = 2
n∑

i=1

ln(di) (27)

and it is a Schur concave function of the degree sequence.
For c-cyclic graphs, 0 ≤ c ≤ 6, bounds for the first multiplicative Zagreb index can be obtained by

applying the same methodology described for the first general Zagreb index.

4.2 Degree-based indices over all edges

A class of topological indices depending on the degrees of nodes linked by an edge, is represented by the
General Randić index, the Generalized sum connectivity index, the Atom-bond connectivity index and
the Augmented Zagreb index.
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4.2.1 General Randić index 2

With respect to the degree sequence, one of the most popular index is the General Randić index:

Rα(G) =
∑

(didj)
α

(vi,vj)∈E
,

where α is a non zero real number ( [18]). For a specific value of α, some very well known indices can
be obtained: α = 1, for example, corresponds to the Zagreb index M2(G) ( [106]) while α = −1 is the
Randić index ( [121]). In [13] the generalized Randić index has been rewritten as:

Rα(G) =
1

2


 ∑

(vi,vj)∈E

(
dαi + dαj

)2 −
n∑

i=1

d2α+1
i


 . (28)

Let π = (d1, d2, .., dn) be a fixed degree sequence and x ∈ Rm be the vector whose components are

dαi + dαj , with (vi, vj) ∈ E. Notice that by (4)
∑m

i=1 xi is a constant. Since
n∑

i=1

d2α+1
i is also a constant,

Rα(G) is a Schur convex function of x and it is minimal (maximal) if and only f(x) =
m∑
i=1

x2
i = ‖x‖22 is

minimal (maximal).

Hence, considering a closed subset S of Σa ⊆ Rm, where a =
∑n

i=1 d
α+1
i , which admits x∗(S) and

x∗(S) as extremal vectors with respect to the majorization order, the function f attains its minimum and
maximum on S at f(x∗(S)) and f(x∗(S)), respectively. The general Randić index can be consequently
bounded as follows:

‖x∗(S)‖22 −
n∑

i=1

d2α+1
i

2
≤ Rα(G) ≤

‖x∗(S)‖22 −
n∑

i=1

d2α+1
i

2
. (29)

Using the information available on the degree sequence of G and characterizing suitably the set S,
different numerical bounds can be derived.

For the particular case α = 1, which corresponds to the Zagreb index M2(G), this methodology was
applied in [63], and, more recently, in [13] where the authors get sharper bounds for the index M2 in the
case of a particular class of graphs having exactly h pendant vertices, i.e. vertices with degree one. The
same procedure was applied in [11] for the Randić index:

R−1(G) =
∑

(i,j)∈E

(
1

didj

)
=

1

2


 ∑

(i,j)∈E

(
1

di
+

1

dj

)2

−
n∑

i=1

1

di


 . (30)

In this case, by (29), we have:

‖x∗(S)‖22 −
n∑

i=1

1

di
2

≤ R−1(G) ≤
‖x∗(S)‖22 −

n∑
i=1

1

di
2

. (31)

2For details we refer the reader to [8], [12] and [13].
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4.2.2 Generalized sum-connectivity index 3

In [48] the Generalized sum-connectivity index

χα(G) =
∑

(vi,vj)∈E
(di + dj)

α .

has been proposed.
Notice that for α = 1, χ1(G) reduces to the first Zagreb index

M1(G) =
∑

(vi,vj)∈E
(di + dj) =

n∑

i=1

d2i ,

while for α = −1
2

we have the Sum-connectivity index defined in [149].

Let π be a fixed degree sequence and x ∈ Rm be the vector whose components are (di+dj), (vi, vj) ∈ E.

The function f(x) =
∑m

i=1 x
α
i is strictly Schur-convex for α > 1 or α < 0, while it is strictly Schur-

concave for 0 < α < 1. Since
∑m

i=1 xi =
∑n

i=1 d
2
i is a constant and considering a closed subset S of Σa,

where a =
∑n

i=1 d
2
i , for α > 1 or α < 0, we get

‖x∗(S)‖αα ≤ χα(G) ≤ ‖x∗(S)‖αα , (32)

where ‖·‖α stands for the lα−norm. For 0 < α < 1, the bounds are exchanged. Different bounds,
depending on the choice of the set S, can be derived.

4.2.3 Atom-bond connectivity index4

The ABC index, proposed by Estrada et al. in [55], and reintroduced in [53] was defined as

ABC(G) =
∑

(i,j)∈E

√
di + dj − 2

didj
. (33)

The index ABC(G) has been studied in a large number of references of which we mention [59], [37]
and [78] for their own interest and for many other related references found in them.

In the following we will present a new upper bound for ABC(G) given in terms of the Randić index
R−1(G). This upper bound yields a number of particular bounds (which improve all those in [109] and
some in [77]) and maximal results as corollaries of numerous lower bounds for the Randić index found
in the literature. We also find new lower bounds for R−1(G) through majorization, yielding additional
upper bounds for ABC(G).

In what follows we will assume that the graphs satisfy n ≥ 3 in order to avoid cases where i and j

are neighbours and di = dj = 1. The first main result is a refinement of an argument found in [109].

3For details we refer to [8] and [12].
4For details we refer the reader to [11] and [109].
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Proposition 18. For any graph G we have

ABC(G) ≤
√
(n− 1)(|E| −R−1(G)), (34)

where R−1(G) has been defined in (30).

The inequality becomes an equality if G is either the complete graph or the star graph.

The maximality of the complete graph and the star graph will be seen below. The bound (34) is
similar to a bound found by Horoldagva and Gutman with different means in [77] stating

ABC(G) ≤
√

|E|(n− 2R−1(G)). (35)

Bounds (34) and (35) are not comparable. A bit of algebra shows that our bound is better when

R−1(G) ≤ |E|
2|E| − n+ 1

. Horoldagva and Gutman use their inequality (35) as an intermediate step

in order to obtain yet another inequality for ABC(G) in terms of the second Zagreb index, and use up-
per bounds on this index in order to get upper bounds on ABC(G). Here we take the alternative path
of producing upper bounds for ABC(G) using (34) and (35) with the help of lower bounds for R−1(G).
Perhaps the best such bound is given in [124], stating

R−1(G) ≥ n

2d1
, (36)

where d1 is the largest degree of the graph and where the equality is attained in case G is regular. This
allows us to prove the following universal bounds

Proposition 19. For any graph G we have

ABC(G) ≤
√
(n− 1)

(
|E| − n

2d1

)
≤ n

√
n− 2

2
, (37)

and

ABC(G) ≤
√
|E|n

(
1− 1

d1

)
≤ n

√
n− 2

2
. (38)

Again, the leftmost inequalities in (37) and (38) are not comparable, with (37) giving better bounds
whenever d1 ≥ n(1− n−1

2|E| ). Now, for the complete graph Kn, it is easily seen that ABC(Kn) = n
√

n−2
2

,
so either (37) or (38) state that the complete graph is maximal for the ABC index among all graphs. In
addition to the maximality of the complete graphs, we can prove another maximal result taking advantage
of the literature on the Randić index. Reference [93] mentions that the minimum among trees of R−1(G)

is attained by the star graph Sn, and its value is 1. Therefore, (34) implies that for any tree we have that

ABC(T ) ≤
√
(n− 1)(n− 2). (39)

On the other hand, it is not difficult to compute that ABC(Sn) =
√
(n− 1)(n− 2), and thus Sn is

maximal for the ABC index among trees. This fact can also be shown using (35).
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Furthermore, reference [93] founds that the minimum among unicyclic graphs of R−1(G) is attained
by the graph S∗

n which consists of the graph Sn with two leaves connected by an edge. Using that
R−1(S

∗
n) =

n−2
n−1

+ 1
4

and (35) we get that for unicyclic graphs

ABC(G) ≤
√

n(2n2 − 7n+ 9)

2(n− 1)
. (40)

Notice, however, that in this case we cannot prove that S∗
n is maximal for the ABC index among

unicyclic graphs, because ABC(S∗
n) = (n− 3)

√
n− 2

n− 1
+

3√
2

, which is strictly smaller than the upper

bound (40) for n ≥ 4.

C-cyclic and planar graphs

By applying (37) and (38), we provide the following bounds that improve those Propositions 2 and 3
in [109]:

Proposition 20. If G is c-cyclic, c ≥ 0, then

ABC(G) ≤
√
(n− 1)

(
n− 1 + c− n

2d1

)
, (41)

and

ABC(G) ≤
√

n(n− 1 + c)

(
1− 1

d1

)
. (42)

If G is planar then

ABC(G) ≤
√

(n− 1)

(
3(n− 2)− n

2d1

)
≤
√

6n2 − 19n+ 2

2
. (43)

The bound (41) is better than the bound (42) in case d1 ≥ n(n− 1 + 2c)

2(n− 1 + c)
. Thus (41) provides the

better general bound when taking d1 = n− 1:

ABC(G) ≤
√
(n− 1)

(
n− 1 + c− n

2(n− 1)

)
, (44)

There are tight bounds for the ABC index of c-cyclic graphs, for at least c ≤ 4. For instance,
reference [42], through a complex analysis, finds that for any tetracyclic graph with n ≥ 9 the following
tight bound holds:

ABC(G) ≤ (n− 6)

√
n− 2

n− 1
+

√
n+ 2

5(n− 1)
+ 4

√
2. (45)

Our rightmost bound in (44) is slightly worse but asymptotically equivalent to (45): for n = 10 the
respective values of these bounds are 10.58 and 9.94; for n = 100 they are 100.73 and 99.63, etc. Our
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bound (44) though not optimal, shows a reference value to be improved by any attempt to crack the best
bound for c-cyclic graphs for c ≥ 5.

As expected, for c = 0 and c = 1 , (44) is worse than (39) and (40), respectively.

Chemical graphs

We briefly recall that a chemical graph is a graph with d1 ≤ 4. Of the two bounds (37) and (38), for
d1 = 4, (38) produces the best bound whenever n ≥ 9, allowing us to state the following

Proposition 21. For any chemical graph G with n ≥ 9 we have

ABC(G) ≤
√

3n|E|
4

.

This yields as particular cases the bounds

ABC(T ) ≤
√

3n(n− 1)

4
(46)

for chemical trees T with n ≥ 9,

ABC(U) ≤ n

√
3

4
(47)

for chemical unicyclic graphs U with n ≥ 9, etc.
Bounds (46) and (47) are roughly of order .87n. There are known bounds for the ABC index of

c-cyclic chemical graphs, for c = 0, 1, 2, slightly better than ours, as in [24] and [61] (their orders
are roughly .79n), found with laborious procedures that contrast with the simplicity of the proof of
proposition 4. Even though proposition 4 may not get the best constants, it shows a path for better
bounds of the ABC index to be found in the future for chemical c-cyclic graphs when c ≥ 3.

It is possible to use majorization in order to find further lower bounds for the Randić index and thus
new upper bounds for the ABC index. By using the leftmost inequality in (31) and by gathering a
specific information available on the degree sequence of G, we can characterize suitably the set S and
derive new different bounds.

The material thus far on the ABC index has been taken from [9]. We want to show now an alternative
to the majorization we performed above on the Randić index, and that is to use majorization on the
resistances, much as was done in Proposition 23. Then we can show the following

Proposition 22. For any n-vertex G we have

ABC(G) ≤
√

d21 − 1

d21

(
√
k +

√
θ + (|E| − k − 1)

√
2

n

)
, (48)

where

k = bn
2 − n− 2|E|

n− 2
c and θ = n− 1− k − 2

n
(|E| − k − 1).

This bound is attained by the complete graph Kn.
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The upper bound (34) we obtained before is attained by both the complete graph and the star graph
Sn. In the case of a tree T , our new bound states that

ABC(T ) ≤
√

d21 − 1

d21
(n− 1) ≤

√
(n− 1)2 − 1

(n− 1)2
(n− 1) =

√
n(n− 2),

so our new bound does not attain the value ABC(Sn) =
√
(n− 1)(n− 2).

On the other hand, for a d-regular graph, the bound (34) becomes

ABC(G) ≤
√

d2 − 1

d2

√
n(n− 1)

d

2
,

which is worse than our (48) in case

√
n(n− 1)

d

2
≥ k +

√
θ + (

nd

2
− k − 1)

√
2

n
, (49)

where k = bn
2 − n(d+ 1)

n− 2
c and θ = n− 1− k −

(
d− 2

(k + 1)

n

)
.

This is easy to achieve if, say, d = 3 and n is sufficiently large, because if that is the case, then the
order of the left hand side of (49) is roughly

√
3
2
n whereas the order of the right hand side is roughly n.

Thus, the comments above show that our new bound and (34) are not comparable. Moreover, the
same examples show that our new bound is not comparable to another similar upper bound found in [77]:
ABC(G) ≤

√
|E|(n− 2R−1(G)).

Yet another upper bound in the literature, obtained in [38], states that

ABC(G) ≤ p

√
1− 1

d1
+

√
[M1(G)− 2|E| − p(δ1 − 1)]

(
R−1(G)− p

d1

)
, (50)

where M1(G) =
∑

i∈V d2i is the first Zagreb index of G, p is the number of pendent vertices of and δ1 is
the minimal non-pendent degree. In case there are no pendent vertices, this upper bound becomes

ABC(G) ≤
√
[M1(G)− 2|E|]R−1(G). (51)

The bound (50) is attained by (1,∆)-semiregular graphs, specifically by Sn and, as we have mentioned
above, our new bound does not attain ABC(Sn). On the other hand, if we consider, for n large and a
multiple of 3, the graph G∗ to be the symmetric barbell graph, composed of two copies of Kn

3
attached

to each other through a linear graph of length n
3
, then approximately, |E| ∼ n2

9
, k ∼ 7

9
n, θ ∼ constant,

and so asymptotically the bound (48) is equal to
√
2

9
n

3
2 .

Also, for this graph G∗ we have p = 0, M1(G
∗) ∼ 2

27
n3 and R−1(G

∗) ∼ 1
12
n, so that the bound (51)

is asymptotically equal to
√

2
27
n3 1

12
n = 1

9
√
2
n2.

This shows that our new bound and the one found in [38] are not comparable.
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4.2.4 Augmented Zagreb index5

The Augmented Zagreb Index of G, defined by

AZI(G) =
∑

(i,j)∈E

(
didj

di + dj − 2

)3

, (52)

was introduced by Furtula et al. in [60] as an alternative to the ABC index, with a better predictive power
for heat of formation in several compounds. In [60] and [79] a number of properties of this index were
proven, among them several lower and upper bounds later improved in [136].

Majorization together with results (8) and (9) have been used to prove a lower bound not comparable
to other similar bounds found in the references mentioned.

The proof of the next result is based on ideas that can be traced back to those used in [8] and [130].

Proposition 23. For any n-vertex G we have

AZI(G) ≥
(

d21
d21 − 1

)3 |E|4
(n− 1)3

. (53)

This bound is attained by the complete graph Kn.

In the case of the complete graph Kn, d1 = n − 1, |E| = n(n− 1)

2
and a bit of algebra shows that

both the bound and the actual value AZI(Kn) equal
n(n− 1)7

16(n− 1)3
.

Remarks. Our bound is smallest in case the graph is a tree T , when it becomes

AZI(T ) ≥
(

d21
d21 − 1

)3

(n− 1) ≥ (n− 1)

[
(n− 1)6

n3(n− 2)3

]
.

This bound, though giving the right order of magnitude, is weaker than those found in [60], [79] and [136]
for general and chemical trees.

On the other hand, if we consider the n-vertex graph G1 to be a complete Kn−1 to which we add a
vertex connected through two edges to two different vertices of the Kn−1, then our bound becomes

AZI(G1) ≥
(n− 1)3

((
n−1
2

)
+ 2
)4

n3(n− 2)3

which is roughly of order n5, whereas the lower bound given in theorem 2.8 of [136] becomes for this
graph

AZI(G1) ≥ |E|
(

d2n
2dn − 2

)3

= 2

(
n− 1

2

)
+ 4.

Also, the lower bound given in theorem 2.3 of [136] is not attained by Kn, as ours does. Therefore, these
remarks show that our bound is not comparable to those in the cited references.

5For details we refer the reader to [118].
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4.3 Eigenvalue-based indices

We now deal with a class of topological indices which can be formulated as Schur-convex (Schur-
concave) functions of eigenvalues of some particular matrices associated to the graph G, like adjacency,
Laplacian, and normalized Laplacian matrices. We present only some of the large number of indices of
this kind studied in literature; the methodology to get upper and lower bounds can be easily adapted also
to other indices.

4.3.1 Energy index6

The Energy index [66] is given by

E(G) =
n∑

i=1

|λi(A)| =
n∑

i=1

√
λ2
i (A)

and it is a Schur-concave function of the variables λ2
i (A), i = 1, · · · , n, where λi(A) are the eigenvalues

of the adjacency matrix. It is well known that
∑n

i=1 λ
2
i (A) = 2m and λ1(A) ≥ 2m

n
( [89], [88]).

If a sharper lower bound for λ1(A) is available, i.e. λ1(A) ≥ k(≥ 2m
n
), introducing the new variables

x1 = λ2
1(A) arranged in nondecreasing order

x1 ≥ k2 ≥
(
2m

n

)2

≥ 2m

n
.

Applying Remark 13 (point III) with a = 2m, h = 1, α = k2, we get (see [12]) the following upper
bound for the Energy index:

E(G) ≤ k +
√
(n− 1) (2m− k2). (54)

In a similar way, by the equality λ1(A) = −λn(A), the following upper bound for bipartite graphs

E(G) ≤ 2k +
√
(n− 2) (2m− 2k2) (55)

has been derived. New bounds for E(G) can be derived as soon as a sharper lower bound of λ1(A) is
available.

4.3.2 Laplacian energy7

The Laplacian energy was defined first in [73] as

LE(G) =
n∑

i=1

|λi(L)− dG|, (56)

where dG =
2|E|
n

is the average degree.

6For details we refer the reader to [12].
7For details we refer the reader to [115] and [116].
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We can obtain a nice upper bound (see [115]) using the fact that the Laplacian eigenvalues are ma-
jorized by the degrees d1 ≥ d2 ≥ · · · ≥ dn of the graph (see the review [3], for instance) as follows:

(λ1(L), . . . , λn(L)) E (d1 + 1, d2, . . . , dn−1, dn − 1). (57)

Proposition 24. For any G we have

LE(G) ≥ 2 +
n∑

i=1

|di − dG|. (58)

The equality is attained by the star graph Sn.

The bound (58) improves the one found in [125] where the term 2 is missing.

We notice that the above argument has not used maximal elements. We do so next, using the material
in [116].

Besides (58), there are other tight lower bounds for LE(G). In [73] it was shown that

LE(G) ≥ 2

√√√√|E|+ 1

2

n∑

i=1

(di − dG)2, (59)

and the equality is attained by the complete bipartite graph Kn
2
,n
2
. Also, in [146] it was proven that

LE(G) ≥ 2dG, (60)

where the equality is attained by any regular complete k-partite graph, for 1 ≤ k ≤ n. Finally, in [40] it
was shown that

LE(G) ≥ 2(d1 + 1− dG), (61)

where the equality is attained by Sn, and more generally, it was argued that for any 1 ≤ k ≤ n − 1 one
has

LE(G) ≥ 2(
k∑

j=1

dj + 1− kdG). (62)

It is worth to mention that for d-regular graphs, the bounds (58), (59), (60), (61) and (62) become 2,√
2nd, 2d, 2 and 2, respectively, pointing to their not being comparable.

Now we will find a new general lower bound for the Laplacian energy of graphs satisfying a condition
on the largest eigenvalue of their Laplace matrix, and as corollaries we obtain two new non comparable
lower bounds for the Laplacian energy of bipartite graphs.

Proposition 25. For any G, if there is α such that λ1(L) ≥ α ≥ dG
n

n−1
then we have

LE(G) ≥ max{2dG, 2(α− dG)}. (63)
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Now we can use a couple of lower bounds for λ1(L) known in the literature in order to find effort-
lessly two lower bounds for LE(G); the first yields known results, the second is new.

Corollary 26. (i) For any G we have

LE(G) ≥ max{2dG, 2(d1 + 1− dG)};

(ii) For a bipartite G we have

LE(G) ≥ 4

√√√√ 1

n

n∑

i=1

d2i − 2dG, (64)

and the equality is attained by Kn
2
,n
2
.

Remarks. The lower bound in (i) implies at once the bounds (60) and (61).
It is obvious that the bounds given by proposition 1 and its corollary are always better than (60),

and so we will compare (64) only to (59), (58), (61) and (62). For d-regular graphs, those latter bounds
become

√
2nd, 2, 2 and 2, respectively, whereas our new bound becomes 2d, so (64) is better than (59)

if d ≥ n
2

and worse if d ≤ n
2
, and thus (64) and (59) are not comparable. Also, (64) is better than (58),

(61) and (62) for d ≥ 2, that is, for all regular graphs on 3 or more vertices.
Bound (64) is not comparable to (61) or to (58) because both these bounds attain the equalities for

the graph Sn, for which

LE(Sn) =
2n2 − 4n+ 4

n
, (65)

whereas (64) becomes

LE(G) ≥ 4

(√
n− 1− n− 1

n

)
. (66)

Bound (62) has a fluctuating behavior: it might improve when k increases, for small values of k,
though eventually it starts to get worse, and when k = n− 1 it yields

LE(G) ≥ 2

(
2|E|
n

− dn + 1

)
,

which is not very good: for instance, in the case of Sn its expression is LE(Sn) ≥ 4(n−1)
n

. Incidentally,
we could even make (62) work even for k = n, when it becomes LE(G) ≥ 2, which is of course
worthless.

For completeness, notice that in the case of Sn, the bound (62) becomes, for k = 2 and k = 3,

LE(Sn) ≥
2n2 − 6n+ 8

n
,

and
LE(Sn) ≥

2n2 − 8n+ 12

n
,
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respectively, and although progressively worse than the actual value (65), these bounds are still better
than (66) and thus in general (62) and (64) are not comparable.

If we define ti, the 2-degree of the vertex i, as the sum of the degrees of all the neighbors of i, then
for any bipartite graph we have

λ1(L) ≥
√∑n

i=1(d
2
i + ti)2∑n

i=1 d
2
i

, (67)

where the equality holds if and only if G is a semiregular bipartite graph. This immediately leads us to
the following improvement of (64):

Corollary 27. For any bipartite graph we have

LE(G) ≥ 2

√∑n
i=1(d

2
i + ti)2∑n

i=1 d
2
i

− 2dG, (68)

where the equality is attained by Kn
2
,n
2

and Sn.

Also, in reference [76] they present the lower bound

λ1(L) ≥ 2 +

√
1

|E|
∑

u∼v

(du + dv − 2)2, (69)

where the equality is attained by either a regular bipartite graph, or a semiregular bipartite graph, or the
path with four vertices. Applying the Cauchy-Schwarz inequality we obtain

2 +

√
1

|E|
∑

u∼v

(du + dv − 2)2 ≥ 2 +
1

|E|
∑

u∼v

(du + dv − 2)

=
1

|E|
∑

u∼v

(du + dv) =
1

|E|
n∑

i=1

d2i =
1

|E|

√√√√
n∑

i=1

d2i

√√√√
n∑

i=1

d2i .

Now we apply again the Cauchy-Schwarz inequality to one of the square root expressions and the above
is bounded by

1

|E|
1√
n

(
n∑

i=1

di

)√√√√
n∑

i=1

d2i = 2

√√√√ 1

n

n∑

i=1

d2i .

This means that we can improve (64) to

Corollary 28. For any bipartite graph G we have

LE(G) ≥ 4 + 2

√
1

|E|
∑

u∼v

(du + dv − 2)2 − 2dG, (70)

and the equality is attained by Kn
2
,n
2

and Sn.
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Remarks. Bounds (68) and (70) coincide for all semiregular bipartite graphs (i.e., for all Kj,n−j, 1 ≤
j ≤ n− 1), but they are not comparable. If we consider the n-gear graph Gn, that is, the n-wheel graph
to which add a vertex between each pair of adjacent vertices of the outer cycle, then it is not difficult to
see that (68) becomes

LE(Gn) ≥ 4 + 2

√
1

3n
(n(n+ 1)2 + 18n)− 2dG ∼ 4 +

2√
3
n− 2dG, (71)

whereas (70) becomes

LE(Gn) ≥ 2

√
(n2 + 3n)2 + 389n

n2 + 13n
− 2dG ∼ 2n− 2dG. (72)

So for this family of graphs (70) is better than (68). On the other hand, for the n-path graph Pn, it is easy
to see that (68) becomes

LE(Pn) ≥ 4 + 2

√
4n− 6

n− 1
− 2dG, (73)

and (70) becomes

LE(Pn) ≥ 2

√
32n− 70

2n− 3
− 2dG. (74)

It is an elementary, if tedious, exercise to show that

4 + 2

√
4n− 6

n− 1
> 2

√
32n− 70

2n− 3
,

for all n ≥ 3 and thus for this family of graphs, (68) is better than (70).
The analysis of non comparability of (68) and (70) with respect to (59), (58), (61) and (62) follows

as in the previous section for the bound (64) except for the cases when (58) and (61) turn out to be better
than (68) and (70). This is achieved if we consider the n-gear graph, for which (61) becomes

LE(Gn) ≥ 2(n+ 1)− 2dG,

which is better than (71) and (72). Likewise, for the case of the n-path, (58) becomes

LE(Pn) ≥ 2 +
4(n− 1)

n
,

which is clearly better than (73) and (74). Thus the refined bounds (68) and (70) are not comparable to
those found in the literature.

4.3.3 Laplacian index 8

The Laplacian index is given by the sum of the α-th power of the non-zero Laplacian eigenvalues ( [97],
[144])

sα(G) =
n−1∑

i=1

λi(L)
α, α 6= 0, 1.

8For details we refer the reader to [12].
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Applying Remark 13 (point III) with a = 2m,α = 1 + d1, h = 1 and taking into account that
2m
n−1

≤ (1 + d1), by the Schur-convexity or Schur-concavity of the functions sα(G) the bounds in [144],
Theorem 3, can be easily recovered.

The above bounds can be improved by considering that λ2(L) ≥ d2 (see [21]).
In this case, the minimal element can be computed applying the general result of Theorem 12 and the
following bounds on sα(G) hold (see [12]):

Theorem 29. Let G be a simple connected graph such that 2m ≤ 1 + d1 + (n− 2)d2,

1. if α < 0 or α > 1 then

sα(G) ≥ (1 + d1)
α + dα2 +

(2m− 1− d1 − d2)
α

(n− 3)α−1

2. if 0 < α < 1 then

sα(G) ≤ (1 + d1)
α + dα2 +

(2m− 1− d1 − d2)
α

(n− 3)α−1
.

4.3.4 Normalized Laplacian indices

In the following, we exploit the theoretical method described in Section 3.3 with the aim to provide
some formulae that allow us to compute lower bounds for the first and the second eigenvalues of the
normalized Laplacian matrix in a fairly straightforward way. These limitations on the eigenvalues are
then used to assess bounds for the Normalized Laplacian indices reported in the next. We now present
the framework we follow (see [30]) in order to provide new limitations for λ1(L) and λ2(L).

In this regard, we consider Theorem 17 limiting9 the analysis when τ = 2.
In this case we know indeed that b = n + 2

∑
(i,j)∈E

1
didj

. For Lemma 15, when b = n2

(n−1)
the solution

of optimization problem P ∗(h) is
(

n
n−1

)
. This is the case of the complete graph Kn. Instead, when

b 6= n2

(n−1)
, h∗ =

⌊
n2

b

⌋
.

To get a lower bound Q for λ1(L) for non-complete graphs, we solve equation (24) being h = 1. By
some basic algebra, the acceptable solution in the proper interval I is equal to

Q =
n+

√
b(h∗+1)−n2

h∗

1 + h∗ . (75)

We can also derive a lower bound R for λ2(L). We still apply Theorem 17, considering the case
h = 2. Since h ≤ (h∗ + 1), we solve the equation (25) finding in the proper interval I the acceptable
solution:

R =
n−

√
b(n−1)−n2

n−2

n− 1
. (76)

9For values of τ 6= 2, b depends on the graph’s structure and topology. So the procedure can be only numerically applied:
we need to compute the eigenvalues of normalized Laplacian matrix, but this information allows to directly obtain the index.
In this case, the evaluation of bounds is useless.
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Normalized Laplacian Index10 The Normalized Laplacian index is defined as:

s∗α(G) =
n−1∑

i=1

λα
i (L), α 6= 0, 1

given by the sum of the α-th powers of the non zero normalized Laplacian eigenvalues, first introduced
by Bozkurt and Bozkurt in [20] and studied by the authors in [5] and [30].

By considering that λ1(L) ≥ t1 ≥ n
n−1

, by Remark 13 (point III) with a = n, α = t1, h = 1 and by
the Schur-concavity or Schur-convexity of the function s∗α(G), the following result holds:

Theorem 30. Let G be a simple connected graph with n ≥ 3 vertices.

1. If α < 0 or α > 1 then

s∗α(G) ≥ tα1 +
(n− t1)

α

(n− 2)α−1
,

2. if 0 < α < 1 then

s∗α(G) ≤ tα1 +
(n− t1)

α

(n− 2)α−1
.

By considering

t1 = 1 +

√√√√ 2

n(n− 1)

∑

(vi,vj)∈E

1

didj
, (77)

in virtue of (7), we recover the same bounds as in Theorem 3.3 and 3.7 in [20].
By placing (75) in Theorem 30 we get a new bound for s∗α(G). In [30], it has been proved that the

value of (75) is greater than the value of (77) for non complete graphs, leading to an improvement of the
existing bounds.

Taking into account the limitations on first and second eigenvalues of Normalized Laplacian matrix,
since the condition (n− 1)Q > n is always satisfied we can apply Theorem 12. By the Schur-concavity
or Schur-convexity of the function s∗α(G), we get the following bounds

Theorem 31. Let G be a simple connected graph with n ≥ 4 vertices which is not complete and λ1(L) ≥
Q, λ2(L) ≥ R with Q+R(n− 2) > n.

1. If α > 1 or α < 0 then s∗α(G) ≥ Qα +Rα + (n−Q−R)α

(n−3)α−1 ;

2. If 0 < α < 1 then s∗α(G) ≤ Qα +Rα + (n−Q−R)α

(n−3)α−1 .

Considering Theorem 31, it is possible to obtain new bounds for s∗α(G) by replacing the generic
limitations Q and R with (75) and (76). In order to assess these bounds, both conditions of Theorem
31 must be satisfied (see [30] for further details). Notice that, due to Proposition 7, the bounds in the
previous theorem perform equal or better than (16) and (17) in [20].

Finally, in case of bipartite graphs, bounds in Theorem 30 and 31 can be improved.
10For details we refer the reader to [5] and [30].
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Normalized Laplacian Energy 11 The normalized Laplacian energy of a graph, introduced by [22]
and studied in [31], is denoted by:

NE(G) =
n∑

i=1

|λi(L)− 1| . (78)

In literature, (78) is also known as Randić energy (see [41] and [69]).
NE(G) can be rewritten as a Schur-concave function of the variables (λi(L)− 1)2 ,

i = 1, · · · , n:

NE(G) = 1 +
n−1∑

i=1

√
(λi(L)− 1)2. (79)

If a lower bound for λ1(L) is available, i.e. λ1(L) ≥ t1

(
≥ n

n− 1

)
, introducing the new variables

xi = (λi(L)− 1)2 as a function of the eigenvalues λi(L) arranged in non-increasing order, we get:

x1 ≥ k1 = (t1 − 1)2 .

By applying Remark 13 (point III) with a = 2
∑

(i,j)∈E
1

didj
− 1, α = k1, h = 1, we derive

NE(G) ≤ 1 +
√
k1 +

√
(n− 2) (a− k1). (80)

This bound could be computed by placing k1 = (Q− 1)2, where Q is defined as in (75).
Considering also an additional information on λ2(L) (i.e. λ2(L) ≥ t2), we have x2 ≥ (t2 − 1)2.
Under the assumptions t1 ≥ t2 and t1 + t2(n− 2) > a, we can provide the bound:

NE(G) ≤ 1 +
√
k1 +

√
k2 +

√
(n− 3) (a− k1 − k2), (81)

where we can place k1 = (Q− 1)2 and k2 = (R− 1)2 (see (75) and (76))
Finally, for bipartite graphs, taking into account that λ1(L) = 2 and λ2(L) ≥ t2, under the assump-

tion
a− 2

n− 2
< t2 ≤ 2 and we can provide the bound:

NE(G) ≤ 2 +
√
k2 +

√
(n− 3) (a− k2). (82)

Normalized Laplacian Estrada index12 The normalized Laplacian Estrada index has been proposed
in [91] and it is defined as:

NEE(G) =
n∑

i=1

e(λi(L)−1) =
1

e

n∑

i=1

eλi(L). (83)

In [74], an alternative definition of normalized Laplacian Estrada index has been provided:

`EE(G) =
n∑

i=1

eλi(L). (84)

11For details we refer the reader to [31].
12For details we refer the reader to [31].
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Notice that NEE(G) = 1
e
`EE(G), any results derived for NEE(G) can be trivially re-stated for

`EE(G) and viceversa.
Considering a limitation on λ1(L) (λ1(L) ≥ t1 ≥ n

n−1
, by means of Remark 13 (point III) with

a = n, α = t1, h = 1, by the Schur-convexity of the function NEE(G), we get the following bound:

NEE(G) ≥ 1

e
+ et1−1 + (n− 2)e

2−t1
n−2 . (85)

Setting t1 =
n

n− 1
, the authors in [31] derived the same result proved in [91], Theorem 3.1:

NEE(G) ≥ (n− 1) e

1

n− 1 +
1

e
. (86)

Furthermore, (85) can be computed by using the lower bound Q (see (75)) for λ1(L). It has been
shown in [30] that Q ≥ n

n−1
and thus we assure that bound (85), by placing t1 = Q, is sharper than (86)

(see [12] and [13] for more theoretical details).
In a similar way, by the additional information λ2(L) ≥ t2, under the assumptions t1 ≥ t2 and

t1 + t2(n− 2) > n, we can provide the following bound:

NEE(G) ≥ 1

e
+ et1−1 + et2−1 + (n− 3)e

3−t1−t2
n−3 . (87)

By placing t2 = R (see (76)), it is possible to compute bound (87) that is tighter than (85) with t1 = Q

and (86) (see [13], [12] and [30]).
Finally, for bipartite graphs, we can provide the following bound:

NEE(G) ≥ 1

e
+ e+ et2−1 + (n− 3)e

1−t2
n−3 , (88)

where the lower bound t2 = R of λ2(L) derived in [30] can be also used to compute (88).

4.3.5 HOMO-LUMO index 13

Median eigenvalues of the adjacency matrix of a molecular graph are strictly related to orbital energies
and molecular orbitals. In this regard, the difference between occupied orbital of highest energy (HOMO)
and unoccupied orbital of lowest energy (LUMO) has been investigated (see [58]). Motivated by the
HOMO-LUMO separation problem, Jaklič et al. in [82] proposed the notion of HL-index that measures
how large in absolute value are the median eigenvalues of the adjacency matrix.
The eigenvalues involved in the HOMO-LUMO separation are λH(A) and λL(A), where H = bn+1

2
c

and L = dn+1
2
e.

The HL-index of a graph is defined in [82] as:

HL(G) = max (|λH(A)|, |λL(A)|) .

Median eigenvalues of the normalized Laplacian matrix can be localized by applying the method-
ology recalled in Section 3.3. The additional information on median eigenvalues and the interlacing

13For details we refer the reader to [29].
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between eigenvalues of normalized Laplacian and adjacency matrices turned out to be a handy tool for
bounding the HL-index for both non-bipartite and bipartite graphs. According to [22] (see Theorem
2.2.1), the following relations hold:

|λn−k+1(A)|
d1

≤ |1− λk(L)| ≤
|λn−k+1(A)|

dn
. (89)

In [29], in virtue of (89) and by applying Theorems 16 and 17, the following propositions have been
proved (for further details see [29]).

Proposition 32. For a simple, connected and non-bipartite graphs

0 ≤ HL(G) ≤ d1max (|1− α1|, |1− β1|, |1− α2|, |1− β2|) (90)

when n is even with

α1 =
1

n− 1

(
n+

√
n− 2

n
(b1(n− 1)− n2)

)
, β1 =

1

n− 1

(
n−

√
n− 2

n
(b1(n− 1)− n2)

)
,

α2 =
1

n− 1

(
n+

√
(n− 4)

(n+ 2)
(b1(n− 1)− n2)

)
, β2 =

n

n− 1

(
1−

√
b1(n− 1)− n2

n(n− 2)

)

and

0 ≤ R(G) ≤ d1max (|1− α3|, |1− β3|) (91)

when n is odd with

α3 =
1

n− 1

(
n+

√
(n− 3)

(n+ 1)
(b1(n− 1)− n2)

)
, β3 =

1

n− 1

(
n−

√
b1(n− 1)− n2

)
,

where b1 =
∑n−1

i=1 λ2
i (L) = n+ 2

∑
(i,j)∈E

1
didj

.

Proposition 33. For a simple, connected and bipartite graphs with n even we have:

0 ≤ HL(G) ≤ d1|1− βbip
1 | (92)

where

βbip
1 = 1−

√
b2

n− 2
− 1,

where b2 =
∑n−1

i=2 λ2
i (L) = n+ 2

∑
(i,j)∈E

1
didj

− 4.

In the following we obtain bounds on HL-index starting from relation

0 ≤ HL(G) ≤ E(G)

n
, (93)

provided in [92]. In virtue of relation (93) and by means of bounds (54) and (55) on the Energy index,
we are now able to derive the following bounds for non-bipartite and bipartite graphs respectively.
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Proposition 34.

1. For a simple, connected and non-bipartite graph G:

HL(G) ≤ k

n
+

1

n

√
(n− 1)(2m− k2); (94)

2. For a simple, connected and bipartite graph G:

HL(G) ≤ 2k

n
+

1

n

√
(n− 2)(2m− 2k2), (95)

where, by means of Theorem 17,

k =
1

1 + h∗

(
n+

√
2m(1 + h∗)− n2

h∗

)
, h∗ =

⌊
n2

2m

⌋
.

In [29], it has been analytically proved that bounds (94) and (95) are tighter than or equal to bounds
provided in [92].

4.4 Resistance-based indices

Among the various indices in Mathematical Chemistry, those indices based on the effective resistance Rij

between the node i and j of a connected undirected graph G = (V,E) have received a lot of attention in
the literature. The resistance indices, namely the Kirchhoff index and its generalizations, have undergone
intense scrutiny in recent years because they have proven to be useful in discriminating among chemical
molecules according to their cyclicity. A variety of techniques have been used, including graph theory,
algebra (the study of the Laplacian and of the normalized Laplacian), electric networks, probabilistic
arguments involving hitting times of random walks, and discrete potential theory (equilibrium measures
and Wiener capacities), among others. The references that follow are a sample, by no means exhaustive,
of these diverse techniques, whose end results usually follow either of these two paths: on the one hand,
exact values for the index are obtained for graphs endowed with some form of symmetry or special
property ( [4], [62], [107], [132]). On the other hand, general bounds for the resistance indices, not
containing effective resistances but a few invariants such as |V |, |E|, the degrees di etc., and sometimes
extremal graphs, are found for specific families of graphs, as in [108], [118], [119], [133], [135], [148]
and [150].

In what follows we adopt this latter approach, finding upper and lower bounds by using majorization
techniques. The application of the majorization relies on the fact that these indices can be written as
Schur-convex functions whose variables are eigenvalues of particular matrices as well as vertices degrees
of the graphs. This subsection deals with the Kirchhoff index and some of its modifications, namely
the Multiplicative degree-Kirchhoff index and the Additive degree-Kirchhoff index. Furthermore the
weighted global cyclicity index will be discussed finding upper and lower bounds through the weighted
majorization technique.
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4.4.1 Kirchhoff index 14

The Kirchhoff index R(G) of a simple connected graph G = (V,E) was defined by Klein and Randić
in [87] as

R(G) =
∑

i<j

Rij, (96)

where Rij is the effective resistance between vertices i and j, which can be computed using Ohm’s law.
In addition to its original definition, it was shown in [70] and [151] that

R(G) = n

n−1∑

i=1

1

λi(L)
, (97)

where λi(L) are the non-zero eigenvalues of the Laplacian matrix L.

If G is d-regular, then L = dI − A, P = D−1A = I − 1

d
L and

λn−i+1(P ) = 1− λi(L)

d
i = 1, ..., n. (98)

In this case, from (97), the alternative expression

R(G) =
n

d

n∑

i=2

1

1− λi(P )

in terms of the eigenvalues of the transition matrix P holds ( [117]).
In case G is arbitrary, we do not have such a compact expression, but still we have the bounds given
in [119], Corollary 2:

(
n

d1

) n∑

i=2

(
1

1− λi(P )

)
≤ R(G) ≤

(
n

dn

) n∑

i=2

(
1

1− λi(P )

)
. (99)

All these expressions of R(G) in terms of sums of inverses of eigenvalues can be used to find upper and
lower bounds, as was done in [117], [148] and [150].

In [6] in order to get bounds for R(G), the authors applied the majorization technique to the summa-
tions in (99).

We briefly recall the main results obtained in [6].

Lower bounds

Case 1): Assume to know that:
λn (P ) ≤ −β < 0,

then

R(G) ≥ n

d1

[
1

1 + β
+

(n− 2)2

n− 1− β

]
. (100)

14For details we refer the reader to [6], [8], [28], [32], [110], [112], [117] and [119].
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Case 2): Assume now that
λ2 (P ) ≥ β > 0. (101)

then

R(G) ≥ n

d1

[
1

1− β
+

(n− 2)2

n− 1 + β

]
. (102)

Now we exploit Case 1 above in order to get a general lower bound. In Section 2.2 we recall that for
every matrix M with real eigenvalues λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M) the following inequality is
well-known

λn(M) ≤ µ− σ√
n− 1

(103)

where µ = tr(M)
n

and σ2 = tr(M2)
n

−
(

tr(P )
n

)2
.

If M is a transition matrix P of a connected graph G, we observe that tr(P ) = 0 and tr(P 2) =

2
∑

(vi,vj)∈E
1

didj
. Then µ = 0 and

σ2 =
2

n

∑

(vi,vj)∈E

1

didj
=

(
2

n

)
R−1(G).

Moreover, by the equality

σ2 =
tr(P 2)

n
=

1 +
∑n

i=2 λ
2
i

n

and the conditions on the eigenvalues of P , it easily follows that P has at least one eigenvalue whose
absolute value is less than one. This gives σ2 < 1. Notice that the upper bound σ = 1 is attained by any
disconnected graph with an even number n of vertices and

n

2
connected components , each of which of

order two. In this case, the spectrum of P is



−1,−1, ...,−1︸ ︷︷ ︸

n/2

, 1, 1, .....1︸ ︷︷ ︸
n/2



 and consequently σ = 1.

It is also worth noting that 1
n−1

is the minimal value attainable by σ2 among all connected graph of
order n.

Applying now (100) with β = σ√
n−1

, we get the following

Proposition 35. ( [6]) For any simple connected graph G

R(G) ≥ n

d1

[
1

1 + σ√
n−1

+
(n− 2)2

n− 1− σ√
n−1

]
. (104)

The next proposition contributes to show that the new bound (104) always performs better than well-
known bound provided in [119] (Corollary 4) except in the case where G = Kn for which the two bounds
coincide.

Proposition 36. ( [6]) Let G be a simple connected graph on n vertices, with n ≥ 3. The lower bound

of R(G) in (104) is an increasing function of σ for
1√
n− 1

≤ σ < 1, where the equality in the left side

holds if and only if G = Kn.
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The new bound (104) always performs better than the well-known bound provided in [119], Corollary 4.
More details may be found in [6].

Upper bounds

For a d−regular graph, Palacios in [117] found the following upper bound where, for simplicity, we
write λ2 (P ) = λ2 :

R(G) ≤ n (n− 1)

d (1− λ2)
. (105)

The quantity (1− λ2) is known as spectral gap. It is noteworthy to underline that the bound (105) holds
in general, for d = dn, as can be seen from the r.h.s. (99).

By applying our procedure, it is possible to get an upper bound in terms of the spectral gap .
By using now (99) we get the following

Proposition 37. ( [6]) For any simple connected graph G we have

R(G) ≤ n

dn

(
n− k − 2

1− λ2

+
k

2
+

1

θ

)
, (106)

where

k =

⌊
λ2 (n− 1) + 1

λ2 + 1

⌋
and θ = λ2 (n− k − 2)− k + 2.

The Kirchhoff index spawned a family of resistance indices such as the Multiplicative degree-Kirch-

hoff index and the Additive degree-Kirchhoff index. Here is another brief illustration of the majorization
method applied to these indices.

4.4.2 Multiplicative degree-Kirchhoff index15

The Multiplicative degree-Kirchhoff index, proposed by Chen and Zhang in [25], is defined as

R∗(G) =
∑

i<j

didjRij.

This index was looked at in [119], where the following expression in terms of the eigenvalues of the
transition matrix P was given:

R∗(G) = 2|E|
n∑

j=2

1

1− λj(P )
. (107)

Furthermore, it was shown that

R∗(G) ≥ 2|E|(n− 1)2

n
, (108)

which is basically bound provided in [119] (Corollary 4), after replacing n
d1

with 2|E|. An upper bound
of order n5 for this index that is attained (up to the constant of the leading term) by the barbell graph was
provided in [119] also. With electrical network techniques, the lower bound was improved in [118] to

R∗(G) ≥ 2|E|
(
n− 2 +

1

d1 + 1

)
. (109)

15For details we refer to [6], [8], [111], [118] and [119].
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It is clear, by looking at the expression (107), that we can obtain new upper and lower bounds for
R∗(G) by using the bounds on R(G). Among these we mention explicitly the following results.

Proposition 38. ( [6]) For any simple connected graph G we have

R∗(G) ≥ 2|E|
[

1

1 + σ√
n−1

+
(n− 2)2

n− 1− σ√
n−1

]
. (110)

This bound improves (109) if G has at least one vertex with degree n− 1.

The only thing left to show is that (110) improves (109) under the given condition, which is clear
because in that case (109) becomes (108), which is always less than (110).

Now we will give a general upper bound for this descriptor that gets us closer to the value 2
243

n5

obtained for the barbell graph. The proof is inspired in that of an upper bound for the additive degree-
Kirchhoff index found in [131].

Proposition 39. For an n-vertex G we have

R∗(G) ≤ (n− 1)4 for n ≤ 48,

and

R∗(G) ≤ n5 + 50n3 − 164n2 + 165n− 52

54
, for n ≥ 49.

4.4.3 Additive degree-Kirchhoff index16

Gutman et al. defined in [68] the Additive degree-Kirchhoff index as

R+(G) =
∑

i<j

(di + dj)Rij, (111)

and worked on the identification of graphs with lowest such degree among unicyclic graphs.

The additive degree Kirchhoff index is motivated by the degree distance of a graph as defined by
Dobrynin and Kochetova in ( [46]. It coincides with the additive degree-Kirchhoff index whenever the
graph is a tree, and the former is always greater than or equal to the latter, because d(i, j) ≥ Rij holds
for any i, j in any graph G (see ( [46] for other details).

It was shown in [108], using Markov chain theory, that for any graph G

R+(G) ≥ 2(n− 1)2, (112)

and the lower bound is attained by the complete graph. Also, in [108] it was shown that for any G

R+(G) ≤ 1

3
(n4 − n3 − n2 + n),

16For details we refer the reader to [7] and [108].
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and it was conjectured that the maximum of R+(G) over all graphs is attained by the (1
3
, 1
3
, 1
3
) barbell

graph, which consists of two complete graphs on n
3

vertices united by a path of length n
3
, and for which

R+(G) ∼ 2
27
n4. This conjecture was shown to be true asymptotically by Ilic and Ilic in [81].

We show next how majorization can be applied to bound the additive degree-Kirchhoff index. This
approach can be pursued if we can identify a set of variables with constant sum and a Schur-convex
function f to be optimized on the set S of these variables. In this case we know that the global mini-
mum (maximum) of f is attained at the minimum (maximum) element of the set S with respect to the
majorization order. For the detailed proof, we refer the reader to [7].

Theorem 40. ( [7]) For any graph G with degree sequence d1 ≤ d2 ≤ · · · ≤ dn, let

∑

i<j

dj
di

= H. (113)

Then

R+(G) ≥ n(n− 3) +H +

[
n(n− 1)

2

]2
1

H
. (114)

Majorization is also the main argument in yet another possible approach for obtaining lower bounds.
In reference [108] it was shown that the following relationship between the additive and multiplicative
degree-Kirchhoff indices holds :

R+(G) =
n

2|E|R
∗(G) +

∑

i,j

πiEiTj, (115)

where EiTj is the expected value of the number of steps Tj that the random walk on G, started from vertex
i, takes to reach vertex j. We recall that this random walk moves from a vertex v to any neighboring
vertex w with uniform probabilities p(v, w) = 1

dv
and that the n × n matrix P = [p(v, w)] of transition

probabilities has a unique probabilistic left eigenvector π = (πi) (the stationary distribution), which is
present in the summation in (115), and a spectrum 1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn ≥ −1 in terms of
which R∗(G) can be expressed as in (107) ( [119]). With the preceding remarks and notation in [7] the
authors proved the following result

Theorem 41. For any graph G

R+(G) ≥ n

[
1

1 + σ√
n−1

+
(n− 2)2

n− 1− σ√
n−1

]
+ (n− 1)2, (116)

We remark that we recover the universal bound (112) for the complete graph, for which σ = 1√
n−1

,
and for all other graphs the bound is better than the universal one (112) (for details see [6]).

Finally, we turn to the analysis of some significant upper bounds which can be obtained by combining
ideas from Markov chains and majorization. These bounds can be suitable expressed in terms of the
spectral gap.
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Recall that from (115) and subsequent comments we have

R+(G) =
n

2|E|R
∗(G) +

n∑

j=1

n∑

i=1

πiEiTj = n
n∑

i=2

1

1− λi

+
n∑

j=1

n∑

i=1

πiEiTj. (117)

We want to find an upper bound for the summation with the hitting times in (117), for which we use
some Markov chain theory found in reference [100], specifically:

∑

i

πiEiTj =
1

πj

n∑

k=2

1

1− λk

v2kj, (118)

where vkj is the j-th component of the eigenvector vk associated to the eigenvalue λk (the vectors vk can
be chosen to be orthonormal), and

n∑

k=2

v2kj = 1− πj.

It is clear that (118) can be bounded as follows:

1

πj

n∑

k=2

1

1− λk

v2kj ≤
1

(1− λ2)πj

n∑

k=2

v2kj =
1

1− λ2

1− πj

πj

.

And so the sum of expected hitting times can be bounded as:
n∑

j=1

n∑

i=1

πiEiTj ≤
1

1− λ2

∑

j

1− πj

πj

=
1

1− λ2

(2|E|
∑

j

1

dj
− n).

Now use in (117) the upper bounds in [6] Section 3.2 for
∑n

i=2
1

1−λi
, to obtain the following corol-

laries:

Corollary 42. ( [7]) For any G we have

R+(G) ≤ n

(
n− k − 2

1− λ2

+
k

2
+

1

θ

)
+

1

1− λ2

(2|E|
∑

j

1

dj
− n), (119)

where k =

⌊
λ2(n− 1) + 1

λ2 + 1

⌋
and θ = λ2(n− k − 2)− k + 2.

Corollary 43. ( [7]) For any bipartite G we have

R+(G) ≤ n

(
1

2
+

n− k − 3

1− λ2

+
k

2
+

1

θ

)
+

1

1− λ2

(2|E|
∑

j

1

dj
− n), (120)

where k and θ are defined above.

For the n-star graph we have that λ2 = 0, k = 1 and θ = 1 and therefore the bound (120) becomes
3n2 − 7n+ 4 and the actual value is attained. This can be extended to the complete bipartite graph Kr,s,
for arbitrary r, s, for which the bound (120) becomes

3r2 + 3s2 + 2rs− 3r − 3s, (121)

whose order is always n2, and improves the bound 2|E|(n− 1)D = 4rs(r + s− 1). The smallest value
of (121) occurs for r = s = n

2
, where it takes the value n(2n− 3), which is equal to the actual value of

R+(G).
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4.4.4 Some interplay of the three Kirchhoffian indices17

It is to be expected that the similarities in the definitions of the three Kirchhoffian indices will result in
some equations involving two or three of them together. We explore that topic in this section.

One such relation is (115), that we may rewrite as

R+(G) ≥ n

2|E|R
∗(G) + (n− 1)2. (122)

Another such relation is given in the following

Proposition 44.
2

dn
R∗(G) ≥ R+(G) ≥ 2

d1
R∗(G). (123)

Equations (122) and (123) together with lower bounds for R∗(G) furnish new lower bounds for
R+(G). For instance, using (137) we get the bounds

R+(G) ≥ n(n− 2)2 + (n− 1)2 +
n(n− 1)

2|E| ,

and
R+(G) ≥ 2

d1
[n− 1 + 2|E|(n− 2)].

With the notation dG =
2|E|
n

(that is the average degree) and starting again from (115) we can prove
the relations

1

dG
R∗(G) + dnR(G) ≤ R+(G) ≤ 1

dG
R∗(G) + d1R(G). (124)

and (
1

dG
+

1

d1

)
R∗(G) ≤ R+(G) ≤

(
1

dG
+

1

dn

)
R∗(G). (125)

In [150] they found this set of inequalities:

dGdnR(G) ≤ R∗(G) ≤ dGd1R(G). (126)

In [131] and [80] they came up, almost simultaneously, with the same idea of expressing

R+(G) = dGR(G) + ntrace(DL#), (127)

where L# is Moore-Penrose inverse of L. Using this characterization, these authors proved the inequal-
ities

(dn + dG)R(G) ≤ R+(G) ≤ (d1 + dG)R(G). (128)

It is clear that (123), (124), (125), (126) and (128) are variations on the same theme of the interplay
of the three Kirchhoffian indices, and we can use bounds for one of the indices in order to get bounds for
another index.

17For details we refer the reader to [113] and [114].
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In [114], starting again from (115), we were able to write

R+(G) =
1

dG
R∗(G) + 2|E|

n∑

i=1

1

νi
− n, (129)

where the νis are the eigenvalues of the modified Laplacian matrix

L+
1

2|E|DOD,

where D is the diagonal matrix whose diagonal values equal those of the diagonal of L, and O is the
n × n matrix of all whose entries are ones. Since R∗(G) can be expressed in terms of the eigenvalues
of the normalized Laplacian matrix, (129) is a representation of R+(G) in terms of the Laplacian matrix
L, as an alternative to the representation given in (127) in terms of the Moore-Penrose inverse of L.
Using the interlacing of the eigenvalues of L and those of L + 1

2|E|DOD it was shown in [114] that the
following bound holds for any G:

R+(G) ≥R∗(G)

dG
+ dGR(G)

+
2|E|

dn +
1
2
+
√
(dn − 1

2
)2 +

∑n
i+1 di(di − dn) +

1
2|E|
∑n

i=1 d
2
i

− n.
(130)

Also it was shown that the new bound (130) improves the lower bounds in (124), (125) and (128).
For additional information the reader may check [113] and [114].

4.4.5 Weighted topological index18

In [86], by means of the concept of effective resistances, the global cyclicity index has been proposed:

C(G) =
∑

(i,j)∈E

1

Rij

−m. (131)

Yang in [130] studied this new cyclicity measure for connected graphs. Following Bianchi et al. ( [13],

[12]) and computing the extremal values of the Schur-convex function f(Rij) =
∑

(i,j)∈E
1

Rij

on the set

S =



Rij ∈ Rm :

∑

(i,j)∈E
Rij = n− 1,

2

n
≤ Rij ≤ 1



 ,

he obtained the following bounds for C(G) :

m(m− n+ 1)

n− 1
≤ C(G) ≤ n(m− n+ 1)

2
, (132)

where (m−n+1) is the well known cyclomatic number of a graph (see Theorem 3.13, 3.15 and Corollary
3.14 in [130]).

18For details we refer the reader to [9].
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In [9] the authors defined the weighted global cyclicity index for a general network as:

CW (G) =
∑

(i,j)∈E

(
1

Rij

− 1

rij

)
,

where a resistance rij , k ≤ rij ≤ K is associated to any edge.
Notice that the weighted global cyclicity index is a natural extension of the global cyclicity index (131),
which can be recovered when rij = 1 for all (i, j) ∈ E.

Setting xij =
Rij√
rij

and pij =
1

√
rij

, the weighted global cyclicity index can be written as a function of

xij and pij as follows:

CW (G) = f(xij, pij) =
∑

(i,j)∈E

(
pij
xij

− p2ij

)
.

Indeed, the weighted majorization technique proposed in Section 3 can be a fruitful tool to bound the
weighted global cyclicity index, throughout the p−Schur convex functions.
The choice of the variables and of the weights, taking into account Theorem 3, assures that the function
f is p-Schur convex, being

(xij − xi′j′)

(
1

pij

∂f

∂xij

− 1

pi′j′

∂f

∂xi′j′

)
=

(xij − xi′j′)
2(xij + xi′j′)

x2
ijx

2
i′j′

≥ 0

for all (i, j), (i′, j′) ∈ E.

Remark 45. Note that other possible choices of the variables and of the weights are not fruitful:

1. if we use xij = Rij as variables and pij =
1

rij
as weights, the function CW (G) is not p-

Schur-convex.

2. if we use xij =
Rij

rij
as variables and pij = 1 as weights, the function CW (G) is not Schur-convex.

We can now state the main result in [9].

Theorem 46. Let G = (V,E) a connected network with n vertices and m edges. Let rij , k ≤ rij ≤ K,

be the resistances associated to any edge (i, j) ∈ E and let

C =
∑

(i,j)∈E

1

rij
, C ′ =

∑

(i,j)∈E

1
√
rij

, C ′′ = max

{
nK

2k
,

√
k√
K

+
n
√
K

2k
√
k
− 1

K

}
.

Then
(C ′)2

n− 1
− C ≤ CW (G) ≤ C ′′ +

(
n
√
K

2k
+

√
k

K

)
C ′ − n

2k
− n2 − n

2
√
k
√
K

− C. (133)

4.4.6 The electric viewpoint

The main theme of previous subsections has been majorization, though some other themes have been
played along the way. In particular, we have used ideas from electric networks, not only in the framework
of the Kirchhoffian descriptors that deal precisely with effective resistances between vertices, but also in
descriptors such as the AZI index and the ABC index. Here we present a handful of additional electrical
derivations that show the power of having different approaches to the subject matter.
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The Kirchhoff index for graphs with diameter 2 The monotonicity law described in subsection 2.3
together with Foster’s first law implies the following proposition which is well known (see [103] for an
elaborate argument or [140] for a shorter proof with Laplacian eigenvectors) but whose brief electrical
proof we include here for the sake of completeness:

Proposition 47. The Kirchhoff index is strictly monotonic in the number of edges: if G
′

is the graph

which results from adding a new edge to a graph G, then R(G
′
) < R(G).

Proof. By definition
R(G) = S1 + S2 + S3 + · · · ,

where Sk =
∑

i<j:d(i,j)=k Rij , for k ≥ 1, d(i, j) is the distance between i and j, and all but a finite
number of summations Sk are not equal to zero.

When we add an edge to G in order to form G
′ , and we compute R(G

′
) = S

′
1 + S

′
2 + S

′
3 + · · · , the

number of summands in S
′
1 increases by 1 with respect to S1 but the value of the sum stays the same:

S1 = S
′
1 = n − 1. However, at least one of the sums S ′

2, S
′
3, . . . , loses one nonzero summand while all

others, by the monotonicity law, are kept bounded by the corresponding summands in S2, S3, . . ., and
thus

R(G) = n− 1 + S2 + S3 + · · · > n− 1 + S
′
2 + S

′
3 + · · · = R

′
(G).

It is plain that for any graph G with diameter 2 we have

R(G) = n− 1 + S2. (134)

The idea now is to express S2 =
∑

i<j:d(i,j)=2Rij in terms of (11). In that direction we first prove the
following

Proposition 48. For any graph G we have

S2 ≤ d1(n− 2). (135)

If G is geodetic (i.e., for every pair of vertices of G at distance 2 there is a single common neighboring

vertex) and does not have any triangles then

S2 ≥ dn(n− 2). (136)

Now we will exhibit the extremal graphs under consideration

Proposition 49. If G has diameter equal to 2 then

n− 1 +
2

n− 2
≤ R(G) ≤ (n− 1)2.

The upper bound is attained if and only if G = Sn, the n-star graph. The lower bound is attained if and

only if G = K−
n , the graph obtained deleting one edge from the complete graph Kn.

More results on this topic may be found in [110].
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Another lower bound for the multiplicative degree-Kirchhoff index

Proposition 50. For any n-vertex graph G = (V,E) we have

R∗(G) ≥ n− 1 + 2|E|(n− 2). (137)

The equality is attained by the complete graph Kn and the star graph Sn.

It is also clear that for Kn we have 2|E| = n(n− 1) and the bound gives the precise value R∗(G) =

(n− 1)3.
Also, for any G we have |E| ≥ n − 1, and therefore applying directly (137) we have that for any

graph G

R∗(G) ≥ n− 1 + 2(n− 1)(n− 2) = (n− 1)(2n− 3) = R∗(Sn),

proving in a more direct way than in [118] that the minimal multiplicative degree-Kirchhoff index is
attained by the star graph Sn.

Since d1 ≤ n− 1 it is clear that

2|E| ≤ d1n ≤ d1n− d1 + n− 1 = (d1 + 1)(n− 1),

and therefore (137) is always better than (109). More details on the subject can be found in [111].

More bounds for the Kirchhoff index The material in the following paragraphs is taken from [112].
We first give a lower bound that is attained by a large family of graphs. It would be interesting to
characterize exactly the extent of this family.

Proposition 51. For any n-vertex graph G we have

R(G) ≥ n− 1 +
2

d1

((
n

2

)
− |E|

)
. (138)

This lower bound is attained by Kn.

We obtain immediately the following

Corollary 52. For any d-regular graph we have

R(G) ≥ n− 1 +
n

d
(n− 1− d). (139)

We are going to show now that the equality in the lower bound (139) (and therefore in (138)) is
attained not only by Kn but by a large family of regular graphs. Let N(i) be the neighborhood of the
vertex i, i.e., the set of its neighbors, and let the diameter D be defined as D = maxi,j{d(i, j) : i, j ∈ V }.
Then we have

Proposition 53. The bound (139) is attained by any n-vertex d-regular graph G for which D = 2 and

|N(i) ∩N(j)| = d for all i, j such that d(i, j) = 2.
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To show that the set of graphs satisfying the previous proposition is nonempty consider, for j ≥
1, p ≥ 1, the graph G(j, p) on n = (p+1)(j +1) vertices which is d-regular, with d = j(p+1), defined
by the neighbors of its vertices thus: the neighbors of vertex v come in p + 1 bunches of j consecutive
vertices (the first bunch would be v + 1, v + 2, . . . , v + j − 1) separated by a non-neighbor (the first
non-neighbor would be v + j). Here the addition is mod n. The densest of these examples occurs when
p = 1; in that case d = n− 2 and G(j, 1) can be described thus: from the complete graph K2j we delete
the j edges (i, i + j), for 1 ≤ i ≤ j, i.e., any vertex is connected to all others but its “opposite vertex”.
The least dense example occurs when j = 1; in that case d = n

2
and G(1, p) is the complete bipartite

graph Kn
2
,n
2
.

Going in the opposite direction, we first get a simple and general upper bound in the next

Proposition 54. For any G we have

R(G) ≤ n− 1 +

((
n

2

)
− |E|

)
R, (140)

where R = maxi,j Rij.

Of course, the bound (140) is not very useful unless we have a good grip on the value of R. But for
those graphs whose smallest degree is larger than bn

2
c, we can show that R(G) is linear in n. Specifically

we obtain the following

Proposition 55. For any G for which dn ≥ bn
2
c we have

R(G) ≤ 3n− 1. (141)

It would be interesting to determine whether (141) is a tight bound.

Adapting the discussion in [23] to our context, it should be pointed out that there is a sharp threshold
at dn = bn

2
c. Indeed, when going from dn = bn

2
c − 1 to dn = bn

2
c the Kirchhoff index drops from an n2

order to an n order, as the previous proposition and the following example show.

Example. To simplify the discussion, let us take n to be even. Consider G1 = G2 = Kbn
2
c. Delete

edges (ai, bi) from Gi for i = 1, 2, and join the resulting graphs with the edges (a1, a2) and (b1, b2). The
n-vertex graph thus built is (bn

2
c − 1)-regular, and if we choose a ∈ G1, b ∈ G2 then by shorting all

vertices in each Gi, i = 1, 2 into single vertices, and applying the monotonicity principle we see that

Rab ≥ 1
2
. Since there are roughly

n2

4
possibles choices for a and b, the Kirchhoff index of this graph is

bounded below roughly by
n2

8
.

4.5 Numerical results 19

In this section we present some numerical examples which illustrate the majorization technique devel-
oped throughout the chapter. The numerical results obtained by our new method have been compared to

19For more details we refer the reader to [5], [6], [7], [10], [11], [12], [13], [28], [29], [30], [31], [32].
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those of the literature. We restrict our attention to computing bounds of some particular graphs.

4.5.1 Atom-bond connectivity index

We provide some numerical examples, using majorization in order to obtain bounds on the Atom-bond
connectivity index and then we compare our results to those proposed in the literature. In particular, we
make use of the relation between R−1(G) and ABC(G) index.

Example 1. Let us consider the family of trees T with 16 vertices, 10 pendant vertices and the degree
sequence π = (5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). In this case m = n− 1 = 15 (for more details see
Section 4, Example i) in [12]).

The minimal element is

x∗(T ) =


19
15

, ...,
19

15︸ ︷︷ ︸
10

,
2

3
, ...,

2

3︸ ︷︷ ︸
5


 .

Replacing these values into (29) we obtain for any T ∈ T :

R−1(T ) ≥ 3.2,

so that (34) yields
ABC(T ) ≤ 13.304,

improving the value obtained with the general bound (39): ABC(T ) ≤ 14.491.

Example 2. We now deal with the family U of unicyclic graphs G, i.e. graphs for which m = n, with
degree sequence π = (3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1).

Since ã > a, the minimal element is:

x∗(U) =


4
3
, ...,

4

3︸ ︷︷ ︸
4

,
23

27
, ...,

23

27︸ ︷︷ ︸
9




Replacing these values into (29) we obtain for any G ∈ U :

R−1(G) ≥ 2.904

and the bound (34) becomes
ABC(G) ≤ 11.007

which is tighter than the bound in (41) involving d1, that yields ABC(G) ≤ 11.402.
Example 3. Let us consider the family B of bicyclic graphs, i.e. those where m = n + 1, with degree
sequence π = (3, 3, 3, 3, 2, 1, 1).

We have that ã > a and the minimal vector is:
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x∗(G) =


4
3
, ...,

4

3︸ ︷︷ ︸
2

,
13

18
...
13

18︸ ︷︷ ︸
6




so that for G ∈ B we have

R−1(G) ≥ 1.425,

and the inequality (34) yields

ABC(G) ≤ 6.276,

which is tighter than the bound in (41) in terms of d1, that yields ABC(G) ≤ 6.403.

We can conclude that, for all the considered examples, proposed bound always performs better. It
means that bound (35) modified with our methodology based on majorization technique is the best choice
in these cases.

4.5.2 The Normalized Laplacian index

The proposed bounds have been evaluated on different graphs. We now focus only on non-bipartite
graphs and we provide a comparison with the literature (see [20]).
In order to assure a robust analysis, graphs have been randomly generated following the Erdös-Rényi
(ER) model GER(n, q) (see [17], [27], [51] and [52]). Graphs have been obtained by using a MatLab
code that gives back only connected graph based on the ER model (see [28] and [32]). In this fashion,
the graph is constructed by connecting nodes randomly such that edges are included with probability
independent from every other edge. The results are based on a classic assumption of a probability of
existence of edges q equal to 0.5. We obtain indeed that the generated graphs have a number of edges
not far from the half of its maximum value as proved in the literature (see for example [54]).

At this regard, in Table 5 in Appendix A, s∗α(G) has been computed for several graphs by fixing α

equal to 0.5. We report values of upper bounds based on (75) and (76) and the upper bound proposed in
[20]. Relative errors r measures the absolute value of the difference between the upper bounds and s∗α(G)

divided by the value of s∗α(G). We observe an improvement with respect to existing bounds according to
all the analyzed graphs and the improvement appears reduced for very large graphs. However, for large
graphs the formula provided in [20] already gives a very low relative error. Similar results have been
obtained also for non-bipartite graphs (see [30]).

4.5.3 Normalized Laplacian Energy

We focus here on NE(G) by comparing proposed bounds with those in the literature (Corollary 12 and
13 in [22]). In particular we analyze two alternative classes of graphs generated by using either the
Erdös-Rényi (ER) model GER(n, q) or the Watts and Strogatz (WS) model (see [139]). Both models
have been generated by using a well-known package of R (see [33]) and by assuring that the graph
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obtained is connected. As usual, the ER is constructed by connecting nodes randomly such that edges
are included with probability q independent from every other edge. The WS networks have been derived
beginning by a simulated n-node lattice and rewiring each edge at random to a new target node with
probability p.

Table 6 in Appendix A reports main results derived for graphs generated by a ER(n, 0.5) model.
We observe how both bounds (80) and (81) are tighter than those proposed in [22]. The improvement
increases for greater number of vertices.

Graphs have been simulated by using also WS model with different rewiring probabilities p. As
well-known, intermediate values of p result in small-world networks that share properties of both regular
and random graphs. In [139], the authors show that these networks have small mean path lengths and
high clustering coefficients. There is indeed a broad interval of p over which the average path is almost
as small as random yet the clustering coefficient is significantly greater than random. These small-world
networks result from the immediate drop in average path caused by the introduction of few long-range
edges. In particular, we analyze the behaviour of bounds in this interval by considering graphs generated
with a rewiring probability in the range p ∈ (0.01, 0.1). At this regard, Table 9 reports bounds evaluated
by considering p = 0.1. We observe in Table 7 (Appendix A) greater values of NE(G). In this case,
also the bound provided in Corollary 13 ( [22]) gives better results than those observed for ER graphs.
However it is confirmed the best approximation when bound (81) is used.

4.5.4 Normalized Laplacian Estrada Index

We focus here on NEE(G) by comparing for non-bipartite graphs bounds (85) and (87) with (86)
proposed in [91]. In [31], it has been already analytically proved that, when the additional information
λ1((L)) ≥ Q is considered, bound (85) with t1 = Q is tighter than (86). Both ER and WS models are
analysed.

In Table 8 (Appendix A) we report the NEE(G) index and the values of the three mentioned bounds
evaluated on non-bipartite graphs generated by using ER model with different number of vertices and
with q equal to 0.5. Relative errors r measures the absolute value of the difference between the lower
bounds and NEE(G) divided by the value of NEE(G).

As expected, using bound (87) we observe an improvement with respect to existing bound according
to all the analyzed graphs. The improvement is very significant for graphs with a small number of
vertices, while it reduces for very large graphs. However, for large graphs formula (86) provided in [91]
already gives a very low relative error.

Graphs have been simulated by using also WS model with different rewiring probabilities p. In par-
ticular, we analyze the behaviour of bounds by considering graphs generated with a rewiring probability
p = 0.1 (see Table 9 in Appendix A). In this case, we observe greater relative errors especially for large
graphs. Probably, being these networks very far from complete graphs, bounds tend to assure a weaker
approximation. Similar results have been obtained by simulating WS graphs choosing different values
of p that belong to the interval.
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4.5.5 HOMO-LUMO index

In this subsection we compare our bounds ((90),(91) and (94)) with those existing in the literature (The-
orem 1.3 in [82], Theorem 3.2 and 3.3 in [92]). Also in this case, we compute them for graphs generated
by using the Erdös-Rényi (ER) model GER(n, q) where edges are included with probability q indepen-
dent from every other edge. Graphs have been derived randomly by using a well-known package of R
(see [33]) and by ensuring that the graph is connected. Table 10 (Appendix A) compares alternative
upper bounds of HL(G) evaluated for simulated GER(n, 0.5) graphs with different number of vertices.
It is noteworthy that bound (91) has the best performance for n = 5, while bound (94) is the sharpest
one in all other cases. However, the improvements are very slight with respect to bound (Th.3.2 in [92])
when large graphs are considered.

We now report in Table 11 (Appendix A) a comparison of alternative bounds derived for bipartite
graphs, varying the number of vertices and edges. In some selected cases (i.e. n = 10, m = 25 and
n = 20, m = 91), our bound (92) performs better. In all the other cases, the tightest one is bound (95)
based on energy index.

4.5.6 Additive Kirchhoff index

We report some examples when H can be easily computed.

For d-regular graphs we have H =
N(N − 1)

2
. The lower bound (114) becomes N(N − 1) which is

worse than bound (112).

Let us consider a semiregular graph G that has N1 vertices with degree a and N2 vertices with degree
b, a < b, N = N1 +N2. Then H = N(N−1)

2
+
(
b
a
− 1
)
N1N2.

We deal with two examples: i) a semiregular bipartite graph and ii) a semiregular not bipartite graph.

Example 5.6. Let us consider a semiregular bipartite graph with N1=10 vertices with degree a = 4 and
N2 = 4 vertices with degree b = 10. For this graph we have H = 151, σ = 0.47 which imply

Formula Lower bound
(112) 338
(116) 338.03
(114) 359.64

Table 2. Lower bound for R+(G)

showing that the bound (114) performs better than the others.

Example 5.7. Let us take a semiregular graph G on N vertices (N even ≥ 8) that is the union of a
complete KN/2 and a N/2-cycle such that vertex i of the cycle is linked to vertex i of the complete graph
with a single edge, for 1 ≤ i ≤ N/2.
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This graph has N1 = N2 = N/2, a = 3, b = N/2, thus H = 1
24
N (6N +N2 − 12). By (114) we get

R+(G) ≥ N (228N2 − 1152N + 36N3 +N4 + 1152)

24 (6N +N2 − 12)
(142)

By Calculus, it is easy to show that , for N > 8, the bound (142) is better than (112).

Table 3 give a comparison between all lower bounds applicable to this example, for N = 20:

Formula Lower bound
(112) 722
(116) 722.001
(142) 848.61

Table 3. Lower bound for R+(G)

The bound (142) performs always better than (116) which in turn improves (112).

We consider a full binary tree T of depth d > 1 which has N1 = 2d vertices of degree 1, one vertex (the

root) of degree 2 and N2 = 2d − 2 vertices of degree 3. Then H =
N(N − 1)

2
+ 2N1 +

3
2
N2 + 2N1N2.

Taking d = 3 we obtain the results summarized in the following table, which shows that our new bounds
are better than the universal one (112):

Formula Lower
(112) 392
(116) 392.14
(114) 406

Table 4. Lower bounds for R+(T )
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Appendix A

n d1 m s∗α(G) bound (75) bound (76) bound [20] r(75) r(76) r( [20])

4 2 3 3.35 3.44 3.43 3.46 2.86% 2.55% 3.47%

5 4 9 4.46 4.47 4.47 4.47 0.23% 0.21% 0.25%

6 3 6 5.30 5.47 5.46 5.48 3.13% 3.00% 3.27%

7 5 14 6.43 6.48 6.48 6.48 0.83% 0.81% 0.86%

8 5 13 7.33 7.48 7.48 7.48 2.02% 1.98% 2.06%

9 6 16 8.31 8.48 8.48 8.48 2.04% 2.01% 2.07%

10 8 25 9.39 9.51 9.48 9.52 1.36% 1.04% 1.37%

20 15 95 19.37 19.51 19.49 19.51 0.71% 0.62% 0.72%

30 19 209 29.36 29.50 29.50 29.50 0.49% 0.46% 0.49%

50 33 604 49.37 49.50 49.50 49.50 0.27% 0.26% 0.27%

100 60 2459 99.37 99.50 99.50 99.50 0.13% 0.12% 0.13%

200 116 10001 199.38 199.50 199.50 199.50 0.06% 0.05% 0.06%

300 179 22437 299.37 299.50 299.50 299.50 0.04% 0.04% 0.04%

500 279 62456 499.38 499.50 499.50 499.50 0.03% 0.02% 0.03%

Table 5. Normalized Laplacian Index: upper bounds for s∗α(G) for α = 0.5 and relative errors.

n NE(G) bound bound bound (80) bound (81)
Cor. 12 in [22] Cor. 13 in [22]

4 3.00 4 3.66 3.12 3.05
5 2.55 4 4.39 2.70 2.61
6 3.15 6 5.12 3.87 3.62
7 3.81 6 5.86 4.51 4.27
8 4.32 8 6.59 4.69 4.47
9 3.90 8 7.32 4.34 4.14

10 3.58 10 8.05 4.00 3.83
20 5.01 20 15.37 5.68 5.56
30 5.60 30 22.69 6.43 6.33
50 7.31 50 37.33 8.44 8.36

100 9.59 100 73.92 11.13 11.08

Table 6. Normalized Laplacian energy: upper bounds for NE(G) for graphs generated by
ER(n, 0.5) model.
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n NE(G) bound bound bound (80) bound (81)
Cor. 12 in [22] Cor. 13 in [22]

4 2 4 3.66 2.72 2.41
5 3.24 4 4.39 3.45 3.37
6 4 6 5.12 4.15 4.08
7 4.49 6 5.86 4.87 4.63
8 5.12 8 6.59 5.57 5.33
9 5.76 8 7.32 6.27 6.03

10 6.47 10 8.05 6.99 6.75
20 11.97 20 15.37 13.67 13.42
30 19.24 30 22.69 21.16 20.90
50 31.79 50 37.33 35.27 34.99

100 63.21 100 73.92 70.22 69.93

Table 7. Normalized Laplacian energy: upper bounds for NE(G) for graphs generated by
WS(n, 0.1) model.

n NEE(G) bound (86) bound (85) bound (87) r(86) r(85) r(87)

4 5.0862 4.5547 4.6783 4.7112 10.4488% 8.0184% 7.3717%
5 6.6073 5.5040 5.6407 5.6935 16.6991% 14.6301% 13.8304%
6 6.9783 6.4749 6.5088 6.5265 7.2140% 6.7287% 6.4748%
7 8.4965 7.4560 7.5345 7.5559 12.2457% 11.3223% 11.0700%
8 9.3463 8.4428 8.4778 8.4933 9.6663% 9.2921% 9.1266%
9 10.0295 9.4331 9.4456 9.4541 5.9466% 5.8219% 5.7365%

10 10.9027 10.4256 10.4334 10.4391 4.3768% 4.3048% 4.2528%
20 20.9252 20.3947 20.3963 20.3977 2.5353% 2.5274% 2.5206%
30 30.9411 30.3853 30.3860 30.3867 1.7963% 1.7940% 1.7919%
50 50.9236 50.3782 50.3784 50.3786 1.0710% 1.0705% 1.0701%
100 100.9001 100.3729 100.3730 100.3731 0.5225% 0.5224% 0.5223%

Table 8. Normalized Laplacian estrada index: lower bounds for NEE(G) and relative errors for
graphs generated by ER(n, 0.5) model.
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n NEE(G) bound (86) bound (85) bound (87) r(86) r(85) r(87)

4 5.0862 4.5547 4.6783 4.7112 10.4488% 8.0184% 7.3717%
5 6.3276 5.5040 5.6002 5.6389 13.0165% 11.4961% 10.8843%
6 7.5967 6.4749 6.5492 6.5856 14.7666% 13.7886% 13.3087%
7 8.8273 7.4560 7.6023 7.6273 15.5347% 13.8778% 13.5948%
8 10.1431 8.4428 8.5646 8.5878 16.7630% 15.5621% 15.3339%
9 11.3946 9.4331 9.5349 9.5568 17.2145% 16.3209% 16.1287%
10 12.6329 10.4256 10.5736 10.5917 17.4727% 16.3005% 16.1573%
20 25.2327 20.3947 20.5345 20.5442 19.1737% 18.6195% 18.5813%
30 37.7967 30.3853 30.5175 30.5240 19.6086% 19.2590% 19.2418%
50 63.2448 50.3782 50.5227 50.5268 20.3442% 20.1157% 20.1092%

100 126.4764 100.3729 100.5201 100.5222 20.6390% 20.5226% 20.5209%

Table 9. Normalized Laplacian estrada index: lower bounds for NEE(G) and relative errors for
graphs generated by WS(n, 0.1) model.

n m HL(G) bound bound bound bound bound
(90)/(91) (94) [82] Th.3.2 in [92] Th.3.3 in [92]

5 7 0.46 1.29 1.33 4 1.55 1.62

10 26 0.68 1.99 1.80 8 2.02 2.08

15 52 0.33 3.12 2.28 10 2.33 2.44

20 106 0.69 3.98 2.27 16 2.71 2.74

25 153 0.32 3.66 2.92 16 2.94 3.00

50 600 0.42 5.10 3.92 31 3.98 4.04

100 2,463 0.56 7.30 5.43 66 5.47 5.50

250 15,358 0.49 9.67 8.32 142 8.38 8.41

500 62,304 0.47 13.52 11.65 289 11.67 11.68

1000 249,556 0.50 17.92 16.29 549 16.30 16.31

Table 10. Upper bounds of HL(G) for graphs generated by GER(n, 0.5) model
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n m HL(G) bound (92) bound (95) bound bound
Th.3.2 in [92] Th.3.3 in [92]

10 13 0.46 1.75 1.47 1.52 1.62

10 25 0.00 0.00 1.00 1.00 1.62

20 45 0.10 2.97 1.90 1.94 2.08

20 91 0.00 1.04 1.16 1.77 2.08

50 315 0.06 3.82 2.86 2.95 3.00

50 560 0.00 1.74 1.34 2.39 3.00

100 1,248 0.03 4.72 4.00 4.01 4.04

100 2,254 0.03 2.36 1.48 2.99 4.04

250 7,839 0.02 7.52 5.91 6.07 6.09

250 14,083 0.03 3.60 1.79 4.22 6.09

500 31,321 0.04 9.29 8.20 8.39 8.41

500 56,231 0.01 5.01 2.16 5.64 8.41

1,000 124,887 0.02 12.68 11.66 11.67 11.68

1,000 225,145 0.01 7.02 2.65 7.58 11.68

Table 11. Upper bounds of HL(G) for bipartite graphs
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[83] J. Karamata, Sur une inégalité rélative aux fonctions convexes, Publ. Math. Univ. Belgrade 1
(1932) 145–148.

[84] D. J. Klein, Prolegomenon on partial orderings in chemistry, MATCH Commun. Math. Comput.
Chem. 42 (2000) 7–21.
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[148] B. Zhou, N. Trinajstić, A note on Kirchhoff index, Chem. Phys. Lett. 455 (2008) 120–123.
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1. Introduction

Let G = (V,E) be a simple graph, i.e., graph without loops and multiple edges. Let V (G) = {v1, v2,
. . . , vn}. For vi ∈ V (G), by di = di(G) we denote the degree of vertex vi in G.
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A sequence of positive integers π(G) = (δ1, δ2, . . . , δn) is called the degree sequence of G if δi =
di(G) holds for i = 1, 2, . . . , n. Throughout this paper, we order the vertex degrees non-increasingly,
i.e., d1 ≥ d2 ≥ · · · ≥ dn.

The minimum and maximum degree of a vertex in a graph is denote by δ and ∆, respectively.

The girth of G is the length of shortest cycle contained in G. Let Ni(v) = {w ∈ V (G)|d(v, w) = i},
where d(v, w) is the length of a shortest path connecting u and v. Define ni(v) = |Ni(v)|. Also, instead
of N1(v), it is often written N(v) to denote the (open) neighborhood of the vertex v. The eccentricity ε(v)

of v is defined as ε = ε(v) = maxw∈V (G){d(v, w)}. The radius r = r(G) and the diameter D = D(G)

are defined as the minimum and the maximum of ε(v) over all vertices v ∈ V (G), respectively.

The complement of G, denoted by G, is a simple graph on the same set of vertices V (G) in which
two vertices u and v are adjacent if and only if they are not adjacent in G.

For S ⊆ V (G), let G[S] be the subgraph induced by S.

The vertex-disjoint union of the graphs G and H is denoted by G ∪ H . Let G ∨ H be the graph
obtained from G ∪H by adding all possible edges from vertices of G to vertices of H , i.e.,

G ∨H ∼= G ∪H .

The first and the second Zagreb index are defined as

M1 = M1(G) =
∑

vi∈V (G)

d2i , M2 = M2(G) =
∑

vivj∈E(G)

di dj (1)

respectively.

The first Zagreb index M1(G) can also be expressed as [47]

M1(G) =
∑

vivj∈E(G)

(di + dj) . (2)

As it is well-known, the number of vertices of odd degree in every graph must be even. Therefore,
M1(G) must be an even number, as noted in [133].

2. Historical remarks

The Zagreb indices belong among the oldest and most studied molecular structure descriptors and found
noteworthy applications in chemistry. It is generally accepted that these have been conceived in 1972
by Trinajstić and one of the present authors, and first published in the much quoted paper [71]. The
nowadays standard notation M1 and M2 , as well as the definitions (1) were first time used in the paper
[70].

Details on these vertex–based topological indices can be found in the reviews [37,66,116] published
on the occasion of their 30th anniversary, as well as in the recent surveys [63, 69, 134].

The first survey on topological indices appeared in 1983 [11]. In it also M1 and M2 were mentioned
and commented. The authors of [11] named them “Zagreb group indices”, bearing in mind that these
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resulted from the work of a group of scholars at the “Rudjer Bošković” institute in Zagreb. The name
remained, except that “group” was eventually dropped.

One of the first graph–based molecular structure descriptors (topological indices) was invented in
1947 by Platt [122]. The Platt index IPl is the count of the edges incident to an edge of the underlying
graph, and its sum over all edges:

IPl =
∑

vivj∈E(G)

(di + dj − 2) . (3)

What was completely overlooked by the authors of the papers [70, 71], was the identity

M1 = IPl + 2m

which straightforwardly follows from (3) and the relation (2).
In 1964, Gordon and Scantelbury [58] considered a graph invariant that sometimes is referred to as

the Gordon–Scantelbury index IGS . By definition, it is equal to the number of acyclic P3-subgraphs
contained in the graph G. For triangle–free graphs,

IGS =
∑

vi∈V (G)

(
di
2

)

which leads to
M1 = 2 IGS + 2m

implying that the first Zagreb index is essentially the same as the somewhat older Gordon–Scantelbury
index. This too was missed by the authors of [70, 71].

More historical details on the Zagreb indices are found in [65].

3. On the maximum and minimum first Zagreb index
of graphs with n vertices and m edges

A simple graph G on n vertices and m edges will be referred to as an (n,m)-graph. In this section we
give a survey on upper and lower bounds for the first Zagreb index M1 of (n,m)-graphs in terms of n
and m, and give characterization of extremal graphs which attain these maximal (minimal) values. First,
we deal with the upper bounds on M1.

Székely et al. [131] gave the following upper bound for the sum of the squares of vertex degrees

M1 =
n∑

1=1

d2i ≤
(

n∑

1=1

√
di

)2

(4)

and de Caen [42] proved that

M1 =
n∑

1=1

d2i ≤ m

(
2m

n− 1
+ n− 2

)
. (5)
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De Caen pointed out that the bounds (4) and (5) are incomparable. Das [32] proved that the equality
in (5) holds if and only if G is a star or a complete graph or a complete graph with one isolated vertex.

Das [32], Zhou [154], and Liu et al. [100] established some new upper bounds for M1.

Theorem 3.1. [32, 100] Let G be a connected graph with n vertices and m edges. Then

M1(G) ≤ m(m+ 1) (6)

with equality for n > 3 if and only if G ∼= K3 or G ∼= K1,n−1.

Theorem 3.2. [154] Let G be a connected graph with n vertices and m edges. Then

M1(G) ≤ n(2m− n+ 1) (7)

with equality if and only if G ∼= Kn or G ∼= K1,n−1 or G ∼= mK2.

Remark. If m = n−1, then the bound (7) is equal to (6). If m ≥ n, then m(m+1) ≥ n(2m−n+1)

and thus the bound (7) is usually lower than the bound (6), as it was proven in [103].
Remark. If G is connected (n,m)-graph, then m ≤

(
n
2

)
, implying, as noted in [103], that

m

(
2m

n− 1
+ n− 2

)
= mn+ 2m

(
m

n− 1
− 1

)

≤ mn+ n(n− 1)

(
m

n− 1
− 1

)
= n(2m− n+ 1) .

Thus, the bound (5) is usually finer than the bound (7).
In the sequel, we outline the results concerned with the structure of (n,m)-graphs for which the

maximum value of M1 is attained.
Denote by G(n,m) the set of all simple (n,m)-graphs. The graph G is said to be optimal in G(n,m)

if M1(G) is maximum. Denote by max(n,m) this maximum value.
A matrix formulation of these problems was first investigated by Schwarz [124] in 1964 by consid-

ering rearrangements of square matrices with non-negative elements in order to maximize the sum of
elements of the matrix A2. By papers of Katz [106], and later Aharoni [3], these problem were com-
pletely solved.

The graph formulation of these problems were first investigated by Ahlswede and Katona [4] in 1978.
They solved an equivalent problem. In fact, they determined the maximum number of pairs of different
edges that have a common vertex, given by

∑

vi∈V

(
di
2

)
=

M1

2
−m.

Ahlswede and Katona proved that the maximum value max(n,m) is always attained at one or both
of two special graphs in G(n,m) (Theorem 3.3).

The first of these special graphs, the quasi-complete graph, denoted by QC(n,m), is the graph having
the largest possible complete subgraph Kk .
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The other special graph, called quasi-star graph and denoted by QS(n,m), is the graph that has as
many vertices of degree n − 1 as possible. In fact, this graph is the complement of QC(n,m′), where
m′ =

(
n
2

)
−m.

After that, the problem of maximizing M1 was investigated by Boesch et al. [16]. Also, Olpp [119],
independently, was solving a question of Goodmen: maximize the number of monochromatic triangles
in a two-coloring of the complete graph with a fixed number of red edges. Ollp showed that Goodman’s
problem is equivalent to finding the two-coloring that maximizes the sum of squares of the red degrees
of the vertices, i.e., that maximizes M1 of a subgraph consisted of red edges. In both papers, the result
of Alshwede and Katona, that the maximum value of M1 is always attained at one or both of two special
graphs QC(n,m) and QS(n,m) in G(n,m) was reproven (Theorem 3.3).

In 1999, Peled et al. [121], and Byer [23], independently showed that all optimal graphs for which
M1 is maximum belong to one of the six classes of so-called threshold graphs. Byer solved another
equivalent form of the problem. In fact, he studied the maximum number of paths of lengths two over
all (n,m)-graphs, given by M1 − 2m. However, in these papers it was not discussed when any of the six
graphs, that achieve maximum, is optimal.

The problem was completely solved in 2009 by Ábrego et al. [2]. A related problem of determining in
which of the graphs, QC(n,m) or QS(n,m), the maximum of M1 is attained, was solved independently
in [2] and [139].

As it was proven by Peled et al. [121], all optimal graphs belong to a class of special graphs called
threshold graphs. The quasi-star and the quasi-complete graphs are among many threshold graphs in
G(n,m). These graphs can be characterized in several equivalent ways. By [108] G = (V,E) is a
threshold graph if G can be constructed from K1 by multiple adding of an isolated vertex or a vertex that
is adjacent with any other vertex, i.e., as

G∗
1(a, b, c, d, . . .)

∼= Ka ∨ (Kb ∪ (Kc ∨ (Kd ∪ · · · )))

or

G∗
2(a, b, c, d, . . .)

∼= Ka ∪ (Kb ∨ (Kc ∪ (Kd ∪ · · · ))) .

Theorem 3.3. [4, 16, 119] Among the graphs from G(n,m), there exist threshold graphs

QS(n,m) ∼= G∗
1(a, b, 1, d), QC(n,m) ∼= G∗

2(a, b, 1, d)

unique up to an isomorphism, such that at least one of them is optimal.

In fact, by Byer [23] and Peled et al. [121] it holds:

Theorem 3.4. [23, 121] Let G be an optimal graph in G(n,m). Then G ∼= G∗
1(a, b, c, d) or G ∼=

G∗
2(a, b, c, d) for b = 1 or c = 1 or d = 1.

By [108], the graph G = (V,E) is a threshold graph if for every three distinct vertices i, j, k ∈ V , if
di ≥ dj and jk ∈ E, then ik ∈ E.
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By the latter characterization of a threshold graph, its adjacency matrix has a special form. Its upper–
triangular part is left justified and the number of zeros in each row of its upper–triangular part does not
decrease. Having this in mind, a threshold graph can be represented by a partition π = (a0, a1, . . . , ap)

of m, all of whose parts are less than n, such that an upper–triangular part of its adjacency matrix is left
justified and contains as ones in a row s. We denote by Th(π) the threshold graph corresponding to a
partition π, and say that the partition π is optimal if Th(π) is an optimal graph. The diagonal sequence of
a partition π is defined as the number of ones in the upper–triangular part of its adjacency matrix on each
of the diagonal lines. By Theorem 3.4, there are at most six optimal partitions of graphs from G(n,m).
Ábrego et al. [2] gave precise conditions to determine when each of these partitions is optimal.

Let Sn,m = M1(QS(n,m)) and Cn,m = M1(QC(n,m)). Then, by Theorem 3.3, the maximum
value of M1 equals to Sn,m or Cn,m.

Theorem 3.5. [2] Let n be a positive integer and m an integer such that 0 ≤ m ≤
(
n
2

)
. Let k, k′, j, j′

be the unique integers satisfying

m =

(
k + 1

2

)
− j , with 1 ≤ j ≤ k

and

m =

(
n

2

)
−
(
k′ + 1

2

)
+ j′ , with 1 ≤ j′ ≤ k′ .

Then every optimal partition π is one of the following six partitions:

1. π1.1 = (n− 1, n− 2, . . . , k′ + 1, j′), the quasi-star partition for m,

2. π1.2 = (n− 1, n− 2, . . . , 2k′ − j′, 2k′ − j′ − 2, . . . , k′ − 1), if k′ + 1 ≤ 2k′ − j′ − 1 ≤ n− 1,

3. π1.3 = (n− 1, n− 2, . . . , k′ + 1, 2, 1), if j′ = 3 and n ≥ 4,

4. π2.1 = (k, k − 1, . . . , j + 1, j − 1, . . . , 2, 1), the quasi-complete partition for m,

5. π2.2 = (2k − j − 1, k − 2, k − 3, . . . , 2, 1), if k + 1 ≤ 2k − j − 1 ≤ n− 1,

6. π2.3 = (k, k − 1, . . . , 3), if j = 3 and n ≥ 4.

The partitions π1.1 and π1.2 always exist and at least one of them is optimal. Furthermore, π1.2 and

π1.3 (if they exist) have the same diagonal sequence as π1.1, and if Sn,m ≥ Cn,m, then they are all optimal.

Similarly, π2.2 and π2.3 (if they exist) have the same diagonal sequence as π2.1, and if Sn,m ≤ Cn,m, then

they are all optimal.

In order to describe the behavior of Sn,m − Cn,m, we need the following definitions. Let k0 = k0(n)

be an integer such that (
k0
2

)
≤ 1

2

(
n

2

)
<

(
k0 + 1

2

)

and define the quadratic function

q0(n) :=
1

4

[
1− 2(2k0 − 3)2 + (2n− 5)2

]
.

In addition, let

R0 = R0(n) =
4
[(

n
2

)
− 2
(
k0
2

)]
(k0 − 2)

−1− 2(2k0 − 4)2 + (2n− 5)2
.
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Theorem 3.6. [2, 139] Let n be a positive integer.

(1) If q0(n) > 0, then

Sn,m ≥ Cn,m for 0 ≤ m ≤ 1

2

(
n

2

)

Sn,m ≤ Cn,m for
1

2

(
n

2

)
≤ m ≤

(
n

2

)
.

Sn,m
∼= Cn,m if and only if m ∈

{
0, 1, 2, 3, 1

2

(
n
2

)}
or m =

(
k0
2

)
and (2n − 3)2 − 2(2k0 − 3)2 ∈

{−1, 7}.

(2) If q0(n) < 0, then

Sn,m ≥ Cn,m for 0 ≤ m ≤ 1

2

(
n

2

)
−R0

Sn,m ≤ Cn,m for
1

2

(
n

2

)
−R0 ≤ m ≤ 1

2

(
n

2

)

Sn,m ≥ Cn,m for
1

2

(
n

2

)
≤ m ≤ 1

2

(
n

2

)
+R0

Sn,m ≤ Cn,m for
1

2

(
n

2

)
+R0 ≤ m ≤

(
n

2

)
.

Sn,m
∼= Cn,m if and only if m ∈

{
0, 1, 2, 3, 1

2

(
n
2

)
−R0,

1
2

(
n
2

)}
.

(3) If q0(n) = 0, then

Sn,m ≥ Cn,m for 0 ≤ m ≤ 1

2

(
n

2

)

Sn,m ≤ Cn,m for
1

2

(
n

2

)
≤ m ≤

(
n

2

)
.

Sn,m
∼= Cn,m if and only if m ∈

{
0, 1, 2, 3,

(
k0
2

)
, . . . , 1

2

(
n
2

)}
.

By using the fact that among the graphs from G(n,m) at least one of the graphs QS(n,m) or
QC(n,m) is optimal, Nikiforov [115] obtained an upper bound for M1, that is better than de Caen’s
(5), for the majority of graphs from G(n,m).

Theorem 3.7. [115] For an integer n and 0 ≤ m ≤
(
n
2

)
, let

F (n,m) =





2m
√
2m if n2/4 ≤ m

(n2 − 2m)
√
n2 − 2m+ 4mn− n3 if m < n2/4 .
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Then

F (n,m)− 4m ≤ max{Sn,m, Cn,m} ≤ F (n,m) .

Furthermore, if n
√
n < m <

(
n
2

)
− n

√
n, then

F (n,m) < m

(
2m

n− 1
+ n− 2

)
.

If we consider bipartite graphs with n vertices and m edges, then the graphs which attain maximum
value of M1 cannot be threshold graphs, since a bipartite graph does not contain a complete subgraph
with more than two vertices. However, the structure of the extremal bipartite graphs whose M1 is max-
imum is similar to the structure of threshold graphs. Let n,m, k be three positive integers. As in [30],
we use B(n,m) to denote a bipartite graph with n vertices and m edges, and B(n,m, k) to denote a
B(n,m) with bipartition (X,Y ) such that |X| = k, |Y | = n − k. By B(n,m, k) we denote the set of
graphs of the form B(n,m, k).

The sign of x, denoted by sgn(x), is defined as 1, −1 and 0 when x is positive, negative and zero,
respectively.

Suppose that n,m, k are three integers such that n ≥ 2, 0 ≤ m ≤ bn
2
cdn

2
e and dn

2
e ≤ k ≤ n − 1

and let m = qk + r, where 0 ≤ r < k. Let B1(n,m, k) be a bipartite graph in B(n,m, k), such that q
vertices from Y are adjacent to all the vertices in X and one more vertex from Y is adjacent to r vertices
in X .

Theorem 3.8. [4] For 0 ≤ m ≤ bn
2
cdn

2
e and dn

2
e ≤ k ≤ n − 1, the graph B1(n,m, k) has maximum

M1 among all bipartite graphs with n vertices, m edges and given bipartition (k, n− k).

This result was improved by Cheng [30] for bipartite graphs with arbitrarily bipartition.

Theorem 3.9. [30] Let n and m be two integers such that n ≥ 2 and 0 ≤ m ≤ bn
2
cdn

2
e. Let

k0 = max
{
k|m = kq + r , 0 ≤ r < k ,

⌈n
2

⌉
≤ k ≤ n− q − sgn(r)

}
. (8)

Then, M1(B
1(n,m, k0)) attains maximum value among all bipartite graphs with n vertices and m edges.

As a consequence, the following upper bound for M1 has been determined in [30].

Theorem 3.10. [30] Let n and m be two integers such that n ≥ 2 and 0 ≤ m ≤ bn
2
cdn

2
e and G is a

bipartite graph with n vertices and m edges. Then the maximum possible value of M1(G) is
⌊
m

k0

⌋
(k0 − 1)

(
k0 +

⌊
m

k0

⌋
k0 − 2m

)
+m2 +m

where k0 is given by (8).

Zhang and Zhou [151] slightly modified the previous result and proposed the following solution
to the problem of finding all bipartite graphs with a given number of vertices and edges whose M1 is
maximum.
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Theorem 3.11. [151]

(1) Let n and m be two integers such that n ≥ 2 and 0 ≤ m ≤ n− 1. Suppose that M1(B
∗) attains

the maximum value among all bipartite graphs with n vertices and m edges. Then, B∗ ∼= K1,m ∪ (n −
m− 1)K1.

(2) Let n and m be two integers such that n ≥ 2 and n ≤ m ≤ bn
2
cdn

2
e. Let k0 being an integer given

by (8). Suppose that M1(B
∗) attains the maximum value among all bipartite graphs with n vertices and

m edges. Then,

(a) B∗ ∼= B1(n,m, k0) or B∗ ∼= B1(n,m, n− k0) if m > (n− k0)(k0 − 1);

(b) B∗ ∼= B1(n,m, k0) or B∗ ∼= B1(n,m, n−k0) or B∗ ∼= B1(n,m, k0−1) if m = (n−k0)(k0−1);

(c) B∗ ∼= B1(n,m, k0) if m < (n− k0)(k0 − 1).

In the following, we turn our attention to the minimum of M1. The Cauchy–Schwarz inequality
yields a lower bound for M1 given by

M1 ≥
4m2

n
(9)

with equality if and only if the graph is regular. This bound was obtained several times in the literature
[42, 85, 147] and it is close to the sharp lowest bound for M1, determined in [32] and [62].

Theorem 3.12. [32, 62] Let G be a simple (n,m)-graph. Then

M1 ≥ 2m

(⌊
2m

n

⌋
+

⌈
2m

n

⌉)
− n

⌊
2m

n

⌋⌈
2m

n

⌉
(10)

and the equality holds if and only if the degree of any vertex is either b2m/nc or d2m/ne.

Cheng et al. [30] determined the minimum value of M1 of bipartite graphs with n vertices and m

edges.

Let n ≥ 2 be an even integer and t ≤ n/2 a nonnegative integer. By Bn,t we denote the bipartite
graph with vertices x1, x2, . . . , xn/2, y1, y2, . . . , yn/2 and edges xiyj with i < j ≤ i+t (where the addition
is taken modulo n/2) for i, j = 1, 2, . . . , n/2.

For two integers n and m such that n ≥ 2 and 0 ≤ m ≤ bn
2
cdn

2
e, let 2m = nt+ r, where 0 ≤ r < n.

We define, as in [30], a bipartite graph Bs(n,m) with n vertices and m edges as follows.

If n is even, then Bs(n,m) ∼= Bn,t ∪ {xiyj| 1 ≤ i ≤ r/2}.

If n is odd and nt ≤ 2m < nt+ t, let

Bs(n,m) ∼= Bs(n− 1,m− t+ 1) ∪
{
xiy0|(n+ r − t+ 1)/2 + 1 ≤ i ≤ (n+ r + t− 1)/2

}

where the addition is taken modulo (n− 1)/2.

If n is odd and nt + t ≤ 2m < nt + n− t− 1, or nt + n− t + 1 ≤ 2m < nt + n, let Bs(n,m) =

Bs(n− 1,m− t)∪{xiy0|(r− t)/2+1 ≤ i ≤ (r+ t)/2}, where the addition is taken modulo (n− 1)/2.

Theorem 3.13. [30] Let n and m be two integers such that n ≥ 2 and 0 ≤ m ≤ bn
2
cdn

2
e. Then

M1(B
s(n,m)) attains minimum value among all bipartite graphs with n vertices and m edges.
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As a consequence, the following lower bound for M1 was obtained.

Theorem 3.14. [30] If G is a bipartite (n,m)-graph, where n ≥ 2 and 0 ≤ m ≤ bn
2
cdn

2
e, then the

minimum possible value of M1(G) is




(4m− n− nt)t+ 2m if n is even; or n is odd

and nt+ t ≤ 2m ≤ nt+ n− t− 1

(4m+ 1− nt)t if n is odd and nt ≤ 2m < nt+ t

(4m− n+ 1− nt)(t+ 1) if n is odd and nt+ n− t+ 1 ≤ 2m ≤ nt+ n

where t = b2m/nc.

In [140] the relation between the M1 index of an (n,m)-graph and the first three coefficient of its
Laplacian polynomial was considered and as a consequence, a lower bound for M1 was obtained and the
corresponding extremal graphs were identified.

By [118], for an (n,m)-graph G, the first three coefficients of its Laplacian polynomial are given by

q0(G) = 1 , q1(G) = −2m , q2(G) = 2m2 −m− 1

2

n∑

i=1

d2i .

The authors of [140, 141] used these coefficients to define the following invariant of a graph G

M1(G) =
1

2
M1(G)− 2m

as well as the set Gi = {G |G is connected,M1(G) = i, i ≥ −1, is an integer}.
Before stating the result, we need several new definitions.
Lg,` denotes the lollipop graph obtained from Cg and P` by identifying a vertex of Cg with an end-

vertex of P`, where g ≥ 3, ` ≥ 2 and n = g + `− 1.
T`1,`2,...,`k denotes the starlike tree of order n with a vertex u of degree k satisfying T`1,`2,...,`k − u =

P`1 ∪ P`2 ∪ . . . ∪ P`k , where `k ≥ · · · ≥ `2 ≥ `1 ≥ 1 and n =
∑k

i=1 `i + 1. T`1,`2,`3 is also named a
T-shape tree.

The centipede graph P a1,a2,...,at
z1,z2,...,zt,`

is defined as a path of ` vertices with pendent paths of zi edges
joining at vertex ai for i = 1, 2, . . . , t, where {a1, a2, . . . , at} ⊆ {2, . . . , ` − 1}, zi ≥ 1 (1 ≤ i ≤ t) and
n = `+

∑t
i=1 zi.

The sun-like graph Ca1,a2,...,at
z1,z2,...,zt,g

is a cycle with girth g and with pendent paths of zi edges joining
at vertex ai for i = 1, 2, . . . , t, where {a1, a2, . . . , at} ⊆ {1, 2, . . . , g}, zi ≥ 1 (1 ≤ i ≤ t) and n =

g +
∑t

i=1 zi.
By D`,g1,g2 we denote the dumbbell graph obtained by joining two cycles Cg1 and Cg2 with a path of

length `, where g1, g2 ≥ 3, ` ≥ 1 and n = g1 + g2 + `− 1.
The mirror graph M g

`1,`2,`3
is obtained from Cg and T`1,`2,`3 by identifying a vertex of Cg with an

end-vertex of T`1,`2,`3 , where `i ≥ 1 (1 ≤ i ≤ 3), g ≥ 3 and n = g +
∑3

i=1 `i.
The θ-graph θi,j,k consists of two vertices joined by three disjoint paths of orders i, j and k, where

n = i+ j + k − 4.
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By Jg
`1,`2,...,`k

we denote a jellyfish graph obtained from Cg and T`1,`2,...,`k , by identifying a vertex of
Cg with the center of T`1,`2,...,`k , where g ≥ 3, `i ≥ 1 (1 ≤ i ≤ k).

The fish graph F g,l
`1,`2,`3

is obtained from P` and M g
`1,`2,`3

,by identifying an end-vertex of P` with a
vertex of degree 2 which lies in the cycle of M g

`1,`2,`3
, where g ≥ 3, `, `1, `2, `3 ≥ 1.

By Kg,a1,a2
`,z1,z2

we denote the key graph obtained from Cg and P a1,a2
z1,z2,`

by overlapping a vertex of Cg with
an end-vertex of P a1,a2

z1,z2,`
, where g ≥ 3 and z1, z2 ≥ 1.

The double–starlike tree Sl
`1,`2,...,`k;h1,h2,...,hs

is obtained by joining the centers of the graphs T`1,`2,...,`k

and Th1,h2,...,hs with a path P`, where `i, hj ≥ 1.
These graphs are depicted in Fig. 1.

Fig. 1. The graphs occurring in Theorem 3.15.
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Theorem 3.15. [140, 141] Let G be a connected (n, m)-graph. Then

(i) M1(G) ≥ 4m− 2, and the equality holds if and only if G ∈ G−1 = {Pn|n ≥ 2}.

(ii) If G /∈ G−1, then M1(G) ≥ 4m with equality if and only if

G ∈ G0 =
{
P1, Cn |n ≥ 3

}
∪
{
T`1,`2,`3 |n ≥ 4

}
.

(iii) If G /∈ G−1 ∪ G0, then M1(G) ≥ 4m+ 2 with equality if and only if

G ∈ G1 =
{
Lg,` |n ≥ 4

}
∪
{
P a1,a2
z1,z2,`

|n ≥ 6
}
.

(iv) If G /∈ G−1 ∪ G0 ∪ G1, then M1(G) ≥ 4m+ 4 with equality if and only if

G ∈ G2 =
{
Ca1,a2

z1,z2,g
, T`1,`2,`3,`4 |n ≥ 5

}
∪
{
M g

`1,`2,`3
|n ≥ 6

}
∪
{
P a1,a2,a3
z1,z2,z3,`

|n ≥ 8
}
.

(v) If G /∈ G−1 ∪ G0 ∪ G1 ∪ G2, then M1(G) ≥ 4m+ 6 with equality if and only if

G ∈ G3 =
{
Ca1,a2,a3

z1,z2,z3,g
, P a1,a2,a3,a4

z1,z2,z3,z4,`
, Fn, D`,g1,g2 , Jg,`1,`2 , θi,j,k, F

g,`
`1,`2,`3

, S`,`1,`2
h1,h2,h3

, Kg,a1,a2
`,z1,z2

}
.

The above theorem includes or extends some previously known results [45, 66, 93, 142].
For a graph G and e = uv ∈ E(G), the degree of the edge e is defined as dG(e) = d(u) + d(v)− 2.
The authors of [140] suggested the following construction that can characterize all connected graphs

in Gk. Using this construction they generalized the result of Theorem 3.15.
Construction A. [140] Suppose that G−1,G0, . . . ,Gk−1 have been defined. For each graph G ∈ Gt

(1 ≤ t ≤ k − 1), it is searched for all possible edges e such that e /∈ E(G) and dG+e(e) = k − t + 1 in
order to construct the graph G+e (some vertices are added if necessary). Collect these new graphs G+e

in G′
k. By adding all possible edges of degree 1 to the graphs in G′

k, we obtain all the graphs belonging
to Gk.

The following theorem generalizes Theorem 3.15.

Theorem 3.16. [140] Let G be a connected (n,m)-graph.

(i) M1(G) ≥ 4m− 2 with equality if and only if G ∈ G−1.

(ii) If G /∈ G−1∪G0∪· · ·∪Gk−1 (k ≥ 0), then M1(G) ≥ 4m+2k with equality if and only if G ∈ Gk,

and Gk is defined by Construction A.

For given n and m, the graphs with largest M1-values are characterized in [45, 144]. Let B(i)
n be a

graph of order n with n+ i edges and maximum degree n− 1, second–maximum degree 2+ i, i = 1, 2.

Theorem 3.17. [45, 144] Let G be a connected graph of order n with m edges (n − 1 ≤ m ≤ n + 1).

If M1 is maximum, then:

(i) G ∼= K1,n−1 for m = n− 1;

(ii) G ∼= K1,n−1 + e for m = n where e = uv with u, v as two pendent vertices in K1,n−1;

(iii) G ∼= B
(1)
n for m = n+ 1.
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The following upper bound on M1 is obtained in [144]:

Theorem 3.18. [144] Let G be a connected graph of order n with m (= n+ 2) edges. Then

M1(G) ≤ n2 − n+ 24

with equality holding if and only if G ∼= B
(2)
n or G ∼= (Kn−4 ∨ 3K1) ∪K1.

For any integer m satisfying n+3 ≤ m ≤ 2n− 4, we denote by Nn−1, m−n+2
n, m a graph of order n and

with m edges in which the maximum degree is n− 1 and the second–maximum degree is m− n+ 2.

Theorem 3.19. [144] Let G be a connected graph of order n with m edges, n+3 ≤ m ≤ 2n− 4. Then

M1(G) ≤ n(n− 1) + (m− n+ 1)(m− n+ 6)

with equality holding if and only if G ∼= Nn−1,m−n+2
n,m .

4. On graphs with given parameters whose M1-value is extremal

In this section we give a survey of upper and lower bounds for M1 of graphs with some fixed parameters.

Knowing the value of the maximum or minimum degree, the bound (5) can be sharpened.

Theorem 4.1. [32] Let G be a connected graph with n vertices, m edges and minimum degree δ. Then

n∑

1=1

d2i ≤ 2mn− n(n− 1)δ + 2m(δ − 1) (11)

and the equality holds if and only if G is a star or a regular graph.

Theorem 4.2. [32] Let G be a connected graph with n vertices, m edges and maximum degree ∆. Then

M1 ≤ m

(
2m

n− 1
+ n− 2

)
−∆

(
4m

n− 1
− 2m1 −

n+ 1

n− 1
∆ + n− 1

)
(12)

where m1 is the average degree of the vertices adjacent to the highest degree vertex. Moreover, equality

in (12) holds if and only if G is a star or a complete graph or a graph consisting of isolated vertices.

Das [32] suggested that in the case of trees, the upper bound (12) is always better than de Caen’s
bound (5).

Theorem 4.3. [154] Let G be an (n,m)-graph with minimum degree δ. Then

M1(G) ≤ n(2m− δn) +
n

2

[
δ2 + 1 + (δ − 1)

√
(δ + 1)2 + 4(2m− δn)

]

and equality holds if and only if G is a regular graph or K1,n−1.
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Denote by K∗
2,n−2 a connected graph of order n obtained from the complete bipartite graph K2,n−2

with two vertices of degree n− 2 joined by a new edge. A kite Kin,ω is the graph obtained from a clique
Kω and a path Pn−ω by adding an edge between a vertex from the clique and an endpoint from the path.

Recently, Das et al. [41] determined an upper bound for M1 in terms of n, m, and ∆.

Theorem 4.4. [41] Let G be an (n,m)-graph with maximum degree ∆. Then

M1(G) ≤ (n+ 1)m−∆(n−∆) +
2(m−∆)2

n− 2

with equality holding if and only if G ∼= K∗
2,n−2 or G ∼= Kn or G ∼= Kin,n−1.

Additional extensions of de Caen’s upper bound (5) are given in the following three theorems.

Theorem 4.5. [33] Let G be a graph with n vertices, m edges, minimum degree δ, and maximum degree

∆. Then

M1 ≤ m

[
2m

n− 1
+

n− 2

n− 1
∆ + (∆− δ)

(
1− ∆

n− 1

)]
(13)

with equality if and only if G is a star or a regular graph or a complete graph K∆+1 with n − ∆ − 1

isolated vertices.

Note that by (13), it holds

M1 ≤ m

[
2m

n− 1
+ (n− 2)−

[
n− 2− (∆− δ)

](
1− ∆

n− 1

)]

and since 1−∆/(n− 1) ≥ 0 and n− 2− (∆− δ) ≥ 0 for connected or disconnected graphs, the upper
bound (13) is always better than de Caen’s bound (5), as proven in [33].

For 1 ≤ α ≤ n − 1, the complete split graph CS(n, α) is the graph on n vertices consisting of a
clique on n − α vertices and a stable set on the remaining α vertices in which each vertex of the clique
is adjacent to each vertex of the stable set.

Theorem 4.6. [31, 33] Let G be a graph with n vertices, m edges, minimum degree δ, and maximum

degree ∆. Then

M1 ≤
2m [2m+ (n− 1)(∆− δ)]

n+∆− δ
(14)

with equality if and only if G is a star or a regular graph or a complete graph K∆+1 with n − ∆ − 1

isolated vertices.

If G is a connected graph, then the equality in (14) holds if and only if G is a regular graph or

G ∼= CS(n, α), for an integer α.

The upper bound given by (14) is better than the bound (5), since the right–hand side of the inequality
(14) is a monotonically increasing function of ∆− δ and ∆− δ ≤ n− 2.

In [33] Das also obtained the following upper bound on M1.
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Theorem 4.7. [33] Let G be a graph with n vertices and m edges, minimum vertex degree δ and

maximum vertex degree ∆. Then

M1 ≤ 2m(δ +∆)− nδ∆ (15)

with equality if and only if G is a bidegreed graph, i.e., it has only two type of degrees, δ and ∆.

In [154], the above upper bound was improved by proving the following.

Theorem 4.8. [154] Let G be a graph with n vertices and m edges, minimum vertex degree δ (δ ≥ 1),

maximum vertex degree ∆ and ∆ > δ. Then

M1 ≤ 2m(δ +∆)− nδ∆+ (δ − k)(∆− k) (16)

where k is an integer defined via

2m− nδ ≡ k − δ (mod (∆− δ)) , δ ≤ k ≤ ∆− 1

i.e.,

k = 2m− δ(n− 1)− (∆− δ)

⌊
2m− nδ

∆− δ

⌋
.

Equality in (16) is attained if and only if at most one vertex of G has degree different from δ and ∆.

Recall that a chemical graph is a graph with ∆ ≤ 4. From the previous theorem, the following
corollary is immediately deduced.

Corollary 4.1. [154] Let G be a chemical graph with n ≥ 2 and m edges. Then

M1(G) ≤





10m− 4n, if 2m− n ≡ 0 (mod 3)

10m− 4n− 2 otherwise

with equality if and only if either

(i) every vertex of G is of degree 1 or 4 (in which case it must be 2m− n ≡ 0 (mod 3), or

(ii) one vertex of G has degree 2 or 3, and all other vertices are of degree 1 or 4.

In the paper [84], the following inequality, stronger than (15), has been obtained.

Theorem 4.9. [84] Let G be a simple non-regular graph with n vertices and m edges, with a vertices

of maximal degree ∆ and b vertices of minimal degree δ. Then

M1(G) ≤ 2m(∆ + δ)− n∆δ − (n− a− b)(∆− δ − 1) (17)

with equality if and only if the vertex degrees are equal to δ, δ + 1, ∆− 1, or ∆.

Some additional upper bounds for M1 were presented in [50, 84, 103, 112, 113].
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Theorem 4.10. [103] Let G be a connected (n,m)-graph. Then

M1 ≤ max

{
m

(
∆+ δ − 1 +

2m− δ(n− 1)

∆

)
,m

(
δ + 1 +

2m− δ(n− 1)

2

)}
(18)

and the equality is attained, for example, by a star or a regular graph of order n ≥ 3.

It was proven in [103] that for n ≥ 3, the bound (18) is better than (6).

Theorem 4.11. [50, 84, 103] Let G be connected (n,m)-graph. Then

M1(G) ≤ 2m2

n
+

(
∆

δ
+

δ

∆

)
m2

n
(19)

with equality if and only if G is a regular graph or G is a bidegreed graph such that ∆ + δ divides δn

and there are exactly p = 2n/(∆ + δ) vertices of degree ∆ and q = ∆n/(∆ + δ) vertices of degree δ.

In fact, the inequality in the previous relation was independently proven in [50, 84, 103], whereas
the equality case was determined first in [103] and then corrected in [84]. As a simple corollary of the
previous theorem, the following result was obtained.

Corollary 4.2. [84, 103] Let G be a connected graph with n vertices and m edges. If δ = 1, then

M1(G) ≤ nm2

n− 1

with equality if and only if G ∼= K1,n−1. If δ ≥ 2, then

M1(G) ≤ (n+ 1)2m2

2n(n− 1)

with equality if and only if G ∼= K3.

The upper bound (19) was improved in [112] in the following way.

Theorem 4.12. [112] Let G be a connected (n,m)-graph, n ≥ 2. Futher, let S be a subset of In =

{1, 2, . . . , n} that minimizes the expression |∑i∈S di −m|. Then

M1(G) ≤ 4m2

n


1 +

(√
∆

δ
−
√

δ

∆

)2

β(S)


 (20)

where

β(S) =
1

2m

∑

i∈S
di

(
1− 1

2m

∑

i∈S
di

)

and with equality as determined in Theorem 4.11.

As noted in [112], for each set S ⊂ In it holds β(S) ≤ 1
4
, implying that the inequality (20) is stronger

than (19). Besides, by Theorem 4.12, the bounds from Corollary 4.2 were also improved:
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Corollary 4.3. [112] Let G be a connected graph with n vertices and m edges, n ≥ 2. If δ = 1, then

M1(G) ≤ 4m2

n

[
1 +

(n− 2)2

(n− 1)
β(S)

]

with equality if and only if G ∼= K1,n−1. If δ ≥ 2, then

M1(G) ≤ 4m2

n

[
1 +

(n− 3)2

2(n− 1)
β(S)

]

with equality if and only if G ∼= K3.

The following upper bound for M1 was obtained in [50].

Theorem 4.13. [50] Let G be a simple (n,m)-graph. Then

M1(G) ≤ 4m2

n
+

n

4
(∆− δ)2 . (21)

This bound is improved as follows.

Theorem 4.14. [78, 112, 113] Let G be a connected (n,m)-graph. Then

M1(G) ≤ 1

n

[
α(n)(∆− δ)2 + 4m2

]
(22)

where the integer function α(n) is defined as

α(n) = n
⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
.

The equality holds if and only if G is a regular graph.

The above inequality was first obtained in the paper [78], but the function α(n) was erroneously
defined via dxe. The correct proof was given in [112, 113] and the equality case was characterized only
in [112]. It can be easily seen [112] that the inequality (22) is stronger than the inequality (21) for each
odd n, n ≥ 3.

An upper bound on the first Zagreb index M1(G) in terms of n, m, ∆, δ, and the second–maximum
vertex degree ∆2 was obtained in [39].

Theorem 4.15. [39] Let G be a graph with n vertices (n > 1), m edges, maximum degree ∆, second–

maximum degree ∆2 and minimum degree δ. Then

M1(G) ≤ (2m−∆)2

n− 1
+ ∆2 +

n− 1

4
(∆2 − δ)2 . (23)

Equality holds in (23) if and only if G is isomorphic to a graph H1 such that d2(H1) = d3(H1) = · · · =
dn(H1) = δ or G is isomorphic to a graph H2 such that d2(H2) = d3(H2) = · · · = dp+1(H2) = ∆2 and

dp+2(H2) = dp+3(H2) = · · · = d2p+1(H2) = δ, n = 2p+ 1.

The upper bound (23) was improved in the same paper.
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Theorem 4.16. [39] Let G be the same graph as in Theorem 4.15. Then

M1(G) ≤ ∆2 + (∆2 + δ)(2m−∆)− (n− 1)∆2 δ . (24)

Equality holds in (24) if and only if G is isomorphic to a graph H such that d2(H) = d3(H) = · · · =
dp(H) = ∆2 and dp+1(H) = dp+2(H) = · · · = dn(H) = δ, 2 ≤ p ≤ n.

As it was outlined in [39], the bound (24) is always better than the bound (15). By [39], it holds

2m(∆ + δ)− n∆δ ≥ ∆2 + (∆2 + δ)(2m−∆)− (n− 1)∆2 δ

⇔ 2m(∆−∆2) + ∆(∆2 + δ)−∆2 − nδ(∆−∆2)−∆2 δ ≥ 0

⇔ (2m−∆− nδ + δ)(∆−∆2) ≥ 0 ⇔
n∑

i=2

(di − δ)(∆−∆2) ≥ 0

which is obviously always obeyed.
Similarly, it was proven in [39] that the bound (24) is always better than the bound (23).
Some further estimations of the first Zagreb index were proposed in [40]. For a vertex vi of the graph

G we denote by mi the average degree of the vertices adjacent to vi. Denote by µ and ν the maximum
and minimum of mi. Then it holds:

Theorem 4.17. [40] Let G be a connected graph of order n with m edges. Then

2m[2m− (∆− ν)(n− 1)]

n+ ν −∆
≤ M1(G) ≤ 2m[2m+ (µ− δ)(n− 1)]

n+ µ− δ
. (25)

Equality on the left–hand side of (25) holds if and only if G is regular. The right–hand side equality

holds in (25) if and only G is either regular graph or G ∼= CS(n, α).

As noted in [40], Theorem 4.17 generalizes the previously obtained upper bound (14).
The irregularity index t(G) of a graph G is defined as the number of distinct terms in the degree

sequence of G. Before we state the next result, we need a few more definitions from [35].
Let Υ2 be the class of graphs H1 = (V,E) such that H1 is a graph of order n, irregularity index t,

maximum degree ∆ and
∆ = t , di = 1 , i = t+ 1, t+ 2, . . . , n .

Let Υ3 be the class of graphs H2 = (V,E) such that H2 is a graph of order n, irregularity index t,
maximum degree ∆ and

di =





∆− i+ 1 ; i = 1, 2, . . . , t

∆ ; i = t+ 1, t+ 2, . . . , n .

Theorem 4.18. [35] Let G be a graph of order n with irregularity index t and maximum degree ∆. Then

M1(G) ≥ 1

6
t(t+ 1)(2t+ 1) + n− t
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with equality if and only if G ∈ Υ2, and

M1(G) ≤ t(∆ + 1)2 +
1

6
t(t+ 1)(2t+ 1)− (∆ + 1)t(t+ 1) + (n− t)∆2

with equality if and only if G ∈ Υ3.

In the papers [154, 156, 158] Zhou et al. determined upper bounds for M1 of Kr+1-free graphs with
n vertices, where r ≥ 2.

Theorem 4.19. [154] Let G be a triangle–free (n,m)-graph. Then

M1(G) ≤ mn (26)

and equality holds if and only if G is a complete bipartite graph.

By Turán’s theorem, for an (n,m)-triangle–free graph it holds m ≤ bn2

4
c with equality if and only if

G ∼= Kbn
2
cdn

2
e. Then, by the previous theorem, for an (n,m)-triangle–free graph it holds [154]

M1(G) ≤ n

⌊
n2

4

⌋

with equality if and only if G ∼= Kbn
2
cdn

2
e.

Before we state the next results, we need few more definitions from [158]. By W̃n we denote a graph,
obtained by slightly redefining a class of graphs known as windmills. For n odd, W̃n is a graph obtained
by taking n−1

2
triangles all sharing one common vertex. For n even, W̃n is a graph obtained from W̃n−1

by attaching a pendent vertex to a central vertex of W̃n−1. Also, let even(n) = 1 if n is even, and 0
otherwise.

Theorem 4.20. [158] Let G be a quadrangle–free graph with n vertices and m > 0 edges. Then,

M1(G) ≤ n(n− 1) + 2m− 2 even(n)

with equality if and only if G ∼= W̃n.

The Moore graph is an r-regular graph with diameter k whose order is equal to

1 + r

k−1∑

i=0

(r − 1)i .

Hoffman and Singleton [75] proved that every r-regular Moore graph with diameter 2 must have
r ∈ {2, 3, 7, 57}.

Theorem 4.21. [158] Let G be a triangle– and quadrangle–free graph with n > 1 vertices. Then,

M1(G) ≤ n(n− 1)

with equality if and only if G is a star K1,n−1 or a Moore graph of diameter 2.
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Zhou [156] proved a general result concerning Kr+1-free graphs with n vertices, where r ≥ 2. If
r ≥ n, then obviously M1(G) ≤ M1(Kn) with equality if and only if G ∼= Kn. Thus, in the following
theorem it is supposed that 2 ≤ r ≤ n− 1.

Theorem 4.22. [156] Let G be a Kr+1-free graph with n vertices and m > 0 edges, where 2 ≤ r ≤ n−1.

Then, M1(G) ≤ (2r − 2)mn/r and the equality holds if and only if G is complete bipartite graph for

r = 2 and a regular complete r-partite graph for r ≥ 3.

Besides, as a consequence, in the same paper [156] the following upper bound was obtained.

Theorem 4.23. [156] Let G be a K1,1,k+1- and K2,`+1-free graph with n vertices and m > 0 edges,

where 0 ≤ k ≤ `. Then

M1(G) ≤ 2(k + 1− `)m+ `n(n− 1)

with equality if and only if each pair of adjacent vertices in G has exactly k common neighbors and each

pair of non-adjacent vertices in G has exactly ` common neighbors.

In [100], upper bounds for M1 were obtained in terms of the number of vertices, number of edges,
and diameter (or girth). Recall that the girth g = g(G) is the size of the smallest cycle in G.

Theorem 4.24. [100] Let G be an (n,m)-graph with diameter D. Then

M1(G) = n(n− 1)2 if D = 1

and

M1(G) ≤ m2 −m(D − 3) + (D − 2) if D > 1 . (27)

If D = 2, then equality in (27) holds if and only if either G ∼= K1,n−1 or G ∼= K3. If D ≥ 3, then

equality in (27) holds if and only if G ∼= PD+1.

Theorem 4.25. [100] Let G be a connected (n,m)-graph with girth g ≥ 4. Then M1(G) ≤ m2 with

equality if and only if G ∼= C4.

In the paper [89], sharp upper bounds for M1 and M2 are given among n-vertex bipartite graphs
with a given diameter D. Denote by B(n,D) the set of bipartite graphs on n vertices with diameter
D. When D = 1, then the bipartite graph is just K2. So, it is assumed that D ≥ 2. If G ∈ B(n,D),
then there exists a partition V0, V1, . . . , VD of V (G) such that |V0| = 1 and d(u, v) = i for each vertex
v ∈ Vi and u ∈ V0, i = 1, 2, . . . , D. Let mi = |Vi|. Let G[a, s, t, b] be a graph with s = ma = |Va| > 1,
t = ma+1 = |Va+1| > 1, |Vj| = 1 for j ∈ {0, 1, . . . , D}\{a, a+1}, a+b = D−1, s+t = n−D+1, and
two consecutive partition sets inducing a complete bipartite subgraph. Also, without loss of generality,
it is assumed that a ≤ b.

Theorem 4.26. [89] Let G ∈ B(n,D) with the maximal M1-value or M2-value, then

G ∼= G

{
a ,

⌊
n−D + 1

2

⌋
,

⌈
n−D + 1

2

⌉
, b

}
.
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Furthermore, the parameters a and b satisfy the following conditions with respect to the diameter of

G.

(i) if D = 2, then a = 0, b = 1;

(ii) if D = 3, then a = 1, b = 1;

(iii) if D = 4, then a = 1, b = 2;

(iv) if D = 5, then a = 2, b = 2;

(v) if D = 6, then a = 2, b = 3;

(vi) if D ≥ 7, then a ≥ 3, b ≥ 3.

As a consequence, the bipartite graphs with largest, second–largest and smallest M1-values (resp.
M2-values) have been characterized.

Theorem 4.27. [89] Among all bipartite graphs of order n ≥ 2, the graph Kbn
2
c,dn

2
e has the largest M1–

and M2-values, whereas the path Pn has the smallest M1– M2-values.

Theorem 4.28. [89] Among all bipartite graphs with order n > 2, the graph Kbn−2
2

c,dn+2
2

e has the

second–largest M1 values and M2-values for even n, and the graph Kbn
2
c,dn

2
e− e has the second–largest

M1-values and M2-values for odd n.

For triangle– and quadrangle–free graphs, an upper bound for M1 was established in terms of n and
radius r.

Theorem 4.29. [145] Let G be a triangle– and quadrangle–free connected graph with n vertices and

radius r. Then, M1(G) ≤ n(n + 1 − r) and the equality holds if and only if G is a Moore graph of

diameter two or G is the 6-vertex cycle C6.

Morgan and Mukwembi [114] derived an upper bound for M1 in terms of n, m, and the number of
triangles t.

Theorem 4.30. [114] Let G be an (n,m)-graph with t triangles. Then,

M1(G) ≤ mn+ 3t . (28)

As noted in [114], the equality in (28) is attained by the complete graph Kn and the complete bipartite
graph Kn

2
,n
2
. This bound is the generalization of the bound (26). Besides, for graphs with limited number

of triangles, such as triangle–free graphs, the bound (28) is better than the de Caen’s bound (5). Also,
by [114], the bound (28) is better than Nikiforov’ s bound (Theorem 3.7) for graphs with many edges.

By Theorem 4.30, the following corollary was obtained in [114].

Corollary 4.4. [114] Let G be an (n,m)-graph with maximum degree ∆. Then,

M1(G) ≤ m(n+∆− 1) .
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A vertex of degree 1 (pendent vertex) is sometimes called a leaf vertex. The leaf number L(G) of G
is defined [114] as the maximum number of leaf vertices contained in a spanning tree of G. This graph
invariant has applications in the optimization of centralized terminal networks [54].

In addition, the following upper bound for M1 in terms of n, m, the number of triangles, and the leaf
number has been obtained in [114].

Theorem 4.31. [114] Let G be an (n,m)-graph with t triangles and leaf number L. Then,

M1(G) ≤ m(L+ 2) + 3t .

Recall that a matching of a graph is a set of mutually independent edges in a graph, i.e., set of edges
with no common vertices. The matching number β(G) of the graph G is the number of edges in a
maximum matching. Obviously, β(G) = 0 if and only if G is an empty graph. For a connected graph G

with n > 2 vertices, β(G) = 1 if and only if G ∼= K1,n−1 or G ∼= K3. A matching M is said to be an
m-matching if |M | = β(G) = m. If β(G) = n/2, then the graph has a perfect matching.

Theorem 4.32. [51] Let G be a connected graph with n ≥ 4 vertices and matching number β, such that

2 ≤ β ≤ bn/2c. Let

b =
1

18

(
n+ 3 +

√
37n2 − 30n+ 9

)
.

Then the following holds:

(1) If β = bn/2c, then

M1(G) ≤ n(n− 1)2

with equality if and only if G ∼= Kn.

(2) If b < β ≤ bn/2c − 1, then

M1(G) ≤ n2 − n+ 8β3 − 12β2 + 4β

with equality if and only if G ∼= K1 ∨ (K2β−1 ∪Kn−2β).

(3) If β = b, then

M1(G) ≤ bn2 + b2n− 2bn− b3 + b = n2 − n+ 8b3 − 12b2 + 4b

with equality if and only if G ∼= Kβ ∨Kn−β or G ∼= K1 ∨ (K2β−1 ∪Kn−2β).

(4) if 2 ≤ β < b, then

M1(G) ≤ βn2 + β2n− 2βn− β3 + β

with equality if and only if G ∼= Kβ ∨Kn−β .

A cut edge in a connected graph G is an edge whose deletion breaks the graph into two components.
Denote by Gk

n the set of connected graphs with n vertices and k cut edges. The graph Kk
n is a graph

obtained by joining k independent vertices to one vertex of Kn−k and the graph Ck
n is a graph obtained

by identifying an end vertex of Pk+1 with a vertex of Cn−k (this graph was mentioned before as a lollipop
graph Ln−k,k+1).
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Theorem 4.33. [52] Let G ∈ Gk
n. Then

4n+ 2 ≤ M1(G) ≤ (n− k − 1)3 + (n− 1)2 + k

with left–hand–side equality if and only if G ∼= Ck
n and with right–hand–side equality if and only if

G ∼= Kk
n.

For any set W of vertices (edges) in a graph G, if G is connected and G − W is disconnected, we
say that W is a |W |-vertex (edge- ) cut of G.

For k ≥ 1, we say that a graph G is k-connected if either G is the complete graph Kk+1, or else
it has at least k + 2 vertices and contains no (k − 1)-vertex cut. Similarly, for k ≥ 1, a graph G is
k-edge–connected if it has at least two vertices and does not contain an (k − 1)-edge cut. The maximal
value of k for which a connected graph G is k-connected is the connectivity of G, denoted by κ(G). If
G is disconnected, we define κ(G) = 0. The edge–connectivity κ′(G) is defined analogously.

Denote by Vk
n the set of graphs of order n with κ(G) ≤ k ≤ n − 1, and by Ek

n the set of graphs of
order n with κ′(G) ≤ k ≤ n− 1. Also, let Gk

n be a graph obtained by joining k edges from k vertices of
Kn−1 to an isolated vertex. Obviously, G ∈ Vk

n ⊆ Ek
n.

Li and Zhou in [92] investigated the Zagreb indices of G ∈ Vk
n (resp. Ek

n) and gave sharp upper and
lower bounds for M1(G) and M2(G), respectively. Besides, Hua in [81] independently obtained sharp
upper bound for the first Zagreb index of graphs from G ∈ Vk

n (resp. Ek
n).

Theorem 4.34. [81, 92] Among all graphs G in Vk
n (Ek

n), k > 0,

4n− 6 ≤ M1(G) ≤ k(n− 1)2 + k2 + (n− k − 1)(n− 2)2

with left–hand side equality if and only if G ∼= Pn and right–hand side equality if and only if G ∼= Gk
n.

A subset S ⊆ V (G) of mutually non-adjacent vertices in a graph G is said to be an (vertex-) inde-

pendent set in G, and the independence number α(G) is the maximum cardinality of an independent set
in G. Besides, the so-called vertex-independence number and edge-independence number of a graph G

can be defined as follows. Let S be an (vertex-) independent set of G. If for any vertex x ∈ V (G) \ S it
holds N(x) ∩ S 6= ∅, then S is called maximal vertex–independent set of G. Let

i(G) = min{|S| : S is a maximal vertex–independent set of G} .

Then i(G) is said to be the vertex–independence number of G.

A subset T of E(G) is said to be an edge–independent set of G if T contains exactly one edge or any
two edges in T (if such do exist) sharing no common vertices. Let T be an edge–independent set of G.
For any e ∈ E(G) \ T , if {e}∪ T is no longer an edge–independent set of G, then T is called a maximal
edge–independent set of G.

Let

m(G) = min{|T | : T is a maximal edge–independent set of G} .
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Then m(G) is said to be the edge–independence number of G.
For a connected graph G it holds, as noted in [81], that 1 ≤ i(G) ≤ bn

2
c and 1 ≤ m(G) ≤ bn

2
c. For

2 ≤ k ≤ (n− 1)/2, we define, as in [81], a graph Gn1,n2,...,nk
as follows.

For 2 ≤ ni ≤ n − 2k + 2, i = 1, 2, . . . , k, let Kn1 , Kn2 , . . . , Knk
be complete graphs of orders

n1, n2, . . . , nk, respectively, with V (Kni
) = {vi1, . . . , vini

}. Let

Gn1,n2,...,nk
= (Kn1 − {v11}) ∨ (Kn2 − {v21}) ∨ · · · ∨ (Knk

− {vk1}) .

For k = 2, let G̃n1,n2 be the graph obtained from Gn1,n2 by adding to it the edge v11v21.
Sharp upper bounds for the first Zagreb index of graphs with given vertex- (edge-) independence

number are obtained in [81].

Theorem 4.35. [81] Let G be a connected graph with n vertices and i(G) = k for 1 ≤ k ≤ bn/2c.

Then the following holds:

(i) If k = 1, then M1(G) ≤ n(n− 1)2 with equality if and only if G ∼= Kn.

(ii) If k = 2, then M1(G) ≤ (n− 1)(n− 2)2 + 4 with equality if and only if G ∼= G̃2,n−2.

(iii) If 3 ≤ k ≤ (n− 1)/2, then M1(G) ≤ (n− k)3 +(n− 2k+1)2 + k− 1 with equality if and only

if G ∼= G2,...,2,n−2k+2.

(iv) If k = n/2, then M1(G) ≤ n3

4
with equality if and only if G ∼= Kk,k.

Theorem 4.36. [81] Let G be a connected graph with n vertices and m(G) = k. Then

M1(G) ≤ 2k(n− 1)2 + 4k2(n− 2k)

with equality if and only if G ∼= K2k ∨ (n− 2k)K1.

An outerplanar graph is a planar graph that has a planar drawing with all vertices on the same face.
Thus, a graph is outerplanar if it can be embedded in the plane so that all its vertices lie on the outer face
boundary. An edge of an outerplanar graph is said to be a chord if it joins two vertices of the outer face
boundary of G, but is not itself an edge of the outer face boundary. A maximal outerplanar graph is an
outerplanar graph such that all its faces, except eventually the outer face, are composed by three edges.
Such a graph on n (n ≥ 3) vertices has a plane representation as an n-gon triangulated by n− 3 chords.

Denote by Pn,2 the graph obtained from Pn by adding new edges joining all pairs of vertices at
distance 2 apart. Fig. 2 shows Pn,2 for the even and odd values of n.

Fig. 2. The graph Pn,2 for n = 2k and 2k − 1 .
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In thw paper [80], Hou et al. determined sharp upper bounds for M1 among all (maximal) outerplanar
graphs on n vertices, as well as among all 2k-vertex conjugated (maximal) outerplanar graphs (i.e.,
outerplanar graphs on 2k vertices with perfect matchings).

Theorem 4.37. [80] Let G be a maximal outerplanar graph on n (n ≥ 4) vertices.

(i) If n = 6, then M1(G) ≤ 60, with equality if and only if G ∼= K1 ∨ P5 or G ∼= H , where H is the

graph depicted in Fig. 3.

(ii) If n 6= 6, then M1(G) ≤ n2 + 7n− 18 with equality if and only if G ∼= K1 ∨ Pn−1.

H

Fig. 3. The graph occurring in Theorem 4.37.

Theorem 4.38. [80] Let G be conjugated maximal outerplanar graph on 2k vertices. Then

32k − 38 ≤ M1(G) ≤ 4k2 + 14k − 18 . (29)

The left equality holds if and only if G ∼= P2k,2. If k 6= 3, then the right equality holds in (29) if and only

if G ∼= K1 ∨ P2k−1. If k = 3, then the right equality holds in (29) if and only if G ∼= K1 ∨ P5 or G ∼= H

(where H is depicted in Fig. 3).

Since by the definition of Zagreb indices it holds Mi(G − e) < Mi(G), for i = 1, 2 and e ∈ E(G),
the extremal outerplanar graphs (with perfect matchings) whose Mi-values attain maximum must be
maximal outer planar graphs. Thus, the statements of Theorems 4.37 and 4.38 still remain true for
outerplanar graphs and conjugated outerplanar graphs, respectively. Similarly, the extremal outerplanar
graphs (with perfect matchings) whose Mi-values attain minimum must be n-vertex trees, in fact n-
vertex paths.

A graph is called a series–parallel if it does not contain a subdivision of K4 [48]. For example,
outerplanar graphs are series–parallel.

Theorem 4.39. [155] Let G be a series–parallel graph with n ≥ 2 vertices and m edges. Suppose that

G has no isolated vertices. Then

M1(G) ≤ n(m− 1) + 2m

with equality for n ≥ 3 if and only if G is isomorphic to K1,1,n−2.
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The clique number of G, denoted by ω(G), is the number of vertices in a largest clique of G. Let
Wn,k be the set of connected n-vertex graphs with clique number k. The graphs with extremal (maximal
and minimal) Zagreb indices belonging to Wn,k are characterized in [143]. Recall that the Turán graph
Tn(k) is a complete k-partite graphs whose partition sets differ in size by at most one. Obviously, for
k = 1, the set Wn,k contains a single connected graph K1. When k = n, the only graph in Wn,k is Kn.
So, it may be assumed that 1 < k < n and let n = kq + r, where 0 ≤ r < k and q = bn

k
c.

Theorem 4.40. [143] Let G ∈ Wn,k. Then

M1(G) ≤ (k − r)
⌊n
k

⌋(
n−

⌊n
k

⌋)2
+ r

⌈n
k

⌉(
n−

⌈n
k

⌉)2

with equality if and only if G ∼= Tn(k).

In the following, we give a survey of results on the minimum of M1 among the graphs with some
given parameters.

Let Γ be the class of graphs H = (V,E), where H is a graph of minimum vertex degree δ and
maximum vertex degree ∆ (∆ 6= δ) such that

d2 = d3 = · · · = dn−1 = dn = δ , di = dH(vi) , i = 2, 3, . . . , n .

Let Γ2 and Γ3 be the class of graphs such that d2 = d3 = · · · = dn−1 = ∆2, dn = δ, with d1 = ∆ > di,
i = 2, 3, . . . , n and di = δ with d1 ≥ d2 > di, i = 3, 4, . . . , n, respectively. Das [32, 41] obtained the
following lower bounds for M1 which are better than (9).

Theorem 4.41. [32] Let G be an (n,m)-graph with maximum degree ∆ and minimum degree δ. Then

M1 ≥ ∆2 + δ2 +
(2m−∆− δ)2

n− 2

with equality if and only if G is regular or G ∈ Γ or G ∈ Γ2.

Theorem 4.42. [41] Let G be an (n,m)-graph with maximum degree ∆, second–maximum degree ∆2

and minimum degree δ. Then

M1 ≥ ∆2 +
(2m−∆)2

n− 1
+

2(n− 2)

(n− 1)2
(∆2 − δ)2 .

The equality holds if and only if G is regular or G ∈ Γ.

Recently, Milovanović and Milovanović [112] proposed a new lower bound for M1 better than (9).
The conclusion related to the equality case was wrong in [112] and it was eventually corrected in [109],
and the equality case additionally corrected in [36].

Theorem 4.43. [36,109,112] Let G be an (n,m)-graph, n ≥ 2, with maximum degree ∆ and minimum

degree δ. Then

M1 ≥
4m2

n
+

1

2
(∆− δ)2

with equality if and only if G has the property d2 = d3 = · · · = dn−1 = (∆ + δ)/2, which includes also

the regular graphs.
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In [36], the following strengthening of Theorem 4.43 was achieved:

Theorem 4.44. [36] Let G be an (n,m)-graph, n ≥ 2, with maximum degree ∆ and minimum degree

δ. Then

M1 ≥
4m2 + (n− 1)(∆2 + δ2)− 4m(∆ + δ) + 2∆ δ

n− 2
with equality if and only if G has the property d2 = d3 = · · · = dn−1.

In the paper [109], the following lower bounds for M1, better than (9), were also obtained.

Theorem 4.45. [109] Let G be an (n,m)-graph, n ≥ 3, with maximum degree ∆, minimum degree δ

and the second–maximum degree ∆2. Then

M1 ≥ ∆2 +∆2
2 +

(2m−∆−∆2)
2

n− 2

with equality if and only if G is regular or G ∈ Γ or G ∈ Γ3.

Corollary 4.5. [109] With the assumptions as in Theorem 4.45, one has the inequality

M1 ≥ ∆2 +
(2m−∆)2

n− 1

with equality if and only if G is regular or G ∈ Γ.

A lower bound for M1 of maximal outerplanar graphs was established in [80].

Theorem 4.46. [80] Let G be maximal outerplanar graph on n vertices. Then

M1(G) ≥ 16n− 38 (30)

and the equality holds if and only if G ∼= Pn,2.

In the paper [143], a sharp lower bound for M1 of n-vertex graphs with a given clique number has
been determined.

Theorem 4.47. [143] Let G ∈ Wn,k. Then

M1(G) ≥ k3 − 2k2 − k + 4n− 4

with equality if and only if G ∼= Kin,k, where Kin,k is a kite.

The local independence number α(v) of a vertex v, is the independence number of the subgraph
induced by the closed neighborhood of v. The average local independence number α(G), of a graph G,
is defined as 1

n

∑
v∈V (G) α(v), [43].

In the paper [114], the following upper bound on the average local independence number in terms of
n, m, the number of triangles t, and the first Zagreb index M1 is obtained, from which the lower bound
on M1 can be deduced.

Theorem 4.48. [114] Let G be connected (n,m)-graph with t triangles. Then

α(G) ≤
√

1

n
(M1 − 2m− 6t) +

1

4
+

1

2
.

Also, it was proven in [50] that for an n-vertex graph G, n ≥ 3, without isolated vertices, M1(G) ≥
3m and M2(G) ≥ 2m with equality if and only if G ∼= P3.
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5. Second Zagreb index

We first consider upper bounds for M2.

Let G be an (n,m)-graph. Bollobás and Erdős [18] proved that if m = k2, then M2(G) ≤ m(k−1)2,
with equality if and only G is the union of the complete graph Kk and isolated vertices. This result can
be reformulated as follows.

Theorem 5.1. [18] Let G be a graph with n vertices and m edges. Then

M2(G) ≤ m

(√
2m+

1

4
− 1

2

)2

with equality if and only if m is of the form m =
(
k
2

)
for some positive integer k, and G is the union of

the complete graph Kk and isolated vertices.

For given n and m, the graphs with largest M2-values are characterized in [45, 144].

Theorem 5.2. [45, 144] Let G be a connected graph of order n with m edges, n − 1 ≤ m ≤ n + 1. If

M2 is maximum, then

(i) G ∼= K1,n−1 for m = n− 1;

(ii) G ∼= K1,n−1 + e for m = n where e = uv with u, v as two pendent vertices in K1,n−1;

(iii) G ∼= B
(1)
n for m = n+ 1.

The following upper bound on M2 is obtained in [144]:

Theorem 5.3. [144] Let G be a connected graph of order n with m (= n+ 2) edges. Then

M2(G) ≤ n2 + 4n+ 22

with equality holding if and only if G ∼= (Kn−4 ∨ 3K1) ∪K1.

Denote by Kn−k
k the graph obtained by attaching n − k pendent vertices to one vertex of Kk. For

any positive integer t < k, let Kn−k
k (t) be a graph obtained by adding t new edges between one pendent

vertex in Kn−k
k and t vertices with degree k − 1 in it. In particular, (Kn−4 ∨ 3K1) ∪K1

∼= Kn−4
4 . For

given n and m, the graph with largest M2-values is characterized in [144]:

Theorem 5.4. [144] Let G be a connected graph of order n with m edges, such that m = n +
(
k
2

)
−

k , k ≥ 4. If M2 is maximum, then G ∼= Kn−k
k .

Xu, Das and Balachandran [144] gave the following conjecture:

Conjecture 5.1. Let G be a connected graph of order n with m edges, m ≥ n + 3. If M2 is maximum,

then G ∼= Kn−k
k (t) if m− n =

(
k
2

)
− k + t with 1 ≤ t ≤ k − 1 and 4 ≤ k ≤ n− 2.
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Bollobás, Erdős and Sarkar [19] proved the following:

Theorem 5.5. [19] Let k and r be positive integers such that 0 < r ≤ k. Then all graphs G with

m =
(
k
2

)
+ r edges and minimal degree at least one, satisfy

M2(G) ≤ k2

(
r

2

)
+ (k − 1)2

(
k − r

2

)
+ k(k − 1)(k − r)r + kr2

and the equality holds if and only if the graph G consists of a complete graph Kk together with an

additional vertex joined to r vertices of Kk.

In the papers [154, 156, 158], results concerning upper bounds for the second Zagreb index of Kr+1-
free graphs, r ≥ 2, were obtained.

Theorem 5.6. [154] Let G be a triangle–free graph with m > 0 edges. Then,

M2(G) ≤ m2

with equality if and only if G is the union of a complete bipartite graph and isolated vertices.

By Turán’s theorem, for an (n,m)-triangle–free graph, m ≤ bn2

4
c with equality if and only if G ∼=

Kbn
2
cdn

2
e. Then, by the previous theorem, for an (n,m)-triangle–free graph it holds [154]

M2(G) ≤
⌊
n2

4

⌋2

with equality if and only if G ∼= Kbn
2
cdn

2
e.

Recall that we use the notation even(n) = 1 if n is even and even(n) = 0, otherwise.

Theorem 5.7. [158]
(i) Let G be a quadrangle–free graph with n vertices and m > 0 edges. Then,

M2(G) ≤ mn+

(
n

2

)
− even(n)

with equality if and only if G ∼= W̃n for odd n, where W̃n is the graph defined in Section 4 (in Theorem

4.20).

(ii) Let Let G be a triangle– and quadrangle–free graph with n vertices and m > 0 edges. Then,

M2(G) ≤ m(n− 1)

with equality if and only if G is the star K1,n−1 or a Moore graph of diameter 2.

More generally, it holds:

Theorem 5.8. [156] Let G be a Kr+1-free graph with n vertices and m > 0 edges, where 2 ≤ r ≤ n−1.

Then

M2(G) ≤ 2

r
m2 +

(r − 1)(r − 2)

r2
mn2

and the equality holds if and only if G is the complete bipartite graph for r = 2 and a regular complete

r-partite graph for r ≥ 3.
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As a consequence, the following theorem has been proved.

Theorem 5.9. [156] Let G be a K1,1,k+1- and K2,l+1-free graph with n vertices and m > 0 edges, where

0 ≤ k ≤ l. Then

M2(G) ≤ m(k + 1− l)2 + l(n− 1)m+
1

2
(k + 1− l)ln(n− 1)

with equality if and only if each pair of adjacent vertices in G has exactly k common neighbors and each

pair of non-adjacent vertices in G has exactly l common neighbors.

In the paper [87], Lang et al. considered the second Zagreb index of bipartite graphs with a given
number of vertices and edges and gave a necessary condition for a maximal M2-value. Denote by
B(X,Y ) a connected bipartite graph with a bipartition (X,Y ) and by B(X,Y ) the set of bipartite graphs
B(X,Y ). In [87], the following ordered sets are defined. Let {u, v} ∈ V (G). The pair of vertices {u, v}
is said to be ordered if d(u) ≥ d(v) implies NG(v) ⊆ NG(u). A subset S ⊂ V (G) is called an ordered set
of vertices if any pair of vertices of S is ordered. Also, B(X,Y ) is said to be an ordered bipartite graph
if X and Y are ordered sets of vertices. Otherwise, the graph B(X,Y ) is referred to as an unordered
bipartite graph.

Theorem 5.10. [87] Let m and n be two integers such that n − 1 ≤ m ≤ bn/2cdn/2e. If B(X,Y )

attains the maximum value of the second Zagreb index in B(X,Y ) with n vertices and m edges, then

B(X,Y ) must be an ordered bipartite graph.

Theorem 5.11. [87] Let m, n and p be integers such that m = (n−1)+(p−1)(n2−1)+k, where p ≥ 1,

k ≤ n2 − 1. If the graph B(X,Y ) with |X| = n1 and |Y | = n2 satisfies |{v ∈ X|d(v) = n2}| = p, then

M2(G) ≤ pn1n2 + p2 n2
2 + n2

1 + (k − p)n1 + p(k − p)n2 + (p+ 1)k(k + 1) .

In the next theorem, in addition to n and m, the upper bounds depend also on the minimum vertex
degree δ.

Theorem 5.12. [158] (i) Let G be a quadrangle–free graph with n vertices, m edges and minimum

vertex degree δ ≥ 1. Then

M2(G) ≤ 2m2 − (n− 1)mδ + (δ − 1)

[(
n

2

)
+m

]

with equality if and only if G is isomorphic to a redefined windmill W̃n (see Theorem 4.20) for odd n, or
n
2
K2 for even n, or the star K1,n−1.

(ii) Let G be a triangle– and quadrangle–free graph with n vertices, m edges, and minimum vertex

degree δ ≥ 1. Then

M2(G) ≤ 2m2 − (n− 1)mδ + (δ − 1)

(
n

2

)

with equality if and only if G is the star K1,n−1, or n
2
K2 for even n, or a G is a Moore graph of diameter

2.
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In [157], an upper bound for M1 in terms of n, m, the minimum vertex degree δ, and the maximum
degree ∆ was established (cf. Theorem 4.8). Fonseca and Stevanović [56] proved the analogous upper
bound on M2 for general values of n, m, δ, and ∆.

Theorem 5.13. [56] Let G be a graph with n vertices, m edges, the minimum vertex degree δ and

maximum vertex degree ∆ > δ + 1. Then

M2 ≤ 1

2

[
(2m− k)(∆2 +∆δ + δ2)− (n− 1)∆δ(∆ + δ)

]

+





kδ(k − δ
2
) if k ≤ (∆ + δ)/2

k∆(k − ∆
2
) if k > (∆ + δ)/2

(31)

where k is an integer defined via

2m− nδ ≡ k − δ (mod (∆− δ)) , δ ≤ k ≤ ∆− 1

i.e.,

k = 2m− δ(n− 1)− (∆− δ)

⌊
2m− nδ

∆− δ

⌋
.

A graph G attains equality in (31) if and only if G does not contain an edge connecting a vertex of degree

∆ to a vertex of degree δ and it contains at most one vertex of degree k 6= ∆, δ such that

(i) the vertex of degree k is adjacent to vertices of degree δ only, when k < (∆ + δ)/2;

(ii) the vertex of degree k is adjacent to a vertex of degree ∆ only, if k > (∆ + δ)/2.

Remark. The case of equality in (31) implies that if k 6= (∆ + δ)/2, then the graph with the
maximum value of M2 for given n,m,∆ and δ is necessarily disconnected. If k < (∆ + δ)/2, then the
vertices of degree ∆ are adjacent only to vertices of degree ∆, while if k > (∆+ δ)/2, then the vertices
of degree δ are adjacent only to vertices of degree δ. Only when k = (∆ + δ)/2, an M2-maximal graph
may be connected, as then the vertex of degree k may be adjacent both to vertices of degree ∆ and to
vertices of degree δ. The same situation is present in Theorem 4.8 as well. All this is not a mistake, but
it just means that graphs attaining the maximum value of the first or second Zagreb index may happen to
be disconnected multigraphs, as suggested in [56].

The appearance of disconnected multigraphs as extremal graphs for the second Zagreb index may be
avoided in the case of trees (see Theorem 6.6).

In the papers [39, 41], Das et al. established some upper and lower bounds on M2(G) in terms of n,
m, δ, ∆, and ∆2.

Theorem 5.14. [39] Let G be a graph with n vertices, m edges, maximum degree ∆, second–maximum

degree ∆2 and minimum degree δ. Then

M2(G) ≤ 2m2 − (n− 1)mδ +
1

2
(δ − 1)

[
(2m−∆)2

n− 1
+ ∆2 +

n− 1

4
(∆2 − δ)2

]

with equality if and only if G is a regular graph or G ∼= K1,n−1 or G ∼= Kp+1,p, n = 2p+ 1.
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Theorem 5.15. [41] Let G be a graph with n vertices, m edges, maximum degree ∆, second–maximum

degree ∆2 and minimum degree δ. Then

(i)
M2(G) ≥ 2m2 − (n− 1)m∆

+
1

2
(∆− 1)

[
∆2 +

(2m−∆)2

n− 1
+

2(n− 2)

(n− 1)2
(∆2 − δ)2

]

with equality if and only if G is regular graph;

(ii)
M2(G) ≤ 2m2 − (n− 1)mδ

+
1

2
(δ − 1)

[
(n+ 1)m−∆(n−∆) +

2(m−∆)2

n− 2

]

with equality if and only if G ∼= K∗
2,n−2 or G ∼= Kn.

For triangle– and quadrangle–free graphs, an upper bound for M2 was established in terms of n, m,
and radius r.

Theorem 5.16. [145] Let G be a triangle– and quadrangle–free connected graph with n vertices, m

edges and radius r. Then, M2(G) ≤ m(n + 1 − r) and the equality holds if and only if G is a Moore

graph of diameter two or G is the 6-vertex cycle C6.

Extremal graphs whose M2 is maximum among connected graphs with matching number β are char-
acterized in [51].

Theorem 5.17. [51] Let G be a connected graph with n ≥ 4 vertices and matching number β, 2 ≤ β ≤
bn/2c. Let c be the largest root of the cubic equation

16x3 + 2x2(n− 13) + x(14n+ 1− 3n2)− 2n2 = 0 .

Then the following holds:

(1) If β = bn/2c, then

M2(G) ≤ 1

2
n(n− 1)3

with equality if and only if G ∼= Kn.

(2) If c < β ≤ bn/2c − 1, then

M2(G) ≤ n2 + 4nβ2 − 6nβ − 20β3 + 8β4 + 14β2 − β

with equality if and only if G ∼= K1 ∨ (K2β−1 ∪Kn−2β).

(3) If β = c, then

M2(G) ≤ n2 + 4nc2 − 6nc− 20c3 + 8c4 + 14c2 − c =
1

2
c(n− 1)(1− c− 2c2 − n+ 3cn)

with equality if and only if G ∼= Kβ ∨Kn−β or G ∼= K1 ∨ (K2β−1 ∪Kn−2β).
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(4) If 2 ≤ β < c, then

M2(G) ≤ 1

2
β(n− 1)(1− β − 2β2 − n+ 3βn)

with equality if and only if G ∼= Kβ ∨Kn−β .

In [52] and [53], Feng et al. characterized the graphs from the set Gk
n of all connected graphs with n

vertices and k cut edges whose M2 is maximum (minimum).

Theorem 5.18. [52, 53] Let G ∈ Gk
n, then

4n+ 4 ≤ M2(G) ≤ 1

2
(n− k − 1)3(n− k − 2) + (n− 1)2

and the left equality holds if and only if G ∼= Ck
n and the right equality holds if and only if G ∼= Kk

n.

Li and Zhou [92] determined sharp lower and upper bounds for the second Zagreb index of graphs
with connectivity (edge–connectivity) at most k. Recall that we use Vk

n (Ek
n) to denote the set of graphs

of order n with κ(G) ≤ k ≤ n − 1 (κ′(G) ≤ k ≤ n − 1), and by Gk
n we denote a graph obtained by

joining k edges from k vertices of Kn−1 to an isolated vertex.

Theorem 5.19. [92] Among all graphs G in Vk
n (Ek

n), k > 0, we have

M2(G) ≥ 4n− 8

and

M2(G) ≤ k2(n− 1) +

(
k

2

)
(n− 1)2 +

(
n− k − 1

2

)
(n− 2)2 + k(n− k − 1)(n2 − 3n+ 2)

where the lower bound is attained if and only if G ∼= Pn and the upper bound is attained if and only if

G ∼= Gk
n.

As mentioned before, Hou et al. [80] determined sharp upper and lower bounds for M2 among (max-
imal) outerplanar graphs on n vertices, as well as among conjugated (maximal) outerplanar graphs.

Theorem 5.20. [80] Let G be a maximal outerplanar graph on n vertices, n ≥ 4. Then

(i) M2(G) ≥ 32n− 100, with equality if and only if G ∼= Pn,2.

(ii) If n = 6, then M2(G) ≤ 96, with equality if and only if G ∼= H , where H is the graph depicted

in Fig. 3.

(iii) If n 6= 6, then M2(G) ≤ 3n2 + n− 19 with equality if and only if G ∼= K1 ∨ Pn−1.

Theorem 5.21. [80] Let G be conjugated maximal outerplanar graph on 2k vertices. Then

64k − 100 ≤ M2(G) ≤ 12k2 + 2k − 19 .

The left equality holds if and only if G ∼= P2k,2. For k 6= 3, the right equality holds if and only if

G ∼= (K1 ∨ P2k−1). For k = 3, the right equality holds if and only if G ∼= H (depicted in Fig. 3).
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As noted before, extremal (conjugated) outerplanar graphs whose M2 is maximum coincide with
those specified in Theorems 5.20 and 5.21. However, extremal (conjugated) outerplanar graphs whose
M2 is minimum are n-vertex paths.

Upper bounds on M2 of series–parallel graphs were determined in [155].

Theorem 5.22. [155] Let G be a series–parallel graph with n ≥ 2 vertices and m edges. Suppose that

G has no isolated vertices. Then

M2(G) ≤ m2 +
1

2
n(m− 1)

with equality for n ≥ 3 if and only if G is isomorphic to K1,1,n−2.

Theorem 5.23. [155] Let G be a series–parallel graph with n ≥ 2 vertices, m edges and minimum

vertex degree δ. Then

M2(G) ≤ 2m2 − (n− 1)mδ +
1

2
(δ − 1)

[
n(m− 1) + 2m

]

with equality if and only if G is isomorphic to K1,1,n−2 or K1,n−1 or n
2
K2 for even n.

Xu [143] obtained sharp upper and lower bounds for the second Zagreb index of graphs from the set
Wn,k of n-vertex graphs with a clique number k.

Theorem 5.24. [143] Let G ∈ Wn,k. Then

(1)

M2(G) ≤
(
k − r

2

)⌊n
k

⌋2 (
n−

⌊n
k

⌋)2
+ r(k − r)

⌊n
k

⌋ ⌈n
k

⌉(
n−

⌊n
k

⌋)(
n−

⌈n
k

⌉)

+

(
r

2

)⌈n
k

⌉2 (
n−

⌈n
k

⌉)2

with equality if and only if G ∼= Tn(k);

(2)

M2(G) ≥
(
k

2

)
(k − 1)2 + k2 + 4(n− k)− 5

with equality if and only if G ∼= Kin,k, where Kin,k is a kite graph.

6. On extremal Zagreb indices of trees

A tree is a connected graph without cycles. In every tree δ = 1. The tree with ∆ = 2 is the path Pn

and the tree with ∆ = n − 1 is the star K1,n−1. In chemical trees it must be ∆ ≤ 4. In the case of trees
(both chemical and non-chemical), the relations (5) and (10) are significantly simplified and thus, the
following result is straightforward.
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Theorem 6.1. [66] Let T be any tree of order n. Then

4n− 6 ≤ M1(T ) ≤ n(n− 1)

and the left equality holds if and only if T ∼= Pn and the right equality holds if and only if T ∼= K1,n−1.

Using the bound (18) from [103], the first four trees from the class T(n) of trees on n vertices whose
M1 is maximum were determined.

Theorem 6.2. [103] Suppose that T1
∼= K1,n−1 and T ∈ T(n). If n ≥ 9 and T ∈ T(n) \ {T1, T2, T3, T4,

T5}, then M1(T1) > M1(T2) > M1(T3) > M1(T4) = M1(T5) > M1(T ), where T2 − T5 are trees

depicted in Fig. 4.

Fig. 4. The trees occurring in Theorem 6.2.

In [37], the trees with maximal and minimal value of the second Zagreb index are obtained as follows.

Theorem 6.3. [37] Let T be any tree of order n, then

4n− 8 ≤ M2(T ) ≤ (n− 1)2

and the left equality holds if and only if T ∼= Pn and the right equality holds if and only if T ∼= K1,n−1.

Das et al. [38] obtained the following upper bound on M1(T ) in terms of n and ∆:

Theorem 6.4. [38] Let T be a tree with n vertices and maximum degree ∆ . Then

M1(T ) ≤ n2 − 3n+ 2(∆ + 1)

with equality if and only if T ∼= K1,n−1 or T ∼= P4 .

In the paper [35], the authors gave some lower and upper bounds on the first Zagreb index M1(G) of
graphs and trees in terms of number of vertices, irregularity index, maximum degree, and characterized
extremal graphs. Let Υ1 be the class of trees T = (V,E) such that T is a tree of order n, irregularity
index t, maximum degree ∆ and

∆ = t , di = 1 , i = t, t+ 1, . . . , n .
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Theorem 6.5. [35] Let T be a tree of order n with irregularity index t and maximum degree ∆. Then

M1(T ) ≤
[
n− 3− t(t− 3)

2

]
∆2 − (t− 1)(t− 2)∆ +

1

3
(t3 − 3t2 + 2t+ 6)

with equality if and only if G ∈ Υ1 .

A caterpillar or caterpillar tree is a tree in which all the pendent vertices are within distance 1 of a
central path. In [133] it was noted that each even number, except 4 and 8 is the first Zagreb index of a
caterpillar.

From Theorem 4.8, it can easily be deduced that for a tree T with n vertices and maximum degree
∆ > 1 it is satisfied

M1(T ) ≤ 2(n− 1)(1 + ∆)− n∆+ (1− k)(∆− k)

where k is an integer defined via

k = n− 1− (∆− 1)

⌊
n− 2

∆− 1

⌋
.

Equality is attained if and only if at most one vertex of T has degree different from 1 and ∆.

Besides, Corollary 4.1 implies the upper bound for the first Zagreb index of chemical trees with
n ≥ 2 vertices. This upper bound is also obtained in [107]. As in [107], for n = 3` ≥ 6 let T3` be the
family of chemical trees with n vertices, such that ` − 1 vertices have degree 4, one vertex has degree
2 and the remaining vertices are pendent. Denote by T̃3` a subset of T3` such that for the unique vertex
v ∈ V (T ), T ∈ T̃3`, of degree 2, exactly one of its neighbors is pendent. For n = 3` + 1 ≥ 7, let T3`+1

be the family of chemical trees with n vertices such that ` − 1 vertices have degree 4, one vertex has
degree 3 and the remaining vertices are pendent, while T̃3`+1 denotes the family of trees T from T3`+1

such that for the unique vertex v ∈ V (T ) of degree 3 exactly one of its neighbors is pendent. Finally, for
n = 3` + 2 ≥ 5, let T3`+2 denotes the family of chemical trees with n vertices such that ` vertices have
degree 4, and the remaining vertices are pendent. Then,

M1(T ) ≤





6n− 10 if n ≡ 2 (mod 3)

6n− 12 otherwise

with equality if and only if T ∈ Tn.

The trees with the maximum second Zagreb index among the trees with given n and ∆ are determined
in [56].

Theorem 6.6. [56] Let T be a tree with n vertices and the maximum degree ∆ ≥ 2. Then

M2(T ) ≤ ∆(2n−∆− 1− k) + k(k − 1)

where

k ≡ n− 1(mod (∆− 1)) , 1 ≤ k ≤ ∆− 1
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i.e.,

k = n− 1− (∆− 1)

⌊
n− 2

∆− 1

⌋
.

Equality is attained if and only if T has at most one vertex of degree k that is adjacent to a single vertex

of degree ∆, and all other vertices of T have degree either ∆ or 1.

As a simple corollary of the previous theorem, an upper bound for the second Zagreb index of
chemical trees, can easily be obtained. This upper bound was determined in [107].

M2(T ) ≤





8n− 24 if n ≡ 2 (mod 3)

8n− 26 otherwise

with equality if and only if n ≡ 0, 1(mod 3) and G ∈ T̃n, or n ≡ 2(mod 3) and G ∈ Tn.
In order to state the results from [138] we need the following notations. Denote by mij (1 ≤ i, j ≤ ∆)

the number of edges that connect vertices of degrees i and j in a tree T , and by ni (i = 1, 2, . . . ,∆) the
number of vertices of degree i.

Theorem 6.7. [138] Let T be a tree with maximal second Zagreb index with ni vertices of degree i and

maximal degree ∆. Then,

1) m∆∆ = n∆ − 1;

2) mij = min

{
ni −

∆∑

k=j+1

mik , jnj −
j∑

k=i+1

mkj −
∆∑

k=j

mjk

}
for each 1 ≤ i < j ≤ ∆;

3) mii = ni −
∆∑

k=i+1

mik for each i = 1, . . . ,∆− 1.

Using this result, in the same paper, the authors presented a simple algorithm for calculating the
maximal value of the second Zagreb index for trees with prescribed number of vertices of given degree.
The user needs only to input values n1, n2, . . . , n∆ and the algorithm outputs the edge connectivity
values mij as well as the maximal value of the second Zagreb index. The complexity of algorithm is
proportional to ∆3. Since the complexity is independent of the number of vertices, for chemical trees
the algorithms works in constant time no matter how large the molecule is.

Let π = (d1, d2, . . . , dn) and π′ = (d′1, d
′
2, . . . , d

′
n) be two different non-increasing degree sequences.

We write π C π′ if and only if
∑n

i=1 di =
∑n

i=1 d
′
i and

∑j
i=1 di ≤

∑j
i=1 d

′
i for all j = 1, 2, . . . , n. Such

an ordering is called to be a majorization [110]. Also, we use Γ(π) to denote the class of connected
graphs that have degree sequence π.

For a given degree sequence π, let M2(π) = max{M2(G)|G ∈ Γ(π)}. A graph G is called an
optimal graph in Γ(π) if G ∈ Γ(π) and M2(G) = M2(π).

Liu and Liu [104] characterized optimal trees in the set of trees with a given degree sequence.
A sequence π = (d1, d2, . . . , dn) is called a tree degree sequence if there exists a tree T having π as

its degree sequence, i.e., if and only if
n∑

i=1

di = 2(n− 1) . (32)
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In order to present the main results of the paper [104], we introduce some more notations. Assume
that G is a rooted graph with root v0. Let h(v), also called height of a vertex v, be the distance between
v and v0 and Vi(G) be the set of vertices at distance i from vertex v0. Then, according to [152], a
well-ordering ≺ of the vertices is called breadth–first search ordering with non-increasing degrees (BFS-
ordering, for short) if the following holds for all vertices u, v ∈ V (G):

(i) u ≺ v implies h(u) ≤ h(v);
(ii) u ≺ v implies d(u) ≥ d(v);
(iii) if there are two edges uu1 ∈ E(G) and vv1 ∈ E(G) such that u ≺ v, h(u) = h(u1) + 1 and

h(v) = h(v1) + 1, then u1 ≺ v1.
A tree that has a BFS-ordering of its vertices is said to be a BFS-tree.
In order to solve the problem of finding optimal trees in Γ(π), Liu and Liu [104] used the method

of [152] to define a special tree T ∗ ∈ Γ(π) as follows: Select a vertex v0 in layer 0 and create a sorted
list of vertices beginning with v0. Choose d1 new vertices in layer 1 adjacent to v0, say v11, v12, . . . , v1d1 ,
then d(v0) = d1. Choose d2 + . . . + dd1 − d1 new vertices in layer 2 such that d2 − 1 vertices, say
v21, v22, . . . , v2,d2−1, are adjacent to v11, d3 − 1 vertices are adjacent to v12, . . ., dd1 − 1 vertices are
adjacent to v1d1 . Then d(v11) = d2, (v12) = d3, . . . , d(v1,d1) = dd1 . Now choose dd1+1 − 1 new vertices
in layer 3 adjacent to v21 and hence d(v21) = dd1+1, . . . . Continue recursively with v22, v23, . . . until
all vertices in layer 3 are processed. Repeat the above procedure until all vertices are processed. In
this way, a BFS-tree T ∗ ∈ Γ(π) is obtained. For example, for a given tree degree sequence π1 =

(4, 4, 3, . . . , 3︸ ︷︷ ︸
4

, 2, 2, 2, 1, 1, . . . , 1︸ ︷︷ ︸
10

) a BFS-tree T ∗
1 is depicted in Fig. 5.

Fig. 5. The BFS-tree T ∗
1 with degree sequence (4, 4, 3, . . . , 3︸ ︷︷ ︸

4

, 2, 2, 2, 1, 1, . . . , 1︸ ︷︷ ︸
10

) .

Theorem 6.8. [152] For a given tree degree sequence π, there exists a unique BFS-tree T ∗ in Γ(π), i.e.,

T ∗ is uniquely determined up to isomorphism.

Now, the main result of paper [104] can be stated as follows.

Theorem 6.9. [104] Given a tree degree sequence π, the BFS-tree T ∗ has the maximum second Zagreb

index in Γ(π).
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Hence, by Theorems 6.8 and 6.9, there is a unique BFS-tree that has the maximum M2 in Γ(π). On
the other hand, this BFS-tree needs not be the only tree with the maximum M2 in Γ(π), as shown by an
example in [104].

Theorem 6.10. [104] Let π and π′ be two different non-increasing tree degree sequences with π C π′.

Let T ∗ and T ∗∗ be the trees with the maximum second Zagreb indices in Γ(π) and Γ(π′), respectively.

Then, M2(T
∗) < M2(T

∗∗).

In addition, as a simple corollary of Theorem 6.10, it is reproved that the star K1,n−1 has the maxi-
mum second Zagreb index among all n-vertex trees. Also, the following result is easily deduced.

Theorem 6.11. [104] If T is a tree of order n with k pendent vertices, then M2(T ) ≤ M2(Fn(k)), where

Fn(k) is the tree on n vertices obtained by attaching k paths of almost equal lengths (i.e., paths whose

lengths differ by at most one) to one common vertex.

Denote by Tn,k the class of trees with n vertices and with exactly k vertices of maximum degree ∆

(k ≤ n−2). The extremal trees whose Zagreb indices are maximum (minimum) in Tn,k are characterized
by Borovićanin and Alekstić Lampert [21]. Obviously, a path Pn is the unique element of Tn,n−2. Thus,
it may be assumed that k ≤ n− 3, in which case it was shown [21] that 1 ≤ k ≤ n/2− 1.

Theorem 6.12. [21] Let T ∈ Tn,k, where 1 ≤ k ≤ n/2− 1. Then

M1(T ) ≤ k∆2 + p(∆− 1)2 + µ2 + n− k − p− 1

and the equality holds if and only if T has the vertex degree sequence

(∆, . . . ,∆︸ ︷︷ ︸
k

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
p

, µ, 1, . . . , 1︸ ︷︷ ︸
n−k−p−1

)

where ∆ = bn−2
k
c+ 1 , p = bn−2−k(∆−1)

∆−2
c and µ = n− 1− k(∆− 1)− p(∆− 2).

Theorem 6.13. [21] Let T ∈ Tn,k where 1 ≤ k ≤ n
2
− 1. Then

M1(T ) ≥ 2k + 4n− 6

and the equality holds if and only if the tree T has the vertex degree sequence

(3, . . . , 3︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
n−2k−2

, 1, . . . , 1︸ ︷︷ ︸
k+2

) .

Extremal trees which maximize (minimize) the second Zagreb index in the class Tn,k are character-
ized in the sequel.

Theorem 6.14. [21] Let T ∈ Tn,k, where 1 ≤ k ≤ n/2− 1. Then

M2(T ) ≤ (k − 1)∆2 + 2p(∆− 1)2 + µ(∆ + µ− 1) + ∆(n− k − (∆− 1)p− µ)

where ∆ = bn−2
k
c+ 1, p = bn−2−k(∆−1)

∆−2
c and µ = n− 1− k(∆− 1)− p(∆− 2). The equality holds if

and only if the following conditions are satisfied.
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(i) The tree T has the vertex degree sequence

(∆, . . . ,∆︸ ︷︷ ︸
k

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
p

, µ, 1, . . . , 1︸ ︷︷ ︸
n−k−p−1

) .

(ii) Every vertex of degree ∆− 1 is adjacent to a vertex of degree ∆ and to ∆− 2 pendent vertices.

(iii) The vertex of degree µ (when µ > 1) is adjacent to a vertex of the degree ∆ and to µ− 1 pendent

vertices.

(iv) The remaining pendent vertices are attached to the vertices of degree ∆.

Theorem 6.15. [21] Let T ∈ Tn,k, where 1 ≤ k ≤ n/2− 1. Then

M2(T ) ≥




3k + 4n− 10, if n ≥ 3k + 1

6k + 3n− 9, if n < 3k + 1 .

The equality holds if and only if the following three conditions are satisfied.

(i) The tree T has the vertex degree sequence (3, . . . , 3︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
n−2k−2

, 1, . . . , 1︸ ︷︷ ︸
k+2

).

(ii) Between any two vertices of degree 3 in T there should be at least one vertex of degree 2, if

possible.

(iii) The remaining vertices of degree 2 (if they exist) in T are placed either between two vertices of

degree 2 or between a vertex of degree 2 and a vertex of degree 3.

Goubko [59] discovered an interesting property of trees with a given number of pendent vertices,
which enabled him to determine a lower bound for M1 of trees that depends only on the number of
pendent vertices of a tree, irrespective the number of its vertices.

Theorem 6.16. [59, 67] Let T be a tree with n1 ≥ 2 pendent vertices and first Zagreb index M1.

(a) If n1 is even, then M1(T ) ≥ 9n1 − 16 with equality if and only if all non-pendent vertices of T

are of degree 4.

(b) If n1 is odd, then M1(T ) ≥ 9n1−15, and the equality holds if and only if all non-pendent vertices

of T , except one, are of degree 4, and a single vertex of T is of degree 3 or 5.

Although Goubko’s theorem 6.16 provides simple structural conditions for graphs with minimal first
Zagreb indices, it is restricted to graphs with very special number of vertices. In fact, this theorem
determines extremal trees only if n = 3

2
n1 − 1 and n = 3

2
n1, respectively, and requires that n1 be even.

This limitation can be circumvented, as follows.
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Theorem 6.17. [68] Let T be a tree of order n with n1 pendent vertices. Then

M1(T ) ≥ 4n− 6 + (n+ n1 − 4)

⌊
n− 2

n− n1

⌋
− (n− n1)

⌊
n− 2

n− n1

⌋2
.

Equality is attained if and only if T consists of n1 pendent vertices, nt = (n − n1)
⌊

n−2
n−n1

⌋
− n1 + 2

vertices of degree t =
⌊

n−2
n−n1

⌋
+ 1, and nt+1 = n− 2− (n− n1)

⌊
n−2
n−n1

⌋
vertices of degree t+ 1.

Sharp lower bounds for the second Zagreb index for trees with a given number of pendent vertices,
were derived in papers [59, 61]. The corresponding optimal trees were determined, too.

As in [28,59], a non-pendent vertex in a tree is called a stem vertex if it has incident pendent vertices.
The edge connecting a stem with a pendent vertex will be referred to as a stem edge.

Theorem 6.18. [59,61] For any tree T with n1 ≥ 9 pendent vertices M2(T ) ≥ 11n1 − 27. The equality

holds if each stem vertex in T has degree 4 or 5, while other non-pendent vertices are of degree 3. At

least one such tree exists for any n1 ≥ 9.

An analogous type of problem was considered in the paper [60]. There a dynamic programming
method was elaborated, enabling the characterization of trees with a given number of pendents, for
which a vertex–degree–based topological index achieves its extremal value. This method was applied to
the first and second Zagreb indices.

A vertex of a tree with degree at least three is called a branching vertex and a segment of a tree is a
path-subtree whose terminal vertices are branching or pendent vertices.

In papers [20, 97], sharp lower and upper bounds on Zagreb indices of trees with fixed number
of segments are determined and the corresponding extremal trees are characterized. As the number of
segments in a tree is determined by the number of vertices of degree two (and vice versa), in this way also
the extremal trees with prescribed number of vertices of degree two whose Zagreb indices are minimum
(or maximum) are determined.

Denote, by STn,k the set of all n-vertex trees with exactly k segments. Then, as noted in [97], the
path Pn is the unique element of STn,1, the star Sn is the unique element of STn,n−1 and the set STn,2 is
empty. Accordingly, only the set STn,k for 3 ≤ k ≤ n− 2 needs to be considered.

Theorem 6.19. [97] Let T ∈ STn,k, where 3 ≤ k ≤ n− 2. Then,

4n+ k2 − 3k − 4 ≥ M1(T ) ≥





4n+ k − 7 if k is odd

4n+ k − 4 if k is even.

The upper bound is attained if and only if T is a starlike tree of degree k. For odd k, the lower bound is

attained if and only if T is an n-vertex tree with vertex degree sequence (3, . . . , 3︸ ︷︷ ︸
k−1
2

, 2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k+3
2

).

For even k the bound is attained if and only if T is an n-vertex tree with vertex degree sequence

(4, 3, . . . , 3︸ ︷︷ ︸
k−4
2

, 2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k+4
2

).
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Denote by STO(n, k), for odd k, the set of all n-vertex trees with the degree sequence (3, . . . , 3︸ ︷︷ ︸
k−1
2

,

2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k+3
2

), whose vertices of degree 2 are placed between the vertices of degree 3 so that there

is at least one vertex of degree 2 between any two vertices of degree 3, and the remaining vertices of
degree 2 (if such do exist) are arranged arbitrarily so that a vertex of degree 2 has no pendent neighbor.

Denote by STE(n, k), for even k, the set of all n-vertex trees with the degree sequence (4, 3, . . . , 3︸ ︷︷ ︸
k−4
2

,

2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, . . . , 1︸ ︷︷ ︸
k+4
2

), whose vertices are arranged as follows. The unique vertex of degree 4 has three

pendent neighbors and a neighbor of degree 2. Then, the vertices of degree 2 are placed between the
vertices of degree 3 (at least one vertex of degree 2 between any two vertices of degree 3, if it is possible)
and the remaining vertices of degree 2 are arranged arbitrarily so that a vertex of degree 2 has no pendent
neighbor.

Theorem 6.20. [20] Let T ∈ STn,k, where 3 ≤ k ≤ n− 2. Then

M2(T ) ≥





8n+ 3k − 23

2
, n ≥ (3k − 1)/2 and k odd

3n+ 3k − 12 , n < (3k − 1)/2 and k odd

8n+ 3k − 18

2
, n ≥ (3k − 2)/2 and k even

3n+ 3k − 10 , n < (3k − 2)/2 and k even .

The equality holds if and only if T ∈ STO(n, k), for odd k, or T ∈ STE(n, k), for even k.

Theorem 6.21. [20] Let T ∈ STn,k, where 3 ≤ k ≤ n− 2. Then

M2(T ) ≤





2k2 − 6k + 4n− 4 , n ≥ 2k + 1

k(n− 3) + 2n− 2 , n < 2k + 1 .

The upper bound is attained if and only if T is an n-vertex starlike tree of degree k, such that an arbitrary

pendent vertex is adjacent to a vertex of degree 2, for 2k + 1 ≤ n, or the central vertex of degree k has

exactly 2k + 1− n pendent neighbors, for n < 2k + 1.

In the paper [20], sharp lower and upper bounds for Zagreb indices of trees with given number
of branching vertices are determined, and the corresponding extremal trees characterized. For further
details, see [20].

In the paper [40], extremal trees with maximal first (second) Zagreb index among trees of order n
and independence number α are characterized. Let Sn,α be a tree (known as a spur) obtained from the
star K1,α by attaching a pendent edge to its n− α− 1 pendent vertices. If ∆ = α in a tree T of order n
with independence number α, then T ∼= Sn,α.
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Theorem 6.22. [40] Let T be a tree of order n with independence number α. Then,

M1(T ) ≤ α2 − 3α + 4n− 4

and

M2(T ) ≤ nα− 3α + 2n− 2 .

Equality in both inequalities holds if and only if T ∼= Sn,α.

In the paper [135], extremal trees with minimal first Zagreb index among trees of order n and in-
dependence number α are characterized. The extremal tree is the path Pn for α = dn/2e and the star
K1,n−1 for α = n− 1. For dn/2e < α < n− 1 define the set Tn,α consisting of all trees T = (V,E) with
n vertices and independence number α such that the degrees of the vertices in its maximum independent
set S differ by at most one, and such that the complement S = V \ S is also an independent set whose
vertex degrees differ by at most one. In fact, the set Tn,α consists of the coalescence of stars having
almost equal order (i.e., differing by at most one), with the pair of leaves identified in neighboring stars
(see Fig. 6).

Fig. 6. Three non-isomorphic trees with n = 10 , α = 6 and minimum value of M1 = 36 .

The following holds:

Theorem 6.23. [135] If T is a tree with n vertices and independence number α, then

M1(T ) ≥ 2(n− 1)− α

⌊
n− 1

α

⌋2
− (n− α)

⌊
n− 1

n− α

⌋2

+ (2n− α− 2)

⌊
n− 1

α

⌋
+ (n+ α− 2)

⌊
n− 1

n− α

⌋

with equality if and only if T ∈ Tn,α.
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As noted in [135], it appears that the problem of characterization of extremal trees with minimal
second Zagreb index among trees of order n and independence number α cannot be solved as easily as
it was the case with the first Zagreb index. Hence, the characterization of trees with minimal second
Zagreb index remains an open problem.

The domination number γ(G) of a graph G is the minimum cardinality of a subset D of V (G) such
that each vertex of G that is not contained in D is adjacent to at least one vertex of D. A subset D is
called minimum dominating set of G.

In paper [21], upper bounds on Zagreb indices of trees in terms of domination numbers are pre-
sented. These bounds are strict and extremal trees are characterized. In addition, a lower bound for
the first Zagreb index of trees with a given domination number is determined and the extremal trees are
characterized.

Note that γ(T ) = 1 if and only if T ∼= K1,n−1. It is well known [120] that every graph of order n
without isolated vertices has domination number at most n

2
. Also, it was proved by Fink et al. [55] that

equality holds only for C4 and for graphs of the form H ◦K1, for some H .

Theorem 6.24. [21] Let T be a tree with domination number γ. Then

M1(T ) ≤ (n− γ)(n− γ + 1) + 4(γ − 1)

and

M2(T ) ≤ 2(n− γ + 1)(γ − 1) + (n− γ)(n− 2γ + 1) .

Equality in both cases holds if and only if G ∼= Sn,n−γ , where Sn,n−γ is a spur obtained from the star

K1,n−γ by attaching a pendent edge to its γ − 1 pendent vertices.

In order to state the results from [21] concerning minimum first Zagreb index we need a few defini-
tions.

Suppose first that 1 ≤ γ ≤ n/3. Define D(n, γ) as a set of n-vertex trees T with domination number
γ such that T consists of the stars of orders

⌊
n−γ
γ

⌋
and

⌈
n−γ
γ

⌉
with exactly γ− 1 pairs of adjacent leaves

in neighboring stars. Then, it holds:

Theorem 6.25. [21] Let T be a tree on n vertices with domination number γ, where 1 ≤ γ ≤ n/3.

Then,

M1(T ) ≥ −γ

⌊
n− 1

γ

⌋2
+ (2n− γ)

⌊
n− 1

γ

⌋
+ 6(γ − 1) .

The equality holds if and only if T ∈ D(n, γ).

Next, suppose that n
3
≤ γ ≤ n

2
and define G(n, γ) as a set of trees T on n vertices with domination

number γ, such that every vertex from T has at most one pendent neighbor and

(i) there exists a minimum dominating set D of T containing 3γ − n − 2 vertices of degree 3 and
2n−4γ vertices of degree 2, while the set D contains n−2γ+2 vertices of degree 2 and 3γ−n pendent
vertices, or
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(ii) there exists a minimum dominating set D of T containing n− 2γ vertices of degree 2 and 3γ−n

pendent vertices, while the set D contains 2n−4γ+2 vertices of degree 2, 3γ−n−2 vertices of degree
3 and every vertex from D has exactly one neighbor in D.

Theorem 6.26. [21] Let T be a tree on n vertices with domination number γ, where n
3
≤ γ ≤ n

2
. Then,

M1(T ) ≥





4n− 6 if γ =
⌈n
3

⌉

2n+ 6γ = 10 if
n+ 3

3
≤ γ ≤ n

2

with equality if and only if T ∼= Pn, for γ = dn/3e, or T ∈ G(n, γ), otherwise.

Huang and Deng [83], and independently Li and Zhao [91] and Sun and Chen [128], characterized
the trees with perfect matchings having the largest and the second largest Zagreb indices. Denote by Tm

the set of trees with perfect matchings on 2m vertices. Let T 1
m ∈ Tm be the tree on 2m vertices obtained

by attaching a pendent edge together with m − 1 paths of lengths 2 at a single vertex (see Fig. 7), and
let T 2

m ∈ Tm be the tree displayed in Fig. 7.

...
{ m-1

..
.

Tm
1 Tm

2

{m-3

Fig. 7. The trees occurring in Theorem 6.27.

Theorem 6.27. [83, 91, 128]
a) Let T be any tree in Tm, m ≥ 3. If T is different from T 1

m, then Mi(T ) < Mi(T
1
m), i = 1, 2;

b) Let T be any tree in Tm \ {T 1
m, T

2
m}, m ≥ 3, then Mi(T ) < Mi(T

2
m).

At the end of this section we present results from [49] concerning the so-called k-trees, class of
graphs which is the generalization of trees.

The k-tree T k
n , k ≥ 1, introduced in [12], is defined recursively as follows.

(i) The smallest k-tree is the k-clique Kk.
(ii) If G is a k-tree with n vertices and a new vertex v of degree k is added and joined to the vertices

of a k-clique in G, then the larger graph is a k-tree with n+ 1 vertices.
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The (k, n)-path P k
n , has vertex set {v1, v2, . . . , vn} where G[{v1, v2, . . . , vk}] ∼= Kk. For k+1 ≤ i ≤

n, let vertex vi be adjacent to the vertices {vi−1, vi−2, . . . , vi−k}.
A helpful characteristic of the k-path P k

n is that we may order the vertices v1, v2, . . . , vn so that
P k
n − {v1, v2, . . . , vi} is a k-path on n− i vertices for 1 ≤ i ≤ n− k − 1.

The (k, n)-star Sk,n−k, has vertex set {v1, v2, . . . , vn} where G[{v1, v2, . . . , vk}] ∼= Kk and N(vi) =

{v1, v2, . . . , vk} for k + 1 ≤ i ≤ n.
The 3-path and the 3-star on 7 vertices are presented in Fig. 8.

Fig. 8. The 3-path and 3-star with 7 vertices.

The first and second Zagreb indices of k-paths and k-stars are obtained in [49].

Theorem 6.28. [49] Let P k
n be the k-path on n ≥ k + 3 vertices. Then

M1(P
k
n ) = 2nk(n− 2)− 1

3
n(n− 1)(n− 2)− 1

3
k(k + 1)(2k − 5)

for k + 3 ≤ n ≤ 2k and k ≥ 3

M1(P
k
n ) = 4nk2 − 1

3
k(10k − 1)(k + 1) for n ≥ max (4, 2k + 1) .

Theorem 6.29. [49] Let P k
n be the k-path on n ≥ k + 3 vertices. Then

M2(P
k
n ) =

1

2
(k4 + 9k3 + 12k2 − 8k + 2), n = k + 3

M2(P
k
n ) =

1

24
((10− 4k)n3 − n4 + (54k2 − 18k − 23)n2

− (44k3 + 66k2 − 54k − 14)n+ 7k4 + 38k3 + 5k2 − 26k)

for k + 4 ≤ n ≤ 2k

M2(P
k
n ) =

1

24
(n4 − (12k + 6)n3 + (54k2 + 54k + 11)n2

− (12k3 + 162k2 + 66k + 6)n− (25k4 − 70k3 − 109k2 − 14k))

for 2k + 1 ≤ n ≤ 3k − 1

M2(P
k
n ) =

1

24
(48nk3 − 53k4 − 46k3 + 5k2 − 2k) for n ≥ max(5, 3k) .
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Theorem 6.30. [49] Let Sk,n−k be the k-star on n ≥ k + 1 vertices. Then

M1(Sk,n−k) = n2k + (k2 − 2k)n− k3 + 1

M2(Sk,n−k) =
1

2

[
(3k2 − k)n2 − (2k3 + 4k2 − 2k)n+ k(2k − 1)(k + 1)

]
.

Sharp upper and lower bounds for M1 and M2 of k-trees are determined as follows.

Theorem 6.31. [49] Let T k
n be a k-tree on n ≥ k vertices. Then

M1(P
k
n ) ≤ M1(T

k
n ) ≤ M1(Sk,n−k)

and

M2(P
k
n ) ≤ M2(T

k
n ) ≤ M2(Sk,n−k)

and the left–hand side equality in both inequalities is reached if and only if T k
n

∼= P k
n whereas the

right–hand side equality holds if and only if G ∼= Sk,n−k.

Accordingly, by this theorem, the results of the papers [37,66] (valid in the case k = 1) are extended
to the k-tree, k > 1. Also, it can be proven that maximal outerplanar graphs are 2-trees, and consequently,
the results obtained for k-trees also extend the result of Hou, Li, Song and Wei from [80], who determined
sharp upper and lower bounds for M1- and M2-values of maximal outerplanar graphs.

7. On c-cyclic graph, c ≥ 1

For connected graphs, the cyclomatic number, i.e., the number of independent cycles, is equal to c =

m− n+ 1. Graphs with c = 0, 1, 2, 3, 4 are referred to as trees, unicyclic, bicyclic graphs, tricyclic and
tetracyclic graphs, respectively.

Zhang and Zhang in [150] determined the first three unicyclic graphs from the class U(n) of all
connected unicyclic graphs with n vertices whose M1 is maximum (minimum). The part of this result,
concerning the first three largest values of M1, was reproved in [103] using a different approach.

Theorem 7.1. [103, 150] Let G ∈ U(n). If n ≥ 9 and G ∈ U(n) \ {U1, U2, U3, U4}, then M1(U1) >

M1(U2) > M1(U3) = M1(U4) > M1(G), where U1 − U4 are unicyclic graphs depicted in Fig. 9.

...

U1

...

U2

...

U3

...

U4

Fig. 9. The graphs occurring in Theorem 7.1.
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Theorem 7.2. [150] Let G ∈ U(n), n ≥ 7. Then

(i) M1(G) attains the smallest value if and only if G ∼= Cn;

(ii) M1(G) attains the second smallest value if and only if G is a cycle Cn−1 with a pendent edge

attached;

(iii) M1(G) attains the third smallest value if and only if G is a cycle Cn−2 with two pendent edges

attached at different vertices.

Sharp bounds for the second Zagreb index of unicyclic graphs were established in the paper [146].

Let Un,k be the set of unicyclic graphs with n vertices and k pendent vertices, 0 ≤ k ≤ n − 3.
Denote by Cq(p1, p2, . . . , pk), k ≥ 1, a unicyclic graph with n vertices created from Cq by attaching
paths of lengths p1, p2, . . . , pk to one vertex of the cycle Cq, respectively, where n = q+

∑k
i=1 pi, pi ≥ 1,

i = 1, 2, . . . , k. In addition, denote

U∗
n,0 = {Cn}

U∗
n,k = {Cq(p1, p2, . . . , pk) : pi ≥ 2, 1 ≤ i ≤ k, q ≥ 3} , k ≥ 1

Un
k = C3(1, 1, . . . , 1, 2, 2, . . . , 2︸ ︷︷ ︸

n−k−3

)

see Fig. 10. Obviously, U∗
n,k ⊆ Un,k and Un

k ∈ Un,k.

Fig. 10. (a) An element of U∗
n,k , and (b) the graph Un

k . These graphs are mentioned in Theorem 7.3.

Let U+
n,k be the set of all graphs from Un,k such that ∆(G) ≤ 3 and each pendent vertex of G is

adjacent to another vertex of degree 3 and every pair of vertices of degree 3 are nonadjacent. Clearly,
U+

n,0 = {Cn}. As an illustration, in Fig. 11, the graphs G1, G2, G3, G4 ∈ U+
13,4 are presented.
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Fig. 11. For graphs belonging to the set U+
13,4. These graphs are mentioned in Theorem 7.4.

Theorem 7.3. [146] Let G ∈ Un,k, 0 ≤ k ≤ n− 3. Then

M2(G) ≤




4n+ 2k(k + 1) if n ≥ 2k + 3

4n+ (n− 1)k, if n ≤ 2k + 2 .

Equalities hold if and only if G ∈ U∗
n,k, for n ≥ 2k + 3, and G ∼= Un

k , for n ≤ 2k + 2.

Theorem 7.4. [146] Let G ∈ Un,k, 0 ≤ k ≤ n− 3. Then

M2(G) ≥ 4n+ 3k

and the equality holds if and only if n ≥ 3k and G ∈ U+
n,k.

Let ϕ(n, k) = 4n + 2k(k + 1) and φ(n, k) = 4n + 3k, where n and k are integers such that
0 ≤ k ≤ n − 3. The functions ϕ(n, k) and φ(n, k) increase strictly monotonically in 0 ≤ k ≤ n − 3

[146]. As the set of all unicyclic graphs with n vertices is
⋃n−3

k=0 Un,k, by Theorems 7.3 and 7.4, Un
n−3

and Cn have the maximum and the minimum second Zagreb index among all unicyclic graphs with n

vertices [146].

In the paper [105], an extremal unicyclic graph that achieves the maximum second Zagreb index in
the class of unicyclic graphs with given degree sequence is characterized.

Let π = (d1, d2, . . . , dn) be a degree sequence of a c-cyclic graph, where c is an integer and c ≥ 0,
then

n∑

i=1

di = 2(n+ c− 1) , d1 ≥ d2 ≥ c+ 1 . (33)

We now present the construction of the graph G∗ ∈ Γ(π) as in [104, 105, 148, 152].

Select v1 as the root vertex and begin with v1 of the zeroth layer. Select the vertices v2, v3, . . . , vd1+1

as the first layer such that

N(v1) = {v2, v3, . . . , vd1+1} .
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Then append d2 − 1 vertices to v2, d3 − 2 vertices to v3,. . ., dc+2 − 2 vertices to vc+2 such that

N(v2) = {v1, v3, . . . , vc+2, vd1+2, vd1+3, . . . , vd1+d2−c}
N(v3) = {v1, v2, vd1+d2−c+1, . . . , vd1+d2+d3−c−2}

. . .

N(vc+2) = {v1, v2, v(∑c+1
i=1 di)−3c+3, . . . , v(∑c+2

i=1 di)−3c} .

After that, append dc+3 − 1 vertices to vc+3 such that

N(vc+3) = {v1, v(∑c+2
i=1 di)−3c+1, . . . , v(

∑c+3
i=1 di)−3c−1} .

Repeat the above procedure until all vertices are processed. As noted in [148], the vertices v1v2v3,
. . . , v1v2vc+2 form c triangles in G∗ and G∗ has a BFS-ordering. In particular, if c = 0 there are no
triangles and the graph G∗ coincides with the tree T ∗ specified in Theorem 6.9. If c = 1, then G∗ is a
unicyclic graph denoted by U∗ whereas if c = 2, then G∗ is bicyclic graph, denoted by B∗.

Let π = (d1, d2, . . . , dn), where dn = 1, be an unicyclic degree sequence (c = 1 in (33)). Let U∗ be
the unique unicyclic graph such that the unique cycle of U∗ is a triangle with V (C3) = {v1, v2, v3}, and
the remaining vertices appear in BFS-ordering with respect to C3 starting from v4 that is adjacent to v1.
In fact, U∗ can be constructed by the BFS method as described above.

Theorem 7.5. [105] If dn = 1, then U∗ achieves the maximum second Zagreb index in the class of

unicyclic graph with degree sequence π.

Remark. [105] For a given unicyclic degree sequence π, U∗ is the unique BFS-graph with the
maximum M2 in Γ(π), but it needs not be the unique unicyclic graph with maximum M2 in Γ(π), which
is illustrated by an example in [105].

In addition, it is proven in [105], that if π C π′, π and π′ are unicyclic degree sequences and U∗ and
U∗∗ have the maximum second Zagreb indices in Γ(π) and Γ(π′), respectively, then M2(U

∗) < M2(U
∗∗).

As a simple corollary of Theorem 7.5, the result from [146], which is concerned with unicyclic
graphs with n vertices and k pendent vertices whose second Zagreb index is maximum is reproven
in [105]. Furthermore, the first to ninth largest second Zagreb indices together with the corresponding
extremal unicyclic graphs in the class of unicyclic graphs with n ≥ 17 vertices have been determined
in [105].

Theorem 7.6. [105] Let U be a unicyclic graph on n ≥ 17 vertices. If

U /∈ {U1, U2, . . . , U10}, then M2(U) < M2(U10) < M2(U9) < M2(U8) < M2(U7) = M2(U6) <

M2(U5) < M2(U4) < M2(U3) < M2(U2) < M2(U1), where U1 − U10 are unicyclic graphs displayed in

Fig. 12.
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Fig. 12. The unicyclic graphs U1, U2, . . . , U10 occurring in Theorem 7.6.

In the paper [135], unicyclic graphs of order n and independence number α with minimal first Zagreb
index are determined. Let Un,α denote the set consisting of all unicyclic graphs G = (V,E) with n

vertices and independence number α, such that the degrees of the vertices in its maximum independent
set S differ by at most one among each other, and such that the complement S = V \S is also independent
set whose vertex degrees differ by at most one among each other. These graphs, in fact, consist of
coalescence of stars, whose orders differ by at most one, with pairs of leaves identified in neighboring
stars (see Fig. 13).

Fig. 13. Four non-isomorphic unicyclic graphs with n = 10 , α = 7 and minimum value of M1 = 50 .

Theorem 7.7. [135] If G is a unicyclic graph with n vertices and the independence number α, then

M1(G) ≥ 4n− 2α− (n− α)

⌊
n

n− α

⌋2
+ (n+ α)

⌊
n

n− α

⌋
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with equality if and only if G ∈ Un,α when α ≥ n/2 and G ∼= C2α+1 when α = (n− 1)/2.

Huang and Deng in [83] characterized unicyclic graphs with perfect matchings which attain the
largest and the second largest values of Zagreb indices. Denote by Um the set of unicyclic graphs with
perfect matchings on 2m vertices. Let U1

m ∈ Um be the graph on 2m vertices obtained from C3 by
attaching a pendent edge together with m − 2 paths of lengths 2 at the vertex u (see Fig. 14). Let
U2
m ∈ Um be the graph on 2m vertices obtained from C3 by attaching a pendent edge and m − 3 paths

of lengths 2 at the vertex u, and single pendent edges at the other vertices, respectively (see Fig. 14).

Fig. 14. The graphs occurring in Theorem 7.8.

Theorem 7.8. [83]
a) Let G ∈ Um. If m = 2 or m ≥ 5, then U1

m and U2
m are the graphs with the largest and second

largest Zagreb indices, respectively.

b) Let G ∈ U3. Then M1(G) < M1(U
2
3 ) = M1(U

1
3 ) and M2(G) < M2(U

1
3 ) < M2(U

2
3 ).

c) Let G ∈ U4. Then M1(G) < M1(U
2
4 ) < M1(U

1
4 ) and M2(G) < M2(U

2
4 ) = M2(U

1
4 ).

Horoldagva and Das in [76] gave lower bounds for M1 of unicyclic graphs of order n with maximum
degree ∆ and cycle length k. Denote by Bn(k,∆) the set of graphs of order n obtained by attaching
∆− 2 paths to one vertex of Ck.

Theorem 7.9. [76] Let G be a connected unicyclic graph of order n with maximum degree ∆ and cycle

length k (3 ≤ k ≤ n−∆+ 2). Then

M1(G) ≥ ∆(∆− 3) + 4n+ 2
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with equality if and only if G ∈ Bn(k,∆) .

Let Bk
n (k ≤ n) be the unicyclic graph of order n with n − k pendent vertices such that its each

pendent vertex is adjacent to one vertex of Ck. In particular, Bn
n
∼= Cn, a cycle of order n. Denote by

Ck
n, ∆ (∆ ≥ 4) , the unicyclic graph obtained by identifying two pendent vertices of the path Pn−∆−k+2

with the center of the star K1,∆−1 and one vertex of the cycle Ck, respectively. Denote by Dk
n,∆ (∆ ≥ 4) ,

the unicyclic graph of order n, obtained by identifying a pendent vertex of Pn−∆−k+3 with a pendent
vertex of Bk

∆+k−2. Let Ak
n be the unicyclic graph obtained by identifying one pendent vertex of Pn−k+1

with a vertex of Ck.

Let G be a connected unicyclic graph of order n with maximum degree ∆ and cycle length k. Then
obviously ∆ + k ≤ n + 2. If ∆ + k = n and the maximum degree vertex does not lie on the cycle of
G, then G is isomorphic to Ck

n,∆. If ∆+ k ≥ n and G is different from Ck
n,∆, then the maximum degree

vertex of G must lie on the cycle. In this case one can easily characterize graphs with minimum M2.
In [76], Horoldagva and Das obtained the following lower bound on M2(G) and characterize extremal
graphs when ∆+ k < n.

Theorem 7.10. [76] Let G be a connected unicyclic graph of order n with maximum degree ∆ and cycle

length k (∆ + k < n). Then

M2(G) ≥





∆(∆− 3) + 4n+ 6 if ∆ ≥ 5

4n+ 10 if ∆ = 4

4n+ 4 if ∆ = 3

(34)

where ∆ is the maximum degree in G. Moreover, the equalities hold in (34) if and only if G ∼= Ck
n,∆,

G ∼= Ck
n,4 or G ∼= Dk

n,4, G ∼= Ak
n, respectively.

Zhao and Li [153] determined sharp lower and upper bounds for both M1 and M2 of n-vertex bicyclic
graphs with k pendent vertices, as well as the corresponding extremal graphs which attain these bounds.

The set of n-vertex bicyclic graphs consists of graphs of two types: graphs whose two independent
cycles have no common edge and graphs whose two independent cycles have at least one edge in com-
mon. The arrangement of cycles contained in a bicyclic graph has three possible cases [45,153], depicted
in Fig. 15, and denoted by B1(a, b), B2(a, b, r) and B3(a, b, r), respectively.

Let Bn,k be a set of n vertex bicyclic graphs with k pendent vertices and let Bi
n,k be a subset of Bn,k

consisting of those graphs G whose arrangement of cycles is Bi, where Bi is depicted in Fig. 15, for
i = 1, 2, 3.
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Ca Cb

Ca

Cb

{

r+1

Ca Cb{
r+1

Ca

Cb

..
. }k

..
. }k

..
.

..
.

}
n-k-5

..
.

}
2k-n+5

}n-4

B1(a,b) B2(a,b,r)

B3(a,b,r)

B2(3,3,1)(1,1,...,1)

B6B5

B4

{

n-4

Fig. 15. The different types of bicyclic graphs.

Denote by Bi(a, b)(p1, p2, . . . , pk), i = 1, 2, 3, k ≥ 1, the n-vertex bicyclic graphs obtained from
B1(a, b) and Bi(a, b, r), i = 2, 3, respectively, by attaching k pendent paths of lengths p1, p2, . . . , pk

to exactly one vertex of maximum degree in B1(a, b), i.e., in Bi(a, b, r), i = 2, 3, where pj ≥ 1,
j = 1, 2, . . . , k. Also, let

B∗
n,k =

{
B1(a, b)(p1, p2, . . . , pk) : pi ≥ 2, 1 ≤ i ≤ k

}

B∗∗
n,k =

{
B1(a, b)(p1, p2, . . . , pk) : pi ≥ 1, 1 ≤ i ≤ k

}

Bn
k = B1(3, 3)(1, . . . , 1︸ ︷︷ ︸

2k−n+5

, 2, . . . , 2︸ ︷︷ ︸
n−k−5

) .

The graphs B4 ∈ B∗
n,k, B5 ∈ B∗∗

n,k and B6 ∼= Bn
k are depicted in Fig. 15.

Let B+
n,k be a set of graphs G from B2

n,k ∪ B3
n,k such that ∆(G) ≤ 3, each pendent vertex from G is

adjacent to a vertex of degree 3 and every pair of vertices of degree 3 are nonadjacent. Also, let B++
n,k be

a set of graphs G from Bn,k such that |d(u)− d(v)| ≤ 1 for all non-pendent vertices u, v ∈ V (G).
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Theorem 7.11. [153] Let G ∈ Bn,k with 0 ≤ k ≤ n− 5. Then

M1(G) ≤ 4n+ k2 + 5k + 12

with equality attained if and only if G ∈ B∗∗
n,k.

Theorem 7.12. [153] Let G ∈ Bn,k with 0 ≤ k ≤ n− 5. Then

M2(G) ≤




4n+ 2k2 + 10k + 20 if n ≥ 2k + 5

6n+ nk + k + 10 if n ≤ 2k + 4 .

Equalities hold if and only if G ∈ B∗
n,k, for n ≥ 2k + 5, and G ∼= Bn

k , for n ≤ 2k + 4.

Theorem 7.13. [153] Let G ∈ Bn,k with 0 ≤ k ≤ n− 4, d =
⌈
2k+2−n
n−k

⌉
. Then

M1(G) ≥




4n+ 2k + 10 if n ≥ 2k + 2

(−d2 − d+ 3)n+ (d2 + 3d+ 2)k + (4d+ 10) if n ≤ 2k + 1 .
(35)

Equalities in (35) hold if and only if G ∈ B++
n,k .

Theorem 7.14. [153] Let G ∈ Bn,k with 0 ≤ k ≤ n− 4, d =
⌈
2k+2−n
n−k

⌉
. Then

M2(G) ≥ 4n+ 3k + 16 .

Equality holds if and only if n ≥ 3k + 3 and G ∈ B+
n,k.

On the basis of Theorems 7.11 and 7.12, Zhao and Li [153] deduced that if 0 ≤ k ≤ n−5, then each
member G ∈ B∗∗

n,n−5 and Bn
n−5, respectively, have the maximum first and second Zagreb indices among

graphs from
⋃n−5

k=0 Bn,k, and furthermore

M1(G) = n2 − n+ 12 , for G ∈ B∗∗
n,n−5 , M2(B

n
n−5) = n2 + 2n+ 5 .

If k = n− 4, then [153]

G ∼= B2(3, 3, 1)(1, . . . , 1︸ ︷︷ ︸
n−4

) , and M1(G) = n2 − n+ 14 , M2(G) = n2 + 2n+ 9 .

Hence, the graph B2(3, 3, 1)(1, . . . , 1︸ ︷︷ ︸
n−4

), depicted in Fig. 15, has the maximum M1-value and M2-

value among all bicyclic graphs with n vertices, which represents in fact the reproved result of Deng [45].
The same result concerning bicyclic graphs with maximal M1 was obtained independently in [27] using
a different approach.

Also, it was easy to deduce [153] that each member in B++
n,0 (resp. B+

n,0) has the minimum first (resp.
second) Zagreb index among all n-vertex bicyclic graphs, and in such a way the corresponding results
of Deng [45] were reproved.

The study of optimal graphs in the set of all connected graphs with a given degree sequence π which
satisfy some conditions was continued in the paper [148] and some results that generalize the main
results of the papers [104, 105] were obtained. In addition, some optimal graphs in the set of bicyclic
graphs with a given degree sequence were determined. First, it was proven:
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Theorem 7.15. [148] Let π = (d1, d2, . . . , dn) be a degree sequence. If it satisfies the following condi-

tions

(i)
∑n

i=1 di = 2(n+ c− 1), c is an integer and c ≥ 0,

(ii) d1 ≥ d2 ≥ c+ 1,

(iii) d3 ≥ d4 = d5 = · · · = dc+2, for c ≥ 1,

(iv) dn = 1,

then the graph G∗, constructed as described in the explanation of Theorem 7.5, is an optimal graph in

Γ(π), i.e., for any graph G ∈ Γ(π), M2(G) ≤ M2(G
∗).

The previous theorem implies the results of Theorems 6.9 and 7.5. Also, the corresponding result
for bicyclic graphs was obtained. A bicyclic graph has the so-called bicyclic degree sequence π which
satisfies the condition (33) for c = 2. We will use the notation from [153], introduced previously. By
B2(a, b, 1) we denote a bicyclic graph such that two independent cycles Ca and Cb, contained in it, have
exactly one edge in common. Also, let B3(a, b, 1) be a bicyclic graph formed by joining two independent
cycles Ca and Cb by an edge (see Fig. 15, where r = 1). Finally, let Bπ be the set of bicyclic graphs
with a degree sequence π.

Theorem 7.16. [148] Let π = (d1, d2, . . . , dn) be a bicyclic degree sequence and let k be the number of

pendent vertices of a graph G ∈ Bπ.

(1) If dn = 2 and d2 ≥ 3, then M2(G) ≤ 4n + 17 with equality if and only if G ∼= B3(a, b, 1) or

G ∼= B2(a, b, 1), where a+ b = n or a+ b− 2 = n, respectively.

(2) If dn = 2 and d2 = 2, then M2(G) ≤ 4n + 20 with equality if and only if G ∼= B1(a, b), where

a+ b− 1 = n.

(3) If dn = 1, d2 = 2 and k ≤ (n − 5)/2, then M2(G) ≤ 4n + 2k2 + 10k + 20 with equality if and

only if G ∈ B∗
n,k.

(4) If dn = 1, d2 = 2 and k > (n− 5)/2, then M2(G) ≤ kn+ 6n+ k + 10 with equality if and only

if G ∼= Bn
k ;

(5) If dn = 1 and d2 ≥ 3, then the graph B∗, defined previously (see the explanation of Theorem 6.9),

is an optimal graph in the set Bπ.

Remark. [148] B∗ is not the unique optimal graph in Bπ for dn = 1 and d2 ≥ 3, as illustrated by an
example in [148].

Besides, in paper [148], it was proven:

Theorem 7.17. [148] Let π and π′ be two non-increasing bicyclic degree sequences. If π C π′, then

M2(π) ≤ M2(π
′), with equality if and only if π = π′.

By Theorem 7.16 (parts (3) and (4)) the results of Theorem 7.12, concerned with bicyclic graphs
with n vertices and k pendent vertices whose second Zagreb index is maximum are reproved.

Recall that Goubko (see Theorem 6.16) determined the lower bound for M1 of trees with a given
number of pendent vertices. This result was extended in [68] to any connected graph with a given
number of pendents and fixed cyclomatic number.
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Theorem 7.18. [68] Let G be a connected graph with k pendent vertices and cyclomatic number c.

Then,

M1(G) ≥ 9k + 16(c− 1) . (36)

Equality in (36) holds if and only if all non-pendent vertices of G are of degree 4, provided such graphs

exist.

The corresponding result for trees (c = 0) is stated in Theorem 6.17, and the result for unicyclic
graphs is stated below.

Theorem 7.19. [68] Let U be a unicyclic graph of order n with k pendent vertices. Then

M1(U) ≥ 4n+ (n+ k)

⌊
n

n− k

⌋
− (n− k)

⌊
n

n− k

⌋2
.

Equality is attained if and only if U consists of k pendent vertices, nt = (n − k)
⌊

n
n−k

⌋
− k vertices of

degree t =
⌊

n
n−k

⌋
+ 1, and nt+1 = n− (n− k)

⌊
n

n−k

⌋
vertices of degree t+ 1.

Unicyclic graphs of order n with k pendent vertices and minimal first Zagreb index, of the form
specified in Theorem 7.19, exist for any value of n and k, provided n ≥ 3 and k ≥ 0.

Besides, in [68], the result from [153] were reproved, with some additional conditions proposed.
In fact, it was shown in [68] that the extremal n-vertex bicyclic graphs with k pendent vertices which
attain the minimum value of M1, contain additional nt = (n − k)

⌊
n+2
n−k

⌋
− k − 2 vertices of degree

t =
⌊
n+2
n−k

⌋
+ 1 = d + 2, and nt+1 = n + 2 − (n − k)

⌊
n+2
n−k

⌋
vertices of degree t + 1 = d + 3, where

d =
⌈
2k+2−n
n−k

⌉
(cf. Theorem 7.13).

In the paper [132], Tache considered some degree–based topological indices for bicyclic graphs,
including the first Zagreb index. Extremal bicyclic graphs with fixed number of pendents with maximal
value of M1 were determined, reproving in such a way the results from [153]. Besides, the results on
extremal bicyclic graphs with fixed girth which attain the maximum value of M1 were obtained.

Denote by B∗2(a, b, r) a bicyclic graph B2(a, b, r)(1, . . . , 1︸ ︷︷ ︸
n−4

) obtained by attaching k pendent edges

to exactly one vertex of maximum degree to the graph B2(a, b, r) from Fig. 15.

Theorem 7.20. [132] Let G be a bicyclic graph of order n and girth g ≥ 3. If G maximizes the index

M1, then G ∼= B∗2(g, g, g
2
) for g an even number and G ∼= B∗2(g, g, g−1

2
) for g odd.

Li and Zhao in [90] determined sharp upper bounds for M1 and M2 of bicyclic graphs with perfect
matchings. Besides, in [90], sharp upper bounds for Zagreb indices of bicyclic graphs with an m-
matching were also obtained.

Denote by Bn,m the set of n-vertex bicyclic graphs with an m-matching, and let Bn,m, B1, B2, B3

and B4 be the graphs depicted in Fig. 16.
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...

...{m-3 {n-2m+1

Bn,m B1

B2 B3

B4

Fig. 16. Bicyclic graphs playing role in Theorems 7.21 and 7.22.

Let

f1(n,m) = (n−m+ 2)2 + n+ 3m+ 2

f2(n,m) = (n−m+ 2)(n+ 3) + 2m+ 2 .

Theorem 7.21. [90] Let G ∈ B2m,m \ {B1, B4}, where m ≥ 3. Then

Mi(G) ≤ fi(2m,m) , i = 1, 2

and for each of the inequalities, the equality holds if and only if G ∼= B2m,m.

As noted in [90], B6,3 has the maximum first Zagreb index in B6,3, while B1 has the maximum
second Zagreb index in B6,3. Also, B8,4 has the maximum first Zagreb index in B8,4, while B4 has the
maximum second Zagreb index in B8,4.

For bicyclic graphs with an m-matching it holds

Theorem 7.22. [90] Let G ∈ Bn,m \ {B1, B4}, where m ≥ 3. Then

Mi(G) ≤ fi(n,m) , i = 1, 2

and for each of the inequalities, the equality holds if and only if G ∼= Bn,m.
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Also, by [90], B7,3 has the maximum first Zagreb index in B7,3, while B7,3 and B2 both have the
maximum second Zagreb index in B7,3. Similarly, B9,4 has the maximum first Zagreb index in B9,4,
while B9,4 and B3 both have the maximum second Zagreb index in B9,4.

In the paper [44], the first and second maximum values of the first and second Zagreb indices of
n-vertex tricyclic graphs are determined.

Let qn(n1, n2, n3, n4, n5) be a graph obtained from a simple graph G with vertex set V (G) =

{v1, v2, v3, v4, v5} and edge set E(G) = {v1vi, v2vj : 2 ≤ i ≤ 5, 3 ≤ j ≤ 5} by adding ni − 1

pendent vertices to vertex vi, 1 ≤ i ≤ 5, such that n1 ≥ n2 ≥ n3 ≥ n4 ≥ n5 and ni ≥ 1 (see Fig. 17).
Denote by Kn(n1, n2, n3, n4) a graph obtained from K4 by adding ni − 1 pendent vertices to vertex

vi, 1 ≤ i ≤ 4, such that ni ≥ 1 and n1 = max{n1, n2, n3, n4}, see Fig. 17.

Fig. 17. (a) The graph qn(n1, n2, n3, n4, n5) ; (b) The graph Kn(n1, n2, n3, n4) .

It was concluded in [44] that if the number of non-pendent vertices decreases, then the first and
second Zagreb indices of the graphs under consideration will increase. This implies that the maximum
of Zagreb indices among all tricyclic graphs is attained at graphs with a few number of non-pendent
vertices. By inspecting all possible sets of tricyclic graphs with specified number of non-pendent vertices,
the authors came to the following result.

Theorem 7.23. [44]
(i) Among all n-vertex tricyclic graphs, n ≥ 5, Kn(n − 3, 1, 1, 1) and qn(n − 4, 1, 1, 1, 1) have the

maximum values of the first Zagreb index.

(ii) If n = 6, 7, then K6(2, 2, 1, 1) and q7(2, 2, 1, 1, 1) have the second–maximum value of the first

Zagreb index. If n ≥ 5, then qn(n−4, 1, 1, 1, 1) has the second–maximum value of the first Zagreb index.

(iii) The graph Kn(n− 3, 1, 1, 1) has the maximum value of the second Zagreb index.

(iv) For n = 6, 7, 8, the graph Kn(n − 4, 2, 1, 1) and for n = 5 and n ≥ 9, the graph qn(n −
4, 1, 1, 1, 1) have the second–maximum value of the second Zagreb index.
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This research was continued and in the paper [72], using similar techniques, the first three maximum
values of M1 and the first and second maximum values of M2 in the class of n-vertex tetracyclic graphs
with n ≥ 6 was determined. In order to state the obtained results we need few definitions.

Let F5 be a graph obtained from K4 by adding a vertex v5 and connecting it to two vertices of K4,
whereas the vertices of F5 are labeled so that d(v1) = d(v2) = 4, d(v3) = d(v4) = 3 and d(v5) = 2, as
shown in Fig. 18.

Define Fn(n1, n2, n3, n4, n5) as a graph, depicted in Fig. 18, obtained from F5 by adding ni − 1

pendent vertices to each vi such that ni ≥ 1, n1 ≥ n2 ≥ n3 ≥ n4 ≥ n5, 1 ≤ i ≤ 5. Notice that∑5
i=1 ni = n.

Let W5 be the wheel with center v1 and construct a graph Wn(n1, n2, n3, n4, n5) from W5 by adding
ni − 1 pendent vertices to each vi such that

∑5
i=1 ni = n, n1 = max{n1, n2, n3, n4, n5} and ni ≥ 1,

1 ≤ i ≤ 5 (see Fig. 18).

Next, let Q(6, 3, 3, 3, 3) is a tetracyclic graph, depicted in Fig. 18, such that all of its cycles of length
3 have a common edge. Construct the graph Qn(n1, n2, n3, n4, n5, n6) from Q(6, 3, 3, 3, 3) by adding
ni − 1 pendent vertices to each vi such that

∑6
i=1 ni = n, n1 ≥ n2 ≥ n3, n3 = max{n3, n4, n5, n6} and

ni ≥ 1, 1 ≤ i ≤ 6.

Fig. 18. (a) F5 ; (b) Fn(n1, n2, n3, n4, n5) ; (c) W5 ; (d) Wn(n1, n2, n3, n4, n5) ; (e) Q(6, 3, 3, 3, 3) (f)
Qn(n1, n2, n3, n4, n5, n6) ; (g) Qn(n− 5, 1, 1, 1, 1, 1) .
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By considering tetracyclic graphs with a few non-pendent vertices, the authors came to the following
conclusions.

Theorem 7.24. [72] The graph Qn(n − 5, 1, 1, 1, 1, 1) attains the maximum value of the first Zagreb

index among all n-vertex tetracyclic graphs, n ≥ 6. Moreover, M1(Qn(n−5, 1, 1, 1, 1, 1)) = n2−n+36.

Theorem 7.25. Among n-vertex tetracyclic graphs, n ≥ 6, the graphs with the second–maximal M1-

values (cases a and b) and third–maximal M1-values (cases c, d, e) are as follows:

a) Fn(n− 4, 1, 1, 1, 1) with M1(Fn(n− 4, 1, 1, 1, 1)) = n2 − n+ 34, where n ≥ 6 and n 6= 8;

b) F8(4, 1, 1, 1, 1) and Q8(2, 2, 1, 1, 1, 1) with the first Zagreb index equal to 90;

c) W7(3, 1, 1, 1, 1) and F7(2, 2, 1, 1, 1) with the first Zagreb index equal to 74;

d) W9(5, 1, 1, 1, 1) and Q9(3, 2, 1, 1, 1, 1) with the first Zagreb index equal to 104;

e) Wn(n− 4, 1, 1, 1, 1) with M1(Wn(n− 4, 1, 1, 1, 1)) = n2 − n+ 32, where n = 8 or n ≥ 10.

Theorem 7.26. [72] Among n-vertex tetracyclic graphs, n ≥ 6, Fn(n− 4, 1, 1, 1, 1) has the maximum

second Zagreb index equal to M2(Fn(n− 4, 1, 1, 1, 1)) = n2 + 6n+ 34. The second–maximum value of

M2 is as follows:

a) Qn(n− 5, 1, 1, 1, 1, 1) with second Zagreb index n2 + n+ 33, where n ≥ 6 and n 6= 7;

b) F7(2, 2, 1, 1, 1) and Q7(2, 1, 1, 1, 1, 1) with second Zagreb index 124.

A connected graph is a cactus if any of its cycles have at most one common vertex. In [88], Li et
al. investigated the first and second Zagreb indices of cacti with k pendent vertices. If all cycles of the
cactus G have exactly one common vertex, we say that they form a bundle. Denote by Cn,k the set of all
connected cacti on n vertices with k pendent vertices.

Theorem 7.27. [88] Let G be a graph in Cn,k.

(i) If n− k ≡ 1 (mod 2), then M1(G) ≤ n2 + 2n− 3k − 3 and M2(G) ≤ 2n2 − (k + 2)n− k, with

equality in both cases if and only if G ∼= C1(n, k), where C1(n, k) is depicted in Fig. 19.

(ii) If n − k ≡ 0 (mod 2), then M1(G) ≤ n2 − 3k, with equality if and only if G ∼= C2(n, k) or

G ∼= C3(n, k), where C2(n, k) and C3(n, k) are depicted in Fig. 19.

(iii) If n−k ≡ 0 (mod 2), then M2(G) ≤ 2n2−(k+5)n+4, with equality if and only if G ∼= C2(n, k),

where C2(n, k) is depicted in Fig. 19.

Fig. 19. Cacti occurring in Theorem 7.27.
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As a consequence, the n-vertex cacti with maximal Zagreb indices were determined, as well as the
cactus with the perfect matching having maximal Zagreb indices.

Theorem 7.28. [88] Let G be connected cactus on n vertices.

(i) M1(G) ≤ n2 + 2n− 3 and M2(G) ≤ 2n2 − 2n, for odd n, and the equality holds in both cases if

and only if G ∼= C1
n, where C1

n is the graph depicted in Fig. 20.

(ii) M1(G) ≤ n2 + 2n − 6 and M2(G) ≤ 2n2 − 3n − 1, for even n, and the equality holds in both

cases if and only if G ∼= C2
n, where C2

n is the graph depicted in Fig. 20.

Fig. 20. Cacti occurring in Theorem 7.28.

Theorem 7.29. [88] Let G be 2k-vertex cactus with perfect matching. Then, Mi(G) ≤ Mi(C
2
2k) for

i = 1, 2, and the equality holds if and only if G ∼= C2
2k.

In addition, in [88], the authors determined sharp lower bounds for M1 and M2 of graphs from Cn,k.
It is assumed that for all G ∈ Cn,k, G contains at least one cycle. Recall that by U+

n,k we denote the set of
unicyclic graphs G with n vertices and k pendent vertices, such that ∆(G) ≤ 3 and each pendent vertex
of G is adjacent to another vertex of degree 3 and every pair of vertices of degree 3 are non-adjacent.
Also, denote by U++

n,k the set of unicyclic graphs G with n vertices and k pendent vertices, such that
∆(G) ≤ 3 and the number of vertices of degree 3 is equal to the number of pendent vertices k. Then,
the following statement holds.

Theorem 7.30. [88] Let G ∈ Cn,k and 0 ≤ k ≤ n − 3. Then M1(G) ≥ 4n + 2k with equality if and

only if n ≥ 2k and G ∈ U++
n,k . In addition, M2(G) ≥ 4n + 3k with equality if and only if n ≥ 3k and

G ∈ U+
n,k.

At the end of this section we mention few results from [45], [15], and [14] which provide a unified
approach to the largest and smallest Zagreb indices of trees and cyclic graphs. In the paper [45], Deng
introduced some transformations that increase (decrease) the Zagreb indices. First, we present two
transformations from [45] which increase Zagreb indices.

Transformation A. Let uv be an edge of G, dG(v) ≥ 2, NG(u) = {v, w1, w2, . . . , wt} and dG(wi) =

1 for i = 1, 2, . . . , t. Let

G′ = G− {uwi | 1 ≤ i ≤ t}+ {vwi | 1 ≤ i ≤ t}

see Fig. 21.
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Fig. 21. The transformations A, B, C, and D.

Transformation B. Let u and v be two vertices in G with u1, u2, . . . , ur being pendent vertices
adjacent to u and v1, v2, . . . , vt being pendent vertices adjacent to v. Let

G′ = G− {uu1, uu2, . . . , uur}+ {vu1, vu2, . . . , vur}
G′′ = G− {vv1, vv2, . . . , vvt}+ {uv1, uv2, . . . , uvt}

see Fig. 21.

It has been proven in [45], that for a graph G′ obtained from G by the transformation A it holds
Mi(G

′) > Mi(G) i = 1, 2. Also, by [45], for the graphs G′ and G′′ obtained from G by the transforma-
tion B, it holds that either Mi(G

′) > Mi(G) or Mi(G
′′) > Mi(G), i = 1, 2.

By using transformations A and B, results from [37, 66], concerning extremal trees with maximal
values of Zagreb indices were reproven. Also, Deng [45] obtained the corresponding results for unicyclic
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and bicyclic graphs with maximal Zagreb indices and in such a way some previously known results
from [103, 146, 150] were reproven.

Deng [45] also presented two transformations which decrease Zagreb indices.
Transformation C. Let G 6= P1 be a connected graph and choose u ∈ V (G). By G1 is denoted the

graph resulting from identifying u with the vertex vk of a path v1v2 . . . vn, 1 < k < n. By G2 is denoted
the graph obtained from G1 by deleting vk−1vk and adding vk−1vn (see Fig. 21).

Transformation D. Let u and v be two vertices in a graph G. G1 denotes the graph that results
from identifying u with the vertex u0 of a path u0u1 . . . ur and identifying v with the vertex v0 of a path
v0v1 . . . vt. Graph G2 is obtained from G1 by deleting uu1 and adding vtu1 (see Fig. 21).

It was proven in [45], that for the graphs G1 and G2, obtained by transformation C, it holds Mi(G1) >

Mi(G2), i = 1, 2. Also, for graphs G1 and G2, obtained by transformation D, the following statement
holds.

Theorem 7.31. [45] Let G1 and G2 be the graphs depicted in Fig. 21. If dG(u) ≥ dG(v) > 1, r ≥ 1

and t ≥ 0, then

(i) if t > 0, then M1(G1) > M1(G2) and M2(G1) > M2(G2);

(ii) if t = 0 and dG(u) > dG(v), then M1(G1) > M1(G2);

(iii) if t = 0 and
∑

x∈NG(u)−{v} dG(x) >
∑

y∈NG(v)−{u} dG(y), then M2(G1) > M2(G2) .

By using transformations C and D, and the previous theorem, trees, unicyclic and bicyclic graphs
whose Zagreb indices are minimum can be obtained, as shown in [45], and in such a way some earlier
known results for trees and unicyclic graphs have been confirmed [37, 66, 103, 150] and new results on
extremal bicyclic graphs with minimal Zagreb indices, presented in the previous discussions, have been
obtained.

In the papers [14, 15] Bianchi et al. established a unified approach aimed at determining upper and
lower bounds for M1 and M2 of trees and c-cyclic graphs, 1 ≤ c ≤ 6, by using of a majorization
technique and Schur–convexity introduced in [110]. In fact, in the class of c-cyclic graphs, Bianchi et
al. [14, 15] were interested in finding graphs associated to the maximal (minimal) degree sequence with
respect to the majorization order. Before we present the results of [14, 15], we need few observations.

As mentioned before, the degree sequence π = (d1, d2, . . . , dn) of c-cyclic graph satisfies the condi-
tion

∑n
i=1 di = 2(n+c−1), i.e., for short, π ∈∑2(n+c−1). Let now F (d1, d2, . . . , dn) be any topological

index which is a Schur–convex function of its arguments, defined on a subset S ⊆∑a, where

∑

a

=

{
x = (x1, x2, . . . , xn) ∈ Rn : x1 ≥ x2 ≥ . . . ≥ xn ≥ 0,

n∑

i=1

xi = a

}
.

Since the Schur–convex functions have the order preserving property, it holds

F (x∗(S)) ≤ F (d1, d2, . . . , dn) ≤ F (x∗(S))

where x∗(S) and x∗(S) are the minimal and maximal elements of S, respectively, with respect to the
majorization order. Using these arguments, extremal degree sequences of c-cyclic graphs (0 ≤ c ≤ 6)
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were determined and, consequently, extremal c-cyclic graphs with respect to M1 were obtained in [14].
In such a way, some existing results mentioned previously [44, 66, 72, 103, 105, 150, 153] for 0 ≤ c ≤ 4

were recovered and some new results were obtained as well. Here we mention only the new ones.
Since the upper and lower bounds for M1 and corresponding extremal trees, unicyclic, and bicyclic

graphs have already been presented, we start with tricyclic graphs.
Tricyclic graphs. The upper bounds for M1 of tricyclic graphs and the corresponding extremal

graphs have earlier been outlined (Theorem 7.23). Thus we present here only the lower bounds arising
from considerations in the paper [14].

(i) For n = 4, there is only one tricyclic graph associated to the sequence (3, 3, 3, 3), and thus
M1 = 36.

(ii) For n ≥ 5, there is one minimal degree sequence (3, . . . , 3︸ ︷︷ ︸
4

, 2, . . . , 2︸ ︷︷ ︸
n−4

), corresponding to the graph

(a) in Fig. 22, for n = 8, hence M1 ≥ 4n+ 20.

a) b)

c) d)

e) f)

Fig. 22. Tricyclic and higher-cyclic graphs with minimal M1, according to [14].

Tetracyclic graphs. Similarly to the previous case, we present only the lower bounds for M1 of
tetracyclic graphs, since the upper bounds and the corresponding extremal graphs have been presented
in Theorem 7.24.

(i) For n = 5, the maximal degree sequence is (4, 4, 3, 3, 2) and the minimal one is (4, 3, 3, 3, 3),
hence 52 ≤ M1 ≤ 54.

(ii) For n ≥ 6 there is one minimal degree sequence (3, . . . , 3︸ ︷︷ ︸
6

, 2, . . . , 2︸ ︷︷ ︸
n−6

) corresponding to the graph

(b) in Fig. 22 for n = 8, hence M1 ≥ 4n+ 30.
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Pentacyclic graphs.
(i) For n = 5, there is only one pentacyclic graph with the degree sequence (4, 4, 4, 3, 3), hence

M1 = 66.

(ii) For n = 6, there exist two maximal incomparable degree sequences (5, 5, 3, 3, 2, 2) and (5, 4, 4,

3, 3, 1), and one minimal degree sequence (4, 4, 3, 3, 3, 3). As suggested in [14], when more maximal
(or minimal) elements are identified, the best one depends on the topological index under consideration.
Hence, for M1 it can easily be deduced that 68 ≤ M1 ≤ 76.

(iii) For n = 7, the minimal degree sequence is (4, 3, . . . , 3︸ ︷︷ ︸
6

), whereas for n ≥ 8, the minimal one is

(3, . . . , 3︸ ︷︷ ︸
8

, 2, . . . , 2︸ ︷︷ ︸
n−8

).

For n ≥ 7, there are three incomparable maximal degree sequences

(n− 1, 6, 2, . . . , 2︸ ︷︷ ︸
5

, 1, . . . , 1︸ ︷︷ ︸
n−7

) , (n− 1, 5, 3, 3, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−6

) , (n− 1, 4, 4, 3, 3, 1, . . . , 1︸ ︷︷ ︸
n−5

) .

Thus, it is easily deduced that for n = 7 it holds 70 ≤ M1 ≤ 92 and for n ≥ 8 we have 4n + 40 ≤
M1 ≤ n2 − n + 50, wherein the graphs (c) and (d) in Fig. 22 achieve, for n = 9, the latter lower and
upper bounds, respectively.

Hexacyclic graphs.
(i) For n = 5, there is only one hexacyclic graph associated to the degree sequence (4, . . . , 4︸ ︷︷ ︸

5

), hence

M1 = 80.

(ii) For n = 6, we have two incomparable maximal degree sequences (5, 5, 4, 3, 3, 2) and (5, 4, 4, 4,

4, 1), and one minimal degree sequence (4, 4, 4, 4, 3, 3). Simple calculation yields 82 ≤ M1 ≤ 90.

(iii) For n = 7, there exist three maximal incomparable degree sequences
(6, 6, 3, 3, 2, 2, 2), (6, 5, 4, 3, 3, 2, 1), and (6, 4, 4, 4, 4, 1, 1), and one minimal degree sequence (4, 4, 4, 3,

3, 3, 3), from which one concludes that 84 ≤ M1 ≤ 102.

(iv) For n = 8 and n = 9, the minimal degree sequences are (4, 4, 3, . . . , 3︸ ︷︷ ︸
6

) and (4, 3, . . . , 3︸ ︷︷ ︸
8

),

respectively, whereas for n ≥ 10, the minimal one is (3, . . . , 3︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
n−10

). Thus, for n = 8 and 9, the the

lower bounds for M1 are 86 and 88, respectively, whereas for n ≥ 10 it holds M1 ≥ 4n + 50, wherein
the graph (e) in Fig. 22 achieves, for n = 11, the lower bound.

For n ≥ 8, there are four incomparable maximal degree sequences

(n− 1, 7, 2, . . . , 2︸ ︷︷ ︸
6

, 1, . . . , 1︸ ︷︷ ︸
n−8

) , (n− 1, 6, 3, 3, 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−7

)

(n− 1, 5, 4, 3, 3, 2, 1, . . . , 1︸ ︷︷ ︸
n−6

) , (n− 1, 4, . . . , 4︸ ︷︷ ︸
4

, 1, . . . , 1︸ ︷︷ ︸
n−5

)

and hence, by a simple calculation, it holds M1 ≤ n2 − n + 66 and the graph (f) in Fig. 22, achieves,
for n = 11, this upper bound.
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It was suggested in [14] that this approach can be extended to other topological indices whenever
they can be expressed as Schur–convex or Schur–concave functions of the degree sequence of the graph.

An analogous approach was applied in the paper [15] where an analysis was presented aimed at es-
tablishing maximal and minimal vectors with respect to the majorization order under sharper constraints
than those obtained by Marshall and Olkin [110]. This methodology was applied to the calculation of
bounds for M2 and it was shown that the bounds obtained by this technique are often sharper than those
earlier communicated [39, 146, 153].

8. Zagreb coindices of graphs

In the paper [46], bearing in mind Eq. (2), Došlić introduced the Zagreb coindices, opposities to the
Zagreb indices, defined by

M1(G) =
∑

vivj /∈E
(di + dj) , M2(G) =

∑

vivj /∈E
didj .

The Zagreb coindices are closely related to the Zagreb indices [9]:

M1(G) = 2m(n− 1)−M1(G) (37)

M2(G) = 2m2 −M2(G)− 1

2
M1(G) . (38)

The Zagreb coindices of G are not the Zagreb indices of G, since the defining sums run over E(G),
but the degrees are with respect to G. Still, those quantities are closely related. If we denote by m the
number of edges in G, then it holds, by [9],

M1(G) = M1(G) + 2(n− 1)(m−m)

implying, as noted in [9], that
M1(G) = M1(G) .

Also, by [9], for the second Zagreb coindex we have

M2(G) = M2(G)− (n− 1)M1(G) +m(n− 1)2 .

By (37), for trees, the sum M1(G) +M1(G) = 2(n − 1)2 is constant for fixed n, implying that the
problem of determining the minimum (maximum) first Zagreb coindex is equivalent to the problem of
determining the maximum (minimum) first Zagreb index, which yields

Theorem 8.1. [10] If T is an n-vertex tree, then M1(K1,n−1) ≤ M1(T ) ≤ M1(Pn) and M2(K1,n−1) ≤
M1(T ) ≤ M1(Pn).

By Corollary 4.1 and Theorem 6.6, the following result concerning chemical trees, obtained in [56]
by Fonseca and Stevanović, is immediately deduced.

M1(T ) ≥ 2(n− 1)2 −





6n− 10 if n ≡ 2 (mod 3)

6n− 12 otherwise



134

with equality as stated in Corollary 4.1.
Also, by relation (38) and Theorem 6.6, the lower bound for the second Zagreb coindex over chemical

trees was obtained in [56] as follows

M2(T ) ≥ 2(n− 1)2 −





11n− 29 if n ≡ 2 (mod 3)

11n− 32 otherwise

with equality if and only if either (i) every vertex of T is of degree 1 or 4 (in which case n ≡ 2 (mod 3)),
or (ii) one vertex of T has degree 2 or 3 and it is adjacent to a single vertex of degree 4, while all other
vertices are of degree 1 or 4.

In [10] the following results on Zagreb coindices of unicyclic and bicyclic graphs were obtained.

Theorem 8.2. [10] If G is an n-vertex unicyclic graph, then (n + 2)(n − 3) ≤ M1(G) ≤ 2n(n −
3). Moreover, the left and right equalities hold if and only if G is isomorphic to K1,n−1 + e and Cn,

respectively.

Theorem 8.3. [10] If G is an n-vertex bicyclic graph, then n2 + n − 16 ≤ M1(G) ≤ 2n2 − 4n − 12.

The left equality is satisfied if and only if G is isomorphic to K1,n−1+e+f , where e and f are two edges

with a common vertex forming two adjacent triangles in K1,n−1. The right equality holds if and only if

G is isomorphic to a graph constructed from Cp and Cq joined by a path Pn−p−q, 3 ≤ p, q ≤ n− 3 (see

Fig. 23).

e f

Cp CqPn-p-q

K1,n-1+e+f

Fig. 23. Extremal graphs mentioned in Theorem 8.3.

Theorem 8.4. [10] Suppose that G is a triangle– and quadrangle–free connected graph with n vertices,

m edges and radius r. Then M2(G) ≥ 2m2 − (n + 1 − r)(m + 1
2
n) with equality if and only if G is a

Moore graph of diameter 2 or G ∼= C6.

In addition, by [10], for a connected graph G it holds

M2(G) ≤ 2m2 − 1

2

∑

v∈V (G)

d(v)
[
d(v) + n2(v)

]
− 1

2

∑

v∈V (G)

[
d(v) + n2(v)

]
.

The equality holds if and only if G is a triangle– and quadrangle–free connected graph.
Recently, Das et al. [41], by using the relation (37) and Theorem 4.4 obtained the following lower

bound for M1 in terms of n, m and ∆.
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Theorem 8.5. [41] Let G be an (n,m)-graph with maximum degree ∆. Then

M1(G) ≥ (n− 3)m+∆(n−∆)− 2(m−∆)2

n− 2

with equality holding if and only if G ∼= K∗
2,n−2 or G ∼= Kn or G ∼= Kin,n−1.

Besides, in the paper [41], some upper and lower bounds on the second Zagreb coindex in terms of
n, m, δ, ∆, and ∆2 were established.

Theorem 8.6. citedasnum Let G be an (n,m)-graph with minimal degree δ, maximum degree ∆ and

second–maximal degree ∆2. Then

(i)

M2(G) ≥ 1

2
(n− 3)mδ +

1

2
δ∆(n−∆)− δ(m−∆)2

n− 2

with equality if and only if G ∼= K∗
2,n−2 or G ∼= Kn;

(ii)

M2(G) ≤ m(n− 1)∆− 1

2
∆3 − ∆(2m−∆)2

2(n− 1)
− ∆(n− 2)

(n− 1)2
(∆2 − δ)2

with equality if and only if G is a regular graph.

The lower bounds for Zagreb coindices of series–parallel graphs were determined in [10].

Theorem 8.7. [10] Suppose that G is an (n,m)-series–parallel graph without isolated vertices. Then

M1(G) ≥ m(n− 4) + n and M2(G) ≥ (m− n)(m− 1). The equality holds if and only if G ∼= K2 or

G ∼= K1,1,n−2.

In [82], two estimations on Zagreb coindices of connected graphs involving the number of pendent
vertices were given.

Theorem 8.8. [82] Let G be a connected graph of order n with n1 pendent vertices. Then

M1(G) ≥ −2n2
1 + 3nn1 − 4n1

M2(G) ≥ −3

2
n2
1 −

5

2
n1 + 2nn1 .

As suggested in [82], when n1 = 0, the complete graph Kn and the graph Kn attain both bounds.
When n1 = 2, the 4-vertex path P4 attains both bounds in the previous theorem.

9. Nordhaus–Gaddum type of inequalities for
Zagreb indices

In 1956, Nordhaus and Gaddum [117] established inequalities involving the chromatic number χ(G) of
a graph G and its complement. Motivated by this result, different inequalities of that kind, known as
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Nordhaus–Gaddum type inequalities, have been communicated in the literature. Here we present those
pertaining to the first and second Zagreb indices.

Zhang and Wu in [149] established the following lower and upper bounds on M1(G) +M1(G) and
M2(G) +M2(G), respectively, in terms of n only.

Theorem 9.1. [149] Let G be a graph of order n, then

n(n− 1)2

2
≤ M1(G) +M1(G) ≤ n(n− 1)2

(
n

2

)(
n− 1

2

)2

≤ M2(G) +M2(G) ≤
(
n

2

)
(n− 1)2 .

In both inequalities the left–hand–side equalities are attained if and only if G ∼= Kn and the right–hand–

side equalities hold if and only if G is a (n−1
2
)-regular graph, with n = 4k + 1, k ≥ 1.

In the paper [39], Das et al. obtained the following upper bounds on M1(G)+M1(G) (resp. M2(G)+

M2(G)), in terms of n, m, δ, ∆, and ∆2, by using Theorem 4.15.

Theorem 9.2. [39] Let G be a graph with n vertices, m edges, maximum degree ∆, second–maximum

degree ∆2 and minimum degree δ. Then

M1(G) +M1(G) ≤ [n(n− 2)− 2m+ δ + 1]2

n− 1
+ ∆2 + (n− 1− δ)2

+
n− 1

4
[(∆− δ)2 + (∆2 − δ)2]

with equality if and only if G is the path P3 or G is a regular graph.

In addition,

M2(G) +M2(G) ≤ n(n− 1)3

2
+ 2m2 − 3m(n− 1)2

+

(
n− 3

2

)[
(2m−∆)2

n− 1
+ ∆2 +

n− 1

4
(∆2 − δ)2

]

with equality if and only if G is isomorphic to a graph H1, such that d2(H1) = d3(H1) = · · · =

dn(H1) = δ or G is isomorphic to a graph H2 such that d2(H2) = d3(H2) = · · · = dp+1(H2) = ∆2 and

dp+2(H2) = dp+3(H2) = · · · = d2p+1(H2) = δ, n = 2p+ 1.

Recently, Das et al. in [41] established new lower and upper bounds on M1(G) + M1(G) (resp.
M2(G) +M2(G)) in terms of n, m, δ, ∆, and ∆2.

Theorem 9.3. [41] Let G be a graph with n vertices, m edges, maximum degree ∆, second–maximum

degree ∆2, and minimum degree δ. Then

(i)
M1(G) +M1(G) ≥ n(n− 1)2 − 4(n− 1)m

+ 2

[
∆2 +

(2m− δ)2

n− 1
+

2(n− 2)

(n− 1)2
(∆2 − δ)2

]
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with equality if and only if G is a regular graph or G is isomorphic to a graph H , such that d2(H) =

d3(H) = · · · = dn(H) = δ;

(ii)

M1(G) +M1(G) ≤ n(n− 1)2 − 2(n− 3)m+ 2

[
2(m−∆)2

n− 2
−∆(n−∆)

]

with equality if and only if G ∼= Kn or G ∼= K∗
2,n−2 or G ∼= Kin,n−1.

Theorem 9.4. [41] Let G be a graph with n vertices, m edges, maximum degree ∆, second–maximum

degree ∆2, and minimum degree δ. Then

(i)

M2(G) +M2(G) ≥ n(n− 1)3

2
+ 2m2 − 3m(n− 1)2

+

(
n− 3

2

)[
∆2 +

(2m−∆)2

n− 1
+

2(n− 2)

(n− 1)2
(∆2 − δ)2

]

with equality if and only if G is a regular graph or G is isomorphic to a graph H , such that d2(H) =

d3(H) = · · · = dn(H) = δ;

(ii)

M2(G) +M2(G) ≤ n(n− 1)3

2
+ 2m2 − 3m(n− 1)2

+

(
n− 3

2

)[
(n+ 1)m−∆(n−∆) +

2(m−∆)2

n− 2

]

with equality if and only if G ∼= Kn or G ∼= K∗
2,n−2 or G ∼= Kin,n−1.

In [82], several Nordhaus–Gaddum type bounds for the first Zagreb coindex were given. Let
even(n) = 1 if n is even, and 0 otherwise.

Theorem 9.5. [82] (i) If G is a graph with n ≥ 2 vertices and m edges, then

M1(G) +M1(G) ≥ 2mn− 4m2

n− 1

with equality if and only if G ∼= K1,n−1 or G ∼= Kn.

(ii) If G is a connected Kr+1-free graph, 2 ≤ r ≤ n− 1, then

M1(G) +M1(G) ≥ 4m−
(n
r
− 1
)

with equality if and only if G is a bipartite graph for r = 2 and regular complete r-partite graph for

r ≥ 3.

(iii) If G is a connected quadrangle–free graph, then

M1(G) +M1(G) ≥ 4mn− 2n2 + 2n− 8m+ 4 even(n)

with equality if and only if G is a graph obtained from the star K1,n−1 by adding b(n−1)/2c independent

edges.
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(iv) If G is a connected triangle– and quadrangle–free graph, then

M1(G) +M1(G) ≥ 2(n− 1)(2m− n)

with equality if and only if G ∼= K1,n−1 or a Moore graph of diameter 2.

The corresponding Nordhaus–Gaddum type bounds for the second Zagreb coindices were determined
in [79].

Theorem 9.6. [79] Let G be a graph of order n containing m edges. Then

M2(G) +M2(G) ≥ 2(m2 +m2)−
(
n

2

)
(n− 1)2 − n(n− 1)2

2
(39)

and

M2(G) +M2(G) ≤ 2(m2 +m2)−
(
n

2

)(
n− 1

2

)2

− n(n− 1)2

2
. (40)

The equality in (39) is satisfied if and only if G is isomorphic to the complete graph Kn. The equality in

(40) is satisfied if and only if n ≡ 1 (mod 4) and G is n−1
2

-regular.

10. Relations between Zagreb indices

Recently, there has been much interest in comparing the values taken by the Zagreb indices M1 and M2

on the same graphs. Let
∆M(G) = M2(G)−M1(G)

and define the set Φ(z), for z ∈ Z, as

Φ(z) = {G : G is connected and ∆M(G) = z} .

If G ∈ Φ(z), it is said [111] that G is z-Zagreb-balanced.
Direct approaches to comparing Zagreb indices were used in [26,136]. The case of trees was studied

in [136]. The main result is that
M1 −M2 ≤ dv (41)

where v is a vertex of degree dv ≥ 2. Thus, for a tree T , the difference M1 − M2 is bounded by the
smallest degree of a non-pendent vertex of T .

In the paper [26], lower bounds on ∆M(G) = M2 −M1 for cyclic graphs were studied.

Theorem 10.1. [26] Let G be a simple and connected graph with n vertices and m edges.

a) If m ≤ 6n/5, then ∆M(G) ≥ 6(m − n), with equality attained if and only if G is a graph with

vertices of degree 2 and 3 only, and the vertices of degree 3 form an independent set.

b) If m ≥ n, then ∆M(G) ≥ 11m − 12n, with equality attained if and only if G is a graph with

vertices of degree 2 and 3 only and, when m ≥ 6n/5, no pair of vertices of degree 2 are adjacent.
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From Theorem 10.1, the following result of Liu [98] can be deduced.

Theorem 10.2. [98] Let G be a simple, connected and unicyclic graph. Then M1 ≤ M2 with equality if

and only if G is a cycle.

In paper [111], two examples were provided showing that Φ(z) is non-empty for each z ∈ Z. First,
for a star K1,z, z ≥ 1, it holds ∆M(K1,z) = −z. Next, for z ≥ 0, let PC(z) be a tree on 3z + 3

vertices obtained from the path P2z+3 with vertex set {v1, . . . , v2z+3} by adding a pendent edge to vertices
v3, v5, . . . , v2z+1. Then, ∆M(PC(z)) = z − 2.

Hence, Φ(z) contains a star K1,−z for z ≤ −1, and a tree PC(z+2) for z ≥ −2. Besides, two simple
constructions of new elements of Φ(z) from the existing ones by adding an arbitrary number of new
vertices were presented in [111]. Both of these constructions can be applied to the graph PC(z + 2) ∈
Φ(z) for z ≥ −2, provided that each set Φ(z), z ≥ −2, is infinite.

Unlike the case z ≥ −2, it was proven in [111] that Φ(z) contains only the star K1,−z for z < −2. In
fact, it was proven that for a connected graph G, different from the star,

∆M(G) ≥ −2 .

Obviously, the previous inequality improves the inequality (41).
By considerations in [111], the first non-trivial sets Φ(z) are Φ(−2), Φ(−1) and Φ(0) and these have

the property that all of their elements are trees, with exception of the cycles Cn which are the only non-
tree elements of Φ(0). Also, it was proven in [111] that for a connected graph G which is neither a tree
nor a cycle, it holds that ∆M(G) ≥ 1.

In order to present some further results on ∆M(G), recall that by the relations (1) and (2) it holds
that [57]

∆M(G) =
∑

vivj∈E(G)

(di − 1)(dj − 1)−m

i.e.,
∆M(G) = RM2(G)−m

where RM2(G) is a vertex-degree-based graph invariant, introduced in [57] by

RM2(G) =
∑

vivj∈E(G)

(di − 1)(dj − 1)

and called reduced second Zagreb index.

Theorem 10.3. [57] For almost all graphs and almost all edges e ∈ E(G), the condition RM2(G) −
RM2(G− e)− 1 > 0, i.e., ∆M(G)−∆M(G− e) is satisfied. Exceptionally:

(a) ∆M(G) = ∆M(G− e) holds if e is an edge between a pendent vertex u and a vertex v of degree

two, and the other neighbor of v is also a vertex of degree two.

(b) ∆M(G) = ∆M(G− e) holds if the graph G has a component which is a 4-vertex path, and e is

the central edge of this path.

(c) ∆M(G) < ∆M(G − e) holds if the graph G has a component which is a star, and e is an edge

of this star.
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Extremal trees of order n with maximal ∆M(G) were determined in [57].

Let n and k be fixed integers, n ≥ 4, 2 ≤ k ≤ n − 2. Construct the set T(n, k) of n-vertex trees by
attaching (in any possible way) n − k − 1 pendent vertices to the pendent vertices of the star K1,k on
k + 1 vertices.

Theorem 10.4. [57] If T is a tree of order n, n ≥ 4, then

∆M(G) ≤
⌊
n− 2

2

⌋⌈
n− 2

2

⌉
+ 1− n .

Equality holds if and only if T ∈ T(, n/2) for even n, and T ∈ T(n, bn/2c)⋃T(n, dn/2e) for odd n.

Let Ck
n,∆ be the unicyclic graph specified in connection with Theorem 7.10. Denote by C∆ the set

{Ck
n,∆ | 3 ≤ k ≤ n−∆− 1}. The following lower bound on M2 −M1 is obtained in [76]:

Theorem 10.5. [76] Let G be a unicyclic graph of order n with maximum degree ∆. Then

M2(G)−M1(G) ≥





∆− 2 if d = 0

∆ if d = 1

2 if d > 1

(42)

where d is the length of the shortest path from the maximum degree vertex u to the cycle C(G) (The

cycle of a graph G is denoted by C(G).) The equalities hold in (42) if and only if G ∼= Bk
n, G ∼= Ck

n,∆

(∆ + k = n), and G ∈ C∆, respectively.

For general graphs, the order of magnitude of M1 is O(n3) whereas for M2 is O(mn2), implying
that M1/n and M2/m have the same orders of magnitude O(n2). This implies that is more convenient
to compare M1/n and M2/m instead of M1 with M2. By using the AutoGraphiX conjecture–generating
system [8, 24, 25] the following conjecture was obtained.

Conjecture 10.1. [8, 24, 25] For all simple connected graphs with n vertices and m edges,

M1

n
≤ M2

m
(43)

with equality for complete graphs, among others.

The relation (43) is referred to as the Zagreb indices inequality. In 2007, Hansen and Vukičević [74]
showed that this conjecture does not hold for general graphs but it is true for chemical graphs.

Theorem 10.6. [74] For all chemical graphs G with n vertices and m edges, inequality (43) holds.

Moreover, the bound is tight if and only if all edges uv have the same pair (du, dv) of degrees or if

the graph is composed of disjoint stars K1,4 and cycles Cp, Cq, . . . of any length.
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Besides, Hansen and Vukičević [74] presented a non-connected counterexample (a star K1,5 together
with a cycle C3) and a complicated connected counterexample with 46 vertices and 110 edges to Con-
jecture 10.1.

On the other hand, it was proven that there are some other classes of graphs for which the conjecture
is true. Vukičević and Graovac in [136] first showed that relation (43) holds for all trees, with stars
as extremal trees. Later, new proofs were given in [7, 127]. In the paper [98], it was shown that the
conjecture is true for unicyclic graphs and the bound is tight with cycles as extremal graphs. In fact, as
m = n for unicyclic graphs, the relation (43) follows from Theorem 10.2.

Sun et al. [129] showed that the inequality (43) holds for bicyclic graphs except one class and char-
acterized extremal graphs as well. Besides, counterexamples of bicyclic graphs were obtained from the
excluded class. Using AutoGraphiX, Caporossi et al. [26] investigated the cases of bicyclic and tricyclic
graphs and constructed counterexamples to Conjecture 10.1 in both cases. Also, in [26], an infinite fam-
ily of counterexamples of c-cyclic graphs, for all c ≥ 2 is obtained, which are constructed by joining
complete bipartite graph K2,c+1 and a star K1,p by an edge from a pendent vertex of K1,p to a vertex of
the smallest side of K2,c+1, see Fig. 24.

{ {p-1 c+1

Fig. 24. An infinite family of counterexamples to Conjecture 10.1.

For other results concerning the validity or non-validity of (43) for various classes of graphs the
reader is referred to [5, 6, 17, 73, 77, 85, 125, 130, 158]. These studies are summarized in two surveys
[101, 102]. In addition, the equality case in (43) was also studied in [1, 137].

In the sequel, we present a few other results concerning the relations between M1 and M2.
For a connected graph G it was proven [37] that

M1 + 2M2 ≤ 4m2

with equality if and only if G is the complete graph Kn. Also, it was shown that [37]

M2(G) ≤ 2m2 − (n− 1)mδ +
1

2
(δ − 1)M1(G)

with equality if and only if G is isomorphic to K1,n−1 or Kn.
In [123], Réti presented some new inequalities related to the first and second Zagreb indices.
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Theorem 10.7. [123] If G is a simple connected graph, then

M1(G) ≥ M2(G)

∆
+ δm

with equality if G is regular.

Theorem 10.8. [123] If G is a simple connected graph, then

M1(G) ≤ M2(G)

δ
+ δm (44)

and

M1(G) ≤ M2(G)

∆
+∆m. (45)

Equality in both cases holds if and only if G is a regular or bidgreed (biregular) graph with no adjacent

vertices of the same degree.

From (44) and (45), the following relations were deduced [123].

Corollary 10.1. [123] For a connected (n,m)-graph G with maximum degree ∆ and minimum degree

δ,

M1(G) ≤ M2(G)

δ
+

2m2

n

and

M1(G) ≤ nM2(G)

2m
+∆m

with equality in both cases if G is regular.

Corollary 10.2. [123] For a connected graph G it holds

M1(G) ≤ ∆+ δ

2

(
M2(G)

∆δ
+m

)

and

M1(G) ≤
√(

M2(G)

δ
+ δm

)(
M2(G)

∆
+∆m

)
.

Equality in both cases hold if G is regular or bidgreed (biregular) with no adjacent vertices of the same

degree.

It was proven in [50] that for an arbitrary simple graph G it holds M1(G) ≤ 2M2(G) with equality if
and only if G is an empty graph or the complete graph with two vertices.

The following results were also obtained in [50].

Theorem 10.9. [50]

M1(G) ≤ ∆

2
+

√
∆2

4
+ 2M2(G) + 4m(m− 1)∆2

with equality if and only if G is ∆-regular.
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Theorem 10.10. [50]

M1(G) ≥ δ

2
+

√
δ2

4
+ 2M2(G) + 4m(m− 1)δ2

with equality if and only if G is δ-regular.

In the papers [40, 41], Das et al. established some new relations between the Zagreb indices.

Theorem 10.11. [40, 41] Let G be a connected (n,m)-graph with maximum degree ∆ and minimum

degree δ. Then

M1(G)(∆− 1)− 2M2(G) ≤ 2m[(n− 1)∆− 2m]

and

2M2(G)−∆2δ ≥ (n− 1)(M1(G)−∆2)2

(2m− δ)(n− 1) + (∆− δ)
[
n(n− 1)− 2m

] . (46)

Equality in both inequalities hold if and only if G is a regular graph.

Besides, in the same paper [41], a result better than (46) was obtained:

Corollary 10.3. [41] Let G be a connected (n,m)-graph with maximum degree ∆ and minimum degree

δ. Then

2M2(G)−∆2δ ≥ (n− 1)(M1(G)−∆∆2)
2

(2m− δ)(n− 1) + (∆− δ)
[
n(n− 1)− 2m

] .

The above equality holds if and only if G ∼= K1,n−1 or G is a regular graph.

11. An exceptional property of first Zagreb index

The generalized version of the first Zagreb index, namely

Zp = Zp(G) =
∑

vi∈V (G)

dpi

where p is some real number, was first considered by Li et al. [94,95], and the name first general Zagreb

index was proposed for Zp in [95]. Thus, the ordinary Zagreb index M1 is the special case of Zp, for
p = 2. If we denote by nk the number of vertices of G having degree equal to k, then

Zp(G) =
∑

k≥1

kp nk . (47)

In what follows, it will be assumed, as in [64], that the exponent p in Eq. (47) is a positive integer.
Since the case p = 1 is trivial (Z1(G) = 2m), we assume that p ≥ 2. Then, the following interesting
result is obtained.

Theorem 11.1. [64] Let G be a graph with n vertices, m edges, and n` vertices of degree `, ` 6= 3.

Then, for p ≥ 3,

Zp(G) ≥ 2 · 3p (m− n) + Θp(`)n` (48)

where Θp(`) = `p − 3p `+2 · 3p is a polynomial of degree p in the variable `. Equality is attained if and

only if all the remaining n− n` vertices of G are of degree 3.
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The equality case in (48) pertains to (n,m)-graphs with a fixed number of vertices of degree ` whose
Zp-value is minimal. The same graphs have minimal Zp-values for all p ≥ 3. If we focus to the case
` = 1, then it holds:

Theorem 11.2. [64] Let G be a graph with n vertices, m edges, and n1 pendent vertices. Then, for

p ≥ 3,

Zp(G) ≥ 2 · 3p (m− n) + (3p + 1)n1 . (49)

Equality is attained if and only if all the remaining n− n1 vertices of G are of degree 3.

This equality case pertains to (n,m)-graphs with a fixed number of pendent vertices whose Zp-value
is minimal and the same graphs have minimal Zp-values for all p ≥ 3.

The case p = 2, i.e., Z2 ≡ M1 is significantly different, as shown in [64], implying that the original
first Zagreb index is a kind of exception in the class of its generalized counterparts.

Theorem 11.3. [64] Let G be a graph with n vertices, m edges, and n1 pendent vertices. Then, for

p = 2,

Zp(G) ≡ M1(G) ≥ 16(m− n) + 9n1 .

Equality is attained if and only if the number of pendent vertices is even, and all the remaining n − n1

vertices of G are of degree 4.

This equality case pertains to (n,m)-graphs with a fixed number of pendent vertices whose first
Zagreb index is minimal; for illustrations see Fig. 25.

T3 T4 U3

U4 B3 B4

Fig. 25. Examples of trees (T3, T4), unicyclic graphs (U3, U4), and bicyclic graphs (B3, B4) with 10
pendent vertices, having minimal first Zagreb indices, but not minimal Zp-values for p = 2 .
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The special case of Theorem 11.3 for trees was proven earlier by Goubko [59], who also characterized
the trees with odd n1 and minimal M1-value (see also [67]). Analogous, but much more difficult results
were obtained also for the second Zagreb index [59–61].

Ismailescu and Stefanica [86] characterized the graph with smallest Zp(G)-values, 0 < p ≤ 1/2.

Theorem 11.4. [86] Let G be a graph of order n with m edges, and let 0 < p ≤ 1/2. Let k be the unique

positive integer such that
(
k−1
2

)
< m ≤

(
k
2

)
. If Zp(G) is minimum, then G is isomorphic to the graph

with n− k isolated vertices, a complete subgraph Kk−1, and one vertex of degree m−
(
k−1
2

)
connected

to vertices of the complete subgraph.

In the same paper immediately after Theorem 11.4, the authors mentioned the following problem:

An interesting open question is to decide what happens if α ∈ (1/2, 1). Numerical computations
strongly suggest that the result in Theorem 11.4 remains true.
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A. Monhait, Variable neighborhood search for extremal graphs. 14. The AutoGraphiX 2 system,
in: L. Liberti, N. Maculan (Eds.), Global Optimization: From Theory to Implementation, Springer,
Berlin, 2005, pp. 281–310.
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[158] B. Zhou, D. Stevanović, A note on Zagreb indices, MATCH Commun. Math. Comput. Chem. 56
(2006) 571–578.





MCM 19
I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.),
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Abstract

In this chapter, we present a survey of extremal results for two closely related quantities: the Merri-
field-Simmons index (number of independent sets) and the Hosoya index (number of matchings).
Maxima and minima are given for many different classes of graphs, including general graphs with
different restrictions, various classes of trees, unicyclic and bicyclic graphs. We also present common
auxiliary results and techniques in this context.
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1. Introduction

This chapter is devoted to two very similar quantities associated with a graph: the Merrifield-Simmons

index and the Hosoya index. The former is the total number of independent sets of a graph, while the
latter is the total number of matchings. Not only their definitions are very similar: as we will see in the
following, they also have similar properties.

The Hosoya index was the first graph invariant to be called topological index, a term that is now com-
monly used to refer to many other invariants in the context of chemical graph theory. This name was
introduced in Hosoya’s seminal paper [50] in 1971. In this and subsequent work (see e.g. [51, 52]), he
showed that certain physico–chemical properties of alkanes correlate well with the number of match-
ings in the associated molecular graph. Similar observations were made by Merrifield and Simmons,
who investigated the number of independent sets in molecular graphs as part of a topological formalism,
see [86–89] and in particular their book [90].

Merrifield-Simmons index and Hosoya index can also be seen as special values of two important graph
polynomials. Let us first recall their definitions: denote by i(G, k) the number of independent sets of
cardinality k in a graph G (i.e., the number of ways to choose k pairwise non-adjacent vertices of G), and
denote by m(G, k) the number of matchings of cardinality k in G (i.e., the number of ways to choose k

pairwise non-adjacent edges of G). The independence polynomial of G is given by

I(G, x) =
∑

k≥0

i(G, k)xk.

The matching polynomial of a graph is usually defined by

µ(G, x) =
∑

k≥0

(−1)km(G, k)xn−2k,

where n is the number of vertices of G. It is closely related to the matching generating polynomial

M(G, x) =
∑

k≥0

m(G, k)xk.

Indeed, it is easy to see that µ(G, x) = xnM(−x−2). The matching polynomial has the remarkable
property that its zeros are always real; for this and other interesting properties of the matching polynomial
and the independence polynomial, we refer the interested reader to [30, 35, 64].

The Merrifield-Simmons index and the Hosoya index of a graph G can now be written as

σ(G) =
∑

k≥0

i(G, k) = I(G, 1)

and

Z(G) =
∑

k≥0

m(G, k) = M(G, 1) = i−nµ(G, i).
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Remarkably, the graphs that maximize or minimize σ(G) or Z(G) are often even coefficient-wise ex-
tremal, i.e. they maximize or minimize i(G, k) (m(G, k), respectively) for every k. This is one of the
motivations to consider poset structures on graphs in the following way (see [37,39] for early instances):

G �i H ⇐⇒ i(G, k) ≥ i(H, k) for all k,

and
G �m H ⇐⇒ m(G, k) ≥ m(H, k) for all k.

A greatest (least) element with respect to �i in a given set of graphs thus maximizes (minimizes) i(G, k)

for all k, and consequently maximizes (minimizes) σ(G). An analogous statement holds for �m. While
a given set of graphs does not necessarily have to have a greatest or least element with respect to �i or
�m, it is indeed often the case that there are such elements, e.g. for trees of given size. However, we
will focus on the total number of independent sets and matchings in this survey, even though many of
the results listed in the following have stronger versions involving the partial orders �i and �m.

The connection to the matching polynomial is relevant for another reason. It is well known that the
matching polynomial of acyclic graphs (thus in particular trees) coincides with the characteristic poly-
nomial φ(G, x) of the adjacency matrix A(G):

φ(G, x) = det(xI − A(G)) = µ(G, x) .

The sum of the absolute values of the eigenvalues of a graph is known as the energy [36, 41], see [73]
for a comprehensive treatment. The eigenvalues are the zeros of the characteristic polynomial, and the
celebrated Coulson formula relates the energy E(G) of a graph G with the characteristic polynomial.
This formula can be written in several different ways, for instance as

E(G) =
2

π

∫ ∞

0

x−2 ln
(
xn|φ(G, i/x)|

)
dx .

In view of the aforementioned identity between the characteristic polynomial and the matching polyno-
mial, this becomes

E(T ) =
2

π

∫ ∞

0

x−2 lnM(T, x2) dx (1)

if T is a tree. It is therefore not surprising that trees which maximize or minimize the Hosoya index also
maximize/minimize the graph energy, and vice versa (see [66, 94, 142, 143] for some examples). This is
even the case for some other classes of graphs, see [53]. For arbitrary graphs (not necessarily trees), the
integral in (1) represents the matching energy that was recently introduced in [45]. Not surprisingly, the
graphs that are extremal for the Hosoya index are also typically extremal with respect to the matching
energy.

The Merrifield-Simmons index and the Hosoya index are connected in several ways: first of all, since
the matchings of a graph G are precisely the independent sets of its line graph L(G), we have the trivial
relation

Z(G) = σ(L(G)) .



158

A different kind of relation is somewhat more complicated. It turns out that the graphs that maximize the
Merrifield-Simmons index in a particular class of graphs are often also those that minimize the Hosoya
index, and vice versa. However, it is generally not the case that σ(G) ≥ σ(H) implies Z(G) ≤ Z(H)

or the other way around (see [121] for explicit counterexamples). It was also shown that the two indices
are quite closely correlated for trees, see [120].

Early mathematical results on the Merrifield-Simmons index and the Hosoya index in the 1980s include
the characterization of extremal graphs for the classes of trees, unicyclic graphs and bicyclic graphs.
Some results were obtained independently by different (groups of) researchers, which is partly due to
the fact that different names were sometimes used for the same concept. In the earliest occurrence of
the Merrifield-Simmons index in the mathematical literature [101], it was dubbed Fibonacci number of a
graph, which is due to the fact that the Merrifield-Simmons index of a path is always a Fibonacci number.

After a period of comparatively little activity, the topic has garnered considerable attention over the past
ten years, with many new results. The survey paper [123] collected many of them, but the field has seen
many interesting new developments since its publication. In this chapter, we will provide an updated
survey including some recent results, without aiming to provide a comprehensive list of all theorems
that can be found in the references listed at the end. In addition, this chapter provides selected proofs
of central results in order to give an indication how bounds for the Merrifield-Simmons index and the
Hosoya index are obtained.

2. Basic results: graphs and trees

In this section, we consider the most basic bounds for the Merrifield-Simmons index and the Hosoya
index. Let us start with arbitrary graphs: it is obvious that adding edges decreases the number of in-
dependent sets and increases the number of matchings, while removing edges increases the number
of independent sets and decreases the number of matchings. Hence the following elementary result is
immediate:

Theorem 1 For every graph G with n vertices, we have

n+ 1 ≤ σ(G) ≤ 2n ,

with equality only for the complete graph Kn and the empty graph En respectively.

Moreover, we have

1 ≤ Z(G) ≤
∑

0≤k≤n/2

(
n

2k

)
(2k − 1)!! =

∑

0≤k≤n/2

n!

(n− 2k)!k!2k
,

with equality only for the empty and the complete graph respectively.

The values for the empty and the complete graph are trivial, perhaps with the exception of the Hosoya
index of the complete graph: note here that

(
n
2k

)
is the number of ways to choose the 2k vertices involved
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in the matching, while (2k − 1)!! = (2k − 1) · (2k − 3) · · · 3 · 1 is the number of ways to form k pairs
from 2k vertices.

The bounds that are attained by the empty graph can be improved if we assume the graph to be connected.
The argument that removing edges decreases the Hosoya index while increasing the Merrifield-Simmons
index shows that the extremal values must be attained for a tree. We have the following theorem:

Theorem 2 For every connected graph G with n vertices, we have

σ(G) ≤ 2n−1 + 1 and Z(G) ≥ n ,

with equality only for the star Sn in both cases.

Proof: For the Hosoya index, the bound is essentially trivial: note that every connected graph with n

vertices has at least n−1 edges (exactly n−1 if the graph is a tree), thus at least n matchings: the empty
set, and each single edge. Since the star is the only tree that has no other matchings because its edges are
pairwise adjacent, it is the only connected graph with n vertices for which Z(G) = n.

The bound for the Merrifield-Simmons index is slightly more difficult to prove. As mentioned before,
we can assume that the graph is a tree, so it suffices to prove the statement for trees, which is done by
induction on n. The initial case n = 1 is trivial. For the induction step, consider a tree T with n vertices,
and let v be a leaf of T . We denote its unique neighbor by w. There are two types of independent sets:
those that contain v and those that do not. The number of independent sets that do not contain v is exactly
the number of independent sets of T \ v. If v is contained in an independent set, then w is not, and the
remaining vertices form an independent set of T \ {v, w}. Hence we have

σ(T ) = σ(T \ v) + σ(T \ {v, w}) .

By the induction hypothesis, we have σ(T \ v) ≤ 2n−2 + 1 (with equality only if T \ v is a star), and
Theorem 1 gives us σ(T \{v, w}) ≤ 2n−2, with equality only if T \{v, w} is the empty graph. Combining
the two gives us

σ(T ) ≤ 2n−1 + 1 ,

with equality if and only if T is a star. This completes the proof.

The induction step in the proof of Theorem 2 exhibits a special case of a formula that allows for the
recursive calculation of the Merrifield-Simmons index. This (folklore) formula is given in the following
lemma, along with an analogous formula for the Hosoya index. Here and in the following, we denote the
(open) neighborhood of a vertex v, i.e., the set of all neighbors of v, by N(v) and the closed neighborhood
that also includes v itself by N [v] = N(v) ∪ {v}.

Lemma 3 For every graph G and every vertex v of G, we have

σ(G) = σ(G \ v) + σ(G \N [v])
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and
Z(G) = Z(G \ v) +

∑

w∈N(v)

Z(G \ {v, w}) .

Proof: For the first formula, we only need to split the set of all independent sets into those that do not
contain v and those that do (and therefore do not contain any neighbor). The argument that gives us the
second formula is similar: a matching either does not contain any of the edges incident with v, or exactly
one of them. If the edge between v and w is contained in a matching, then the remaining edges must
form a matching of G \ {v, w}.

In a similar way, one obtains the following theorem:

Lemma 4 For every graph G and every edge e = vw of G, we have

σ(G) = σ(G \ e)− σ(G \ (N [v] ∪N [w])) ,

and
Z(G) = Z(G \ e) + Z(G \ {v, w}) .

Proof: For the first formula, note that all independent sets of G\e are also independent sets of G, except
for those that contain both v and w. If both v and w are contained in an independent set, then no vertex of
N(v) or N(w) is, so the number of these independent sets is σ(G \ (N [v]∪N [w])). The second formula
is obtained in a similar way, by distinguishing between matchings that contain e and those that do not.

Finally, the following lemma is trivial:

Lemma 5 Let G1, G2, . . . , Gk be the connected components of a graph G. We have

σ(G) =
k∏

j=1

σ(Gj) and Z(G) =
k∏

j=1

Z(Gj) .

Among many other things, these formulas are useful in proving that the path is extremal for the family
of all trees, as we will see in the following. Fibonacci numbers play an important role in this context: we
define them by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

Theorem 6 For every forest T with n vertices and in particular every tree, we have

σ(T ) ≥ Fn+2 and Z(T ) ≤ Fn+1 ,

with equality only for the path Pn in both cases.

Proof: Both inequalities are proven by means of a simple induction. They are easily verified for
n = 1 and n = 2. For the induction step, we can assume that T is a tree, since adding edges decreases
the Merrifield-Simmons index and increases the Hosoya index. Let v be a leaf of T and w its unique
neighbor. Lemma 3 yields

σ(T ) = σ(T \ v) + σ(T \ {v, w})
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and

Z(T ) = Z(T \ v) + Z(T \ {v, w}) .

Note that T \v and T \{v, w} are both forests, so we can apply the induction hypothesis to both of them.
In view of the definition of the Fibonacci numbers, we obtain the desired inequalities immediately.
Equality can only hold if both T \ v and T \ {v, w} are paths, which is only possible if T itself is a path.

Theorem 2 and Theorem 6 belong to the oldest results concerning the Merrifield-Simmons index, see
[37, 39, 44, 101]. Tree-like classes such as unicyclic graphs were also already considered early – see
Section 4. Before we discuss these results, let us consider some useful graph transformations that are
known to decrease or increase the Merrifield-Simmons index and the Hosoya index.

3. Important transformations

In view of Theorem 2 and Theorem 6, it is perhaps not surprising that replacing a tree as part of a graph
by a star of the same size increases the Merrifield-Simmons index and decreases the Hosoya index,
while replacing a tree by a path of the same size decreases the Merrifield-Simmons index and increases
the Hosoya index. Let us formulate this explicitly:

Lemma 7 Let G be a connected graph, let T be an induced subgraph of G that is a tree, and assume
that T only shares a cutvertex v with the rest of the graph. Let G1 and G2 be the graphs that result from
replacing T by a star (centred at v) and a path (with one end at v) respectively. The inequalities

σ(G1) ≥ σ(G) ≥ σ(G2)

and

Z(G1) ≤ Z(G) ≤ Z(G2)

hold. Both inequalities are strict unless G is isomorphic to either G1 or G2.

Proof: Let H be the “rest” of the graph G, i.e. G without the tree T , including the cutvertex v. By
Lemma 3 and Lemma 5, we have

σ(G) = σ(H \ v)σ(T \ v) + σ(H \N [v])σ(T \N [v])

= σ(H \N [v])σ(T ) +
(
σ(H \ v)− σ(H \N [v])

)
σ(T \ v) .

In view of Theorem 1, Theorem 2 and Theorem 6, the terms σ(T ) and σ(T \v) both attain their maximum
when T is a star (centred at v), and they attain their minimum when T is a path (with v as one of its
endpoints). The inequalities for the Merrifield-Simmons index follow immediately.

In a similar way, we get

Z(G) = Z(H \ v)Z(T ) +
(
Z(H)− Z(H \ v)

)
Z(T \ v) ,
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and Z(T ) and Z(T \ v) are both maximized when T is a path and both minimized when T is a star,
centred at v.

H TvG

H vG1

H vG2

Figure 1. The transformations of Lemma 7.

The following lemma, which we provide without proof, deals with the operation of moving part of a
graph from one place to another:

Lemma 8 Let G be a connected graph, and assume that H1 and H2 are induced subgraphs of G with
at least two vertices, each of which only shares a cutvertex with the rest of the graph. Denote these
cutvertices by v1 and v2. Let G1 be the graph that is obtained by moving H1 from v1 to v2, and let G2 be
the graph that results from moving H2 from v2 to v1. The following two statements hold:

• Either σ(G1) > σ(G) or σ(G2) > σ(G) .

• Either Z(G1) < Z(G) or Z(G2) < Z(G) .
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H1 H2v1 v2G

v2v1G1

H1

H2

v2v1G2

H2

H1

Figure 2. The transformations of Lemma 8.

A more general lemma of a similar nature that was specifically geared towards trees with degree restric-
tions can be found in [2, 47, 119].

The transformations of Lemma 7 and Lemma 8 apply not only to the Merrifield-Simmons index and the
Hosoya index, but are useful in the study of many other graph invariants as well. Lemma 10 that follows
below, on the other hand, is quite specific for Merrifield-Simmons index and Hosoya index. We first
need a property of the Fibonacci numbers.

Lemma 9 For every integer n ≥ 2, we have

F1Fn−1 ≥ F3Fn−3 ≥ F5Fn−5 ≥ · · · ≥ Fbn/2cFdn/2e ≥ · · · ≥ F6Fn−6 ≥ F4Fn−4 ≥ F2Fn−2 .

Proof: Let φ = 1+
√
5

2
be the golden ratio, and φ̄ = − 1

φ
= 1−

√
5

2
. Binet’s formula

Fn =
1√
5

(
φn − φ̄n

)

is well known. We also need the Lucas numbers Ln = φn + φ̄n. It is easy to verify that

FkFn−k =
1

5

(
Ln − (−1)kLn−2k

)
.

Since the Lucas numbers Ln−2k are decreasing in k for k ≤ n/2, the statement of the lemma follows
immediately.

The following lemma is central for many results regarding the Merrifield-Simmons index and the Hosoya
index, and it appears in different variants, see [46, 83, 121, 124, 144, 153, 163].
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Lemma 10 Let G be a connected graph with at least two vertices, and choose a vertex u ∈ V (G). Let
P (n, k,G, u) denote the graph that results from identifying u with the k-th vertex vk of an n-vertex path
(see Figure 3). Write n as n = 4m+ i, i ∈ {1, 2, 3, 4}, m ≥ 0. Then the inequalities

σ(P (n, 2, G, u)) > σ(P (n, 4, G, u)) > . . . > σ(P (n, 2m+ 2l, G, u)) >

σ(P (n, 2m+ 1, G, u)) > . . . > σ(P (n, 3, G, u)) > σ(P (n, 1, G, u)),

and

Z(P (n, 2, G, u)) < Z(P (n, 4, G, u)) < . . . < Z(P (n, 2m+ 2l, G, u)) <

Z(P (n, 2m+ 1, G, u)) < . . . < Z(P (n, 3, G, u)) < Z(P (n, 1, G, u))

hold, where l = b i−1
2
c.

Proof: Applying Lemma 3 to the common vertex u = vk, we obtain

σ(P (n, k,G, u)) = σ(Pk−1)σ(Pn−k)σ(G \ u) + σ(Pk−2)σ(Pn−k−1)σ(G \N [u])

= σ(Pn)σ(G \N [u]) + σ(Pk−1)σ(Pn−k)
(
σ(G \ u)− σ(G \N [u])

)

= Fn+2σ(G \N [u]) + Fk+1Fn−k+2

(
σ(G \ u)− σ(G \N [u])

)
.

By our assumptions on G, we have σ(G \ u)− σ(G \N [u]) > 0. Therefore, the first set of inequalities
follows easily from the previous lemma. The proof for the Hosoya index is similar.

u = vkv1 vn

G

Figure 3. The graph P (n, k,G, u) in Lemma 10.

The following lemma is of a similar nature; it was used specifically in connection with bicyclic graphs,
see [18, 20, 21]:

Lemma 11 Let G be a connected graph with at least three vertices, and let u1, u2 be non-adjacent ver-
tices of G. Let P (n, k, l, G, u1, u2) denote the graph that is obtained by identifying u1 with the vertex
vk and u2 with the vertex vl of an n-vertex path with vertices v1, . . . , vn (Figure 4). For every pair (k, l)
with 1 < k < l < n, at least one of the inequalities

σ(P (n, k, l, G, u1, u2)) > σ(P (n, 1, l − k + 1, G, u1, u2)),

σ(P (n, k, l, G, u1, u2)) > σ(P (n, n+ k − l, n,G, u1, u2))
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holds. Likewise, at least one of the inequalities

Z(P (n, k, l, G, u1, u2)) < Z(P (n, 1, l − k + 1, G, u1, u2)),

Z(P (n, k, l, G, u1, u2)) < Z(P (n, n+ k − l, n,G, u1, u2))

holds.

u1 = vk u2 = vlv1 vn

G

Figure 4. The graph P (n, k, l, G, u1, u2) in Lemma 11.

The transformations presented in this section provide a “standard toolkit” that is useful for many different
problems, not just concerning Merrifield-Simmons index or Hosoya index, but often also others. See
[75, 79, 80] for some instances of a “unified” approach.

4. Tree–like classes of graphs

The transformations presented in the previous section are mostly geared towards graphs that are similar
to trees in some sense. Once bounds for trees have been determined, a natural next step is to consider
unicyclic graphs, which have exactly one cycle. These graphs will be the first topic in the following
section.

4.1 Fixed cyclomatic number

Let G be a connected graph with n vertices and m edges. The cyclomatic number of G is m − n +

1. In particular, a tree has cyclomatic number 0. A connected graph with cyclomatic number 1 is
called unicyclic, a connected graph with cyclomatic number 2 bicyclic, etc. The following bounds were
obtained by several different authors in various versions, see [21, 37, 39, 93, 95, 98, 144]:

Theorem 12 For every unicyclic graph G with n vertices (n ≥ 3), we have the inequalities

σ(G) ≤ 3 · 2n−3 + 1 and Z(G) ≥ 2n− 2,

both with equality for the graph that results from adding an additional edge to a star. Moreover, we have

σ(G) ≥ Ln and Z(G) ≤ Ln,

both with equality if G is a cycle. In the case of the Hosoya index, the cycle is the unique graph that
attains the bound Ln. In the case of the Merrifield-Simmons index, there is a second graph for which
equality holds, consisting of a triangle with a path of length n− 3 attached to it.
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Figure 5. Extremal unicyclic graphs of order 8.

Similar results have been obtained for bicyclic graphs; for the maximum of the Merrifield-Simmons
index and the minimum of the Hosoya index, we have the following theorem:

Theorem 13 ( [19, 22]) For every bicyclic graph G with n vertices (n ≥ 4), we have the inequalities

σ(G) ≤ 5 · 2n−4 + 1 and Z(G) ≥ 3n− 4,

both with equality for the graph that results from adding two additional edges (with a common endvertex)
to a star.

Figure 6. The graph of Theorem 13 (for n = 9).

It is noteworthy, however, that the minimum of the Merrifield-Simmons index and the maximum of the
Hosoya index are not attained by the same graphs any longer:

Theorem 14 ( [20, 38, 106]) For every bicyclic graph G with n vertices (n ≥ 5), we have the inequality

σ(G) ≥ 5Fn−2,

with equality if and only if G is a graph consisting of two triangles that are connected by a path of length
n− 5. On the other hand, for every bicyclic graph G with n vertices (n ≥ 10), we have

Z(G) ≤ 7Ln−4 + 3Fn−4,

with equality if and only if G consists of a cycle of length 4 and a cycle of length n − 4, connected by
an edge.
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Figure 7. The graphs of Theorem 14 (for n = 10).

The second part of Theorem 14 above has an interesting history: it was given in [38], in fact in a stronger
version involving the partial order �m mentioned in the introduction, correcting a wrong claim that was
made in [37]. The problem was considered again in [18], but the extremal graphs determined there are
incorrect, as one can verify easily by comparing them with those described in Theorem 14.

Tricyclic graphs have been investigated as well, and again the results are somewhat similar [24, 25, 43,
82, 169]. For general cyclomatic numbers (equivalently, for given number of vertices and edges), only
partial results are available, and it is probably not feasible to characterise the extremal graphs in all
possible cases. For small values of m, we have the following theorem:

Theorem 15 ( [96, 113, 164]) For every connected graph G with n vertices and m edges, where n−1 ≤
m ≤ 2n− 3, we have the inequality

σ(G) ≤ 2n−2 + 22n−3−m + 1.

Equality holds if and only if G is the graph that consists of m − n + 1 triangles that share a common
edge and 2n−m− 3 edges attached to one of the two endpoints of this edge, except when m = 2n− 4,
in which case there is another graph that also attains the bound.
Likewise, for every connected graph with n vertices and m edges, where n− 1 ≤ m ≤ 2n− 3, we have
the inequality

Z(G) ≥ mn− n2 + 4n− 2m− 2.

Equality holds for the same graph as described above for σ(G), except when m = n + 2, in which case
there is another graph as well.

Figure 8. The graph of Theorem 15 (for n = 8 and m = 10).

In [113], a similar result is also given for the Hosoya index of graphs with “large” cyclomatic number
(close to complete graphs). On the other hand, the following result of an asymptotic nature can be found
in [122]:
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Theorem 16 Let k be a fixed positive integer. For a graph G with n vertices and cyclomatic number k,
we have

n log
1 +

√
5

2
+O(1) ≤ log σ(G) ≤ n log 2 +O(1).

Both O-constants only depend on k. Likewise, we have

log n+O(1) ≤ logZ(G) ≤ n log
1 +

√
5

2
+O(1),

again with both O-constants only depending on k.

4.2 Forests

Since most research focusses on connected graphs, there is little literature on forests. However, since
the connected components of forests are trees, bounds for trees generally imply bounds for forests as
well. In [76], all n-vertex forests with Merrifield-Simmons index of at least ≥ 2n−1 + 1 are determined:
they either consist of a star and an arbitrary number of isolated vertices, or of two isolated edges and a
number of isolated vertices. Since every graph that contains a cycle has Merrifield-Simmons index of
at most 2n−1, these forests are in fact the only graphs whose Merrifield-Simmons index is greater than
2n−1.

4.3 Quasi–trees

A quasi-tree is a graph with the property that one can remove one vertex to obtain a tree. Quasi-trees are
considered in [69], where the following result is proved:

Theorem 17 For every quasi-tree G with n vertices (n ≥ 2), we have the inequalities

σ(G) ≥ Fn+1 + 1

and
Z(G) ≤ (n+ 4)Fn + 2nFn−1

5
.

Equality holds in both inequalities if and only if G is a fan, consisting of a path and an additional vertex
connected to all vertices of the path by an edge.

Figure 9. The fan (for n = 8).

The maximum of the Merrifield-Simmons index and the minimum of the Hosoya index are both essen-
tially trivial: they are attained by the star.

Let us finally mention that quasi-unicyclic graphs have been considered as well, see [27].
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5. Graphs with additional restrictions

5.1 General graphs

Let us now consider graphs with additional restrictions on various parameters. First of all, we consider
graphs of given connectivity: recall that a graph is k-connected if one needs to remove at least k vertices
to render it disconnected. A lower bound for the Merrifield-Simmons index and an upper bound for the
Hosoya index have been provided in [138, 170]:

Theorem 18 ( [138, 170]) Let G be a graph with n vertices and vertex connectivity (at most) k. The
inequalities

σ(G) ≥ 2n− k and Z(G) ≤ Z(Kn−1) + kZ(Kn−2)

hold. Equality holds in both cases if and only if G is a graph obtained from a complete graph Kn by
removing n−k−1 edges with a common endvertex (equivalently, obtained from a complete graph Kn−1

by adding a vertex and connecting it to k of the vertices of the complete graph).

Making use of the fact that the edge connectivity of a graph (the minimum number of edges that needs to
be removed to render the graph disconnected) is always greater or equal to the vertex connectivity, one
finds that Theorem 18 also holds if “vertex connectivity” is replaced by “edge connectivity”.

Another very natural restriction is to include the independence number (greatest cardinality of an inde-
pendent set) or the matching number (greatest cardinality of a matching). Since independent sets of a
graph correspond to complete subgraphs in the complement, the following is a direct consequence of a
theorem that was proved by Erdős [28, 29] (and rediscovered by Sauer [110] and Roman [109]): among
graphs of order n without a complete subgraph of k vertices, the complete (k− 1)-partite graph with the
property that its partite sets are as equal in size as possible (any two only differ by at most one) has the
greatest number of complete subgraphs, in fact of any order less than k.

Theorem 19 For every graph G with n vertices whose independence number is k, we have

σ(G) ≤
(⌊n

k

⌋
+ 1
)k(bn/kc+1)−n(⌊n

k

⌋
+ 2
)n−kbn/kc

.

Equality holds if and only if G consists of k(bn/kc + 1) − n complete graphs with bn/kc vertices and
n− kbn/kc complete graphs with bn/kc+ 1 vertices.

The lower bound is somewhat simpler, see [99]:

Theorem 20 For every G with n vertices whose independence number is k, we have

σ(G) ≥ 2k−1(n− k + 2).

Equality holds if and only if G consists of a complete graph with n − k + 1 vertices and k − 1 isolated
vertices.
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Bruyère and Mélot in [6] consider the same problem also for connected graphs (in addition to providing
a proof of Theorem 19): they show that the extremal graphs in this case are quite similar to those in
Theorem 19, with additional edges going out from one vertex of one of the larger components to one
vertex of each other component. Moreover, the minimisation problem for trees with given independence
number is studied in [5].

In the same vein, graphs with given matching number have been considered as well. In order to obtain
an upper bound on the Merrifield-Simmons index or a lower bound on the Hosoya index under this
condition, it suffices to look at trees (assuming that the graph is connected). This is because a maximum
matching of any connected graph can be extended to a spanning tree that still has the same matching
number. It has already been observed that removing edges always decreases the Hosoya index and
increases the Merrifield-Simmons index, so one can simply consider the aforementioned spanning tree.
The following theorem can then be obtained (see [54, 61, 154]):

Theorem 21 For every connected graph G with n vertices and matching number m, we have

σ(G) ≤ 3m−12n−2m+1 + 2m−1 and Z(G) ≥ 2m−2(2n− 3m+ 3).

Equality holds if and only if G is an extended star (see Figure 10), consisting of m− 1 paths of length 2

and n− 2m+ 1 single edges, all joined at a common endpoint.

Figure 10. The extended star with 7 vertices and matching number 3.

Yu and Tian [154] even consider the more general situation where the cyclomatic number (equivalently,
the number of edges) is prescribed in addition to the number of vertices and the matching number.

The minimum of the Merrifield-Simmons index and the maximum of the Hosoya index, on the other
hand, have been determined in [170]. For the former, we have the following theorem:

Theorem 22 ( [170]) Let G be a connected graph with n vertices and matching number m. If m =

bn/2c, then σ(G) ≥ n+ 1, with equality if and only if G is a complete graph. Otherwise, we have

σ(G) ≥ m · 2n+1−2m + 1,

with equality if and only if G consists of a complete graph K2m and a star with n − 2m + 1 vertices,
whose centre is identified with one of the vertices of the complete graph.

The situation for the Hosoya index is somewhat more complicated. Here, there are two different types
of extremal graphs.
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Theorem 23 ( [170]) Let n and m be positive integers with n ≥ 2m, and let G1(n,m) be the graph
described in Theorem 22, consisting of a complete graph K2m and a star Sn−2m+1 whose centre is
identified with one of the vertices of the complete graph. Moreover, let G2(n,m) be the graph obtained
by connecting a complete graph Km and an empty graph En−m by all possible m(n − m) edges. For
every graph G with n vertices and matching number m, we have

Z(G) ≤ max
(
Z(G1(n,m)), Z(G2(n,m))

)
.

Equality holds if and only if G is isomorphic to G1(n,m) or G2(n,m), whichever has the greater Hosoya
index.

Figure 11. The graphs G1(7, 2) and G2(7, 2).

It was also shown in [170] that there exists a unique value m0 depending on n such that G1(n,m) has
greater Hosoya index when m ≥ m0, and G2(n,m) has greater Hosoya index otherwise. The asymptotic
behaviour of m0 as a function of n was considered as well. Let us also remark that upper bounds for
the Hosoya index in terms of the number of edges and the matching number were also already provided
in [42, 85].

Let us also mention results on graphs with given chromatic number, which were investigated in [140]:
among graphs with given number of vertices and chromatic number k, the minimum of the Merrifield-
Simmons index and the maximum of the Hosoya index are both obtained for a complete k-partite graph
whose partite sets are as equal as possible (known as a Turán graph, which is also the complement of
the graph occurring in Theorem 19). The bipartite and tripartite graphs that yield the minimum of the
Hosoya index and the maximum of the Merrifield-Simmons index are given in [140] as well (the bipartite
case is also considered in [99]; if we assume connectedness, the star is the extremal bipartite graph).

We conclude this subsection with work on miscellaneous restrictions: here, one can mention Xu [135],
who considers graphs with given clique number, Hua and Zhang [60], who are studying graphs with
given number of cutvertices, a paper of Li and Zhang [65] on graphs with given minimum degree, and
Wang’s paper [130] on graphs with a perfect matching.

5.2 Trees

Trees are perhaps the class of graphs that has been studied most thoroughly, and several different re-
strictions have been considered. It is a recurring phenomenon that we have already observed in other
instances that the extremal trees with respect to the Merrifield-Simmons index and the Hosoya index
often coincide. Let us start with a result on trees with given diameter: recall that a broom Bn,k is a tree
that is obtained by appending a path of length n− k to a star with k vertices.
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Theorem 24 ( [16, 63, 74, 97, 100, 143]) For a tree with n vertices and diameter d, we have the inequali-
ties

σ(T ) ≤ 2n−dFd+1 + Fd and Z(T ) ≥ (n− d)Fd + Fd+1.

Equality holds in both inequalities if and only if T is the broom Bn,n−d+1.

Figure 12. The broom B8,4.

This result can be found in several papers by different authors: for the Merrifield-Simmons index in
[63,74,100], and for the Hosoya index in [16,97,143]). In [63] (Merrifield-Simmons index), it is mainly
shown as an auxiliary result, while in [143] (Hosoya index), it is actually a byproduct of a stronger
statement that also establishes minimality of the energy. Liu et al. [81] even study the question in greater
detail and also determine the second-largest/smallest value and more.

On the other hand, it seems that the analogous problem to find the minimum of the Merrifield-Simmons
index and the maximum of the Hosoya index for trees with given number of vertices and diameter is
considerably harder, and only partial results for very small diameter (up to 5) are known – see [33, 63,
78, 94].

The number of leaves is another very natural additional parameter. It turns out that the broom occurs
once again as extremal tree:

Theorem 25 ( [97, 153]) For a tree with n vertices and k leaves, we have the inequalities

σ(T ) ≤ 2k−1Fn−k+2 + Fn−k+1 and Z(T ) ≥ kFn−k+1 + Fn−k.

Equality holds in both inequalities if and only if T is the broom Bn,k.

Just like Theorem 24, this result was obtained independently in different papers, and it was also extended
further, see [83, 129]. As before, it also appears to be much harder to determine the minimum of the
Merrifield-Simmons index or the maximum of the Hosoya index. Here, only partial results are known if
the number of leaves is either very small (up to 6, see [34, 127, 148]) or very large (more than half the
vertices), see [23, 142].

The situation is quite different under another restriction: the maximum degree. Here, the minimum of
the Merrifield-Simmons index and the maximum of the Merrifield-Simmons index can be obtained by a
relatively straightforward application of Lemma 7 and Lemma 10. The final result reads as follows:

Theorem 26 ( [121]) Let T be a tree with n vertices and maximum degree ∆. We have the inequalities

σ(T ) ≥
{
3n−∆−122∆−n+1 + 2n−∆−1 ∆ ≥ n−1

2
,

3∆−1Fn−2∆+3 + 2∆−1Fn−2∆+2 otherwise.
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and

Z(T ) ≤
{
2n−∆−2(3∆− n+ 3) ∆ ≥ n−1

2
,

2∆−2((∆ + 1)Fn−2∆+2 + 2Fn−2∆+1) otherwise.

For ∆ ≥ n−1
2

, equality holds in both cases if and only if T is an extended star consisting of n −∆ − 1

paths of length 2 and 2∆ − n + 1 paths of length 1 sharing a common endpoint (see also Figure 10).
Otherwise, equality holds if and only if T is an extended star consisting of ∆ − 1 paths of length 2 and
a path of length n− 2∆ + 1, again sharing a common endpoint.

The description of the trees with given number of vertices and maximum degree that maximize the
Merrifield-Simmons index and minimize the Hosoya index is rather more involved. However, the ex-
tremal trees coincide again, as was shown in [47] (see also [31, 48]). They can be obtained as a special
case of those trees that are extremal for a given degree sequence, so we will return to them later.

Fixing the maximum degree or the number of leaves are two instances of restricting the degree sequence.
Andriantiana [2] studies the more general (and also more difficult) problem of prescribing the degree
sequence of a tree completely. As it turns out, it is possible to characterise the trees that maximize the
Merrifield-Simmons index and minimize the Hosoya index (once again, these are the same trees). The
full characterisation is quite complicated (as is the somewhat technical proof):

Definition 1 ( [2]) Let (d1, d2, . . . , dk, 1, 1, . . . , 1) be a degree sequence of a tree in non-increasing order
(dk ≥ 2). We define a tree M(d1, d2, . . . , dk, 1, 1, . . . , 1) associated with this sequence by the following
recursive construction: if k ≤ dk + 1, then the tree M(d1, d2, . . . , dk, 1, 1, . . . , 1) is obtained from a star
Sdk+1 with dk leaves by identifying k− 1 of its leaves with the centres of k− 1 stars Sd1 , Sd2 , . . . , Sdk−1

.
The non-leaves of this tree are assigned labels v1, . . . , vk in such a way that the degree of vi is di for all
i (in particular, vk is the centre of the star Sdk+1 that started the construction).

If k ≥ dk + 2, then the tree M(d1, d2, . . . , dk, 1, 1, . . . , 1) is obtained as follows: let l be the greatest
integer such that vl is a label in M(ddk , . . . , dk−1, 1, 1, . . . , 1), and let s be the smallest integer such that
vs is adjacent to a leaf in M(ddk , . . . , dk−1, 1, 1, . . . , 1). Now M(d1, d2, . . . , dk, 1, 1, . . . , 1) is obtained
from M(ddk , . . . , dk−1, 1, 1, . . . , 1) by connecting a leaf that is adjacent to vs to the centres of dk −
1 disjoint stars Sd1 , Sd2 , . . . , Sddk−1

. The centres of these stars receive the labels vl+1, . . . , vl+dk−1, in
increasing order of degree.
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v7

Figure 13. Construction of the tree M(5, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, . . . , 1).

Figure 13 shows an example of the construction described above.

The central result of [2] reads as follows:

Theorem 27 ( [2]) Let T be a tree with degree sequence (d1, d2, . . . , dn). We have the inequalities

σ(T ) ≤ σ
(
M(d1, d2, . . . , dn)

)

and
Z(T ) ≥ Z

(
M(d1, d2, . . . , dn)

)
.

Equality holds in both cases if and only if T is isomorphic to M(d1, d2, . . . , dn).

What makes this theorem particularly powerful is the concept of majorisation: we say that a degree
sequence (d1, d2, . . . , dn) majorises the degree sequence (b1, b2, . . . , bn) if we have

d1 + d2 + · · ·+ dk ≥ b1 + b2 + · · ·+ bk

for all k. It was shown in [2] that

σ
(
M(d1, d2, . . . , dn)

)
≥ σ

(
M(b1, b2, . . . , bn)

)

and
Z
(
M(d1, d2, . . . , dn)

)
≤ Z

(
M(b1, b2, . . . , bn)

)

if (d1, d2, . . . , dn) majorises (b1, b2, . . . , bn), and it turns out that Theorem 24 and Theorem 25 follow as
corollaries, as do the results of [47] (see also [84] for a less general result) on trees with given maximum
degree: for given order n and maximum degree ∆, the tree that maximizes the Merrifield-Simmons index
and minimizes the Hosoya index is M(∆,∆, . . . ,∆, d, 1, 1, . . . , 1) (the value of d ∈ {1, 2, . . . ,∆−1} is
uniquely determined by n and ∆). The results of [77] on trees with a given number of vertices of degree
2 can be obtained from Theorem 27 as well.

Unfortunately, there is no simple formula for the Merrifield-Simmons index or the Hosoya index of
M(d1, d2, . . . , dn) in general. In [49], an asymptotic result is provided in the special case that only the
maximum degree is prescribed.
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It is not known whether the trees with given degree sequence that minimize the Merrifield-Simmons
index or maximize the Hosoya index can be characterised as well. Little is known in general, but a
complete solution is given in [3] for the case that the vertices of the tree can only have two different
degrees (1 and another value d). Under this condition, caterpillar trees turn out to be extremal. Let us
also mention in this context that [67] provides a somewhat complicated upper bound for the Hosoya
index in terms of the degrees and the 2-degrees (sum of degrees of all neighbors).

Other restrictions on trees that have been considered in the literature include trees without a perfect
matching [57, 80, 92] and trees with a given bipartition (sizes of the two sets in the unique 2-colouring)
[150].

5.3 Unicyclic graphs

Several different restrictions have been considered for unicyclic graphs (as well as bicyclic graphs). The
most natural condition is perhaps to fix the girth, i.e. the length of the unique cycle. We have the
following bounds:

Theorem 28 ( [21, 93, 95, 98, 124, 126, 151]) Let G be a unicyclic graph with n vertices and girth k (3 ≤
k ≤ n). We have

Fk+1Fn−k+2 + Fk−1Fn−k+1 ≤ σ(G) ≤ 2n−kFk+1 + Fk−1.

The first inequality holds with equality for the graph that consists of a cycle of length k and a path of
length n − k attached to it. The second inequality holds with equality for the graph that consists of a
cycle of length k and n− k pendant edges attached to one of its vertices.

Likewise, we have
LkFn−k+1 + FkFn−k ≥ Z(G) ≥ (n− k)Fk + Lk.

The first inequality holds with equality for the graph that consists of a cycle of length k and a path of
length n − k attached to it. The second inequality holds with equality for the graph that consists of a
cycle of length k and n− k pendant edges attached to one of its vertices.

Figure 14. The extremal unicyclic graphs with 7 vertices and girth 4.

Of course, several other restrictions and additional conditions have been considered for unicyclic graphs
as well: we mention the diameter [71], maximum degree [139], matching number or existence of a
perfect matching [8, 166], number of pendant vertices [55, 58, 168] or the number of cutvertices [59].
Fully loaded unicyclic graphs, which are characterised by the property that each vertex on the cycle has
degree at least 3, have been studied in [10, 56, 155]. [131] studies unicyclic Hückel graphs, which are
characterised by the additional properties of having a perfect matching and maximum degree at most 3.
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There are also several results on restricted bicyclic graphs. We mention in particular bicyclic graphs
with given girth [115], diameter [72,136], matching number or existence of a perfect matching [26,167],
maximum degree [137], and number of pendant vertices [152]. Moreover, bicyclic graphs with two
elementary (disjoint) cycles are studied in [114].

We also remark that in many instances (in this and previous sections), more than the maximum and
minimum for the respective class and index have been determined, but also second-largest/smallest,
third-largest/smallest values, etc. See [62, 70, 118, 125, 129, 132, 141, 145–147, 149] for some notable
examples of papers devoted to this task.

6. Other types of graphs

6.1 Hexagonal and other chains

Since hexagonal systems play an important role in mathematical chemistry (as representations of ben-
zenoid hydrocarbons), they have been considered in the literature at quite an early stage. A hexagonal
chain is obtained by starting with a single hexagon (6-cycle) and repeatedly attaching a new hexagon to
the previous hexagon along an edge. The first important result on hexagonal chains reads as follows:

Theorem 29 ( [40]) Let Ln be the linear hexagonal chain consisting of n hexagons, see Figure 15. For
every hexagonal chain H consisting of n hexagons, we have

σ(H) ≤ σ(Ln) and Z(H) ≥ Z(Ln).

Figure 15. The linear hexagonal chain with 5 hexagons.

The following dual result was conjectured in [40] and finally proven in [159]:

Theorem 30 ( [159]) Let Zn be the zigzag hexagonal chain consisting of n hexagons, see Figure 16.
For every hexagonal chain H consisting of n hexagons, we have

σ(H) ≥ σ(Zn) and Z(H) ≥ Z(Zn).
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Figure 16. The zigzag hexagonal chain with 5 hexagons.

These theorems were further extended in many different ways, see [160–162], and many variants of
hexagonal chains were studied, involving other types of polygons such as squares, pentagons and oc-
tagons as well. We refer the reader to [4, 7, 11–15, 68, 102–105, 111, 112, 117, 156, 157].

6.2 Outerplanar graphs

An outerplanar graph is a planar graph with the additional property that all its vertices lie on the outer face
of some planar embedding. Alameddine [1] studies maximal outerplanar graphs, which are equivalent to
triangulations of polygons. For these graphs, we have the following bounds:

Theorem 31 For every maximal outerplanar graph G with n vertices (n ≥ 3), we have the bounds

an ≤ σ(G) ≤ Fn + 1,

where the sequence an is defined recursively by a0 = 1, a1 = 2, a2 = 3 and an = an−1 + an−3 for
n ≥ 3. Equality for the lower bound holds if and only if G is the “zigzag” graph shown in Figure 17,
while equality for the upper bound holds if and only if G is a fan (see Figure 9).

Figure 17. The (maximal) outerplanar graph with minimum Merrifield-Simmons index (for n = 8).

We remark that the lower bound is automatically also a lower bound for all outerplanar graphs (not
necessarily maximal), since every outerplanar graph can be turned into a maximal outerplanar graph by
adding edges. It is also noteworthy that the fan attains the maximum, while it also yields the minimum for
quasi-trees, see Theorem 17. It would be very interesting to determine similar bounds for planar graphs,
which appears to be more difficult.

6.3 Other special families

Theta graphs are graphs with two vertices that are connected by three pairwise edge-disjoint paths. They
occur very naturally in the study of bicyclic graphs, but they have also been studied on their own right,
as have generalisations [9, 91, 116].
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Cacti, which are graphs with the property that each block (maximal 2-connected subgraph) is either a
single edge or a cycle, have been the subject of investigation in [79, 128].

Many other parametrised special families consisting of suitable combinations of paths, cycles and stars
have been investigated, see for instance [17, 107, 108, 134, 158, 165].

7. An inequality involving Merrifield–Simmons index and Hosoya
index

Let us conclude this chapter with an inequality due to Fischermann, Volkmann and Rautenbach [32],
which involves both the Merrifield-Simmons index and the Hosoya index.

Theorem 32 Let T be a tree with maximum degree ∆. We have

Z(T )

σ(T )
≤





2
3

∆ = 1,
5
8

∆ = 2,
∆
2
+1

( 2
3
)∆+1

, ∆ ≥ 3.

These inequalities are sharp: equality holds for the paths P2 and P4 and for all subdivided stars (obtained
from a star by subdividing each edge into two edges).

We have seen many instances in this chapter where the extremal graphs with respect to the two indices
were the same. It is therefore natural to assume that there is a strong correlation between the two, which
also indicates that there might be many other interesting inequalities that the two quantities satisfy. One
can also expect many similar results connecting Merrifield-Simmons index and Hosoya index to other
graph invariants – see [133] for a recent effort in this direction.

Acknowledgment: This work was supported by the National Research Foundation of South Africa (grant
96236).

References
[1] A. F. Alameddine, Bounds on the Fibonacci number of a maximal outerplanar graph, Fibonacci

Quart. 36 (1998) 206–210.

[2] E. O. D. Andriantiana, Energy, Hosoya index and Merrifield–Simmons index of trees with pre-
scribed degree sequence, Discr. Appl. Math. 161 (2013) 724–741.

[3] E. O. D. Andriantiana, S. Wagner, On the number of independent subsets in trees with restricted
degrees, Math. Comput. Model. 53 (2011) 678–683.

[4] Y. Bai, B. Zhao, P. Zhao, Extremal Merrifield–Simmons index and Hosoya index of polyphenyl
chains, MATCH Commun. Math. Comput. Chem. 62 (2009) 649–656.
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[29] P. Erdős, On the number of complete subgraphs and circuits contained in graphs, Časopis Pěst.
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Abstract

In this chapter we survey our recent results on Balaban index. First, we consider this index on
r-regular graphs, for which we show that the Balaban index tends to zero as the number of vertices
increases. We also present stronger results for cubic graphs, and in particular for fullerene graphs,
and for nanotubical structures. The minimum value of Balaban index and corresponding extremal
graphs are still unknown. Regarding this problem, we have shown that this value is of order Θ(n−1),
and that in the class of balanced dumbbell graphs those with clique sizes 4

√
π/2

√
n + o(

√
n) have

asymptotically the smallest value. We introduced dumbbell-like graphs which are probably the ex-
tremal graphs for Balaban index. Various open problems and conjectures are proposed.
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1. Introduction

In this chapter we consider simple and connected graphs. For a graph G, by V (G) and E(G) we denote
the vertex and edge sets of a graph G, respectively. Let n = |V (G)| and m = |E(G)|. For vertices
u, v ∈ V (G), by distG(u, v) we denote the distance from u to v in G. The Balaban index, J(G), of a
graph G is defined as

J(G) =
m

m− n+ 2

∑

e=uv

1√
w(u) · w(v)

,

where the sum is taken over all edges e = uv of G and for x ∈ V (G), we have w(x) =
∑

y∈V (G)

distG(x, y).

Balaban index is a topological index introduced by Alexandru T. Balaban near to 30 years ago [8,9].
This topological index was used successfully in QSAR/QSPR modeling [20,36]. Several recent uses can
be found in [10, 25, 27]. In [11] two different approaches were presented for the calculation of Balaban
index by taking into account the chemical nature of elements. In [12], Balaban index is compared with
Wiener index regarding the alkanes, and it was obtained that Balaban index reduces the degeneracy of
the later index and provides much higher discriminating ability. Therefore Balaban index is also called
“sharpened Wiener index”. See [13] for another reference that involves these two indicies and infinite
polymers.

On other hand, mathematical properties of Balaban index are still not studied extensively. In Balaban,
Ionescu-Pallas, Balaban [15], the behavior of J for various infinite families of graphs is discussed. In
many of these cases, J tends to a constant finite value. For the study of this index over fullerene graphs
see [16, 23, 26].

In [21] Dong and Guo considered extremal values of Balaban index in the class of connected graphs
on n vertices. They stated that the path on n vertices attains the lower bound. Unfortunately, this
statement turned out to be false as shown by Aouchiche, Caporossi and Hansen [5]. Thus the following
problem from Dong and Guo [21, 22] remains open:

Problem 1.1. Among n-vertex graphs, find those with the minimum Balaban index.

Among graphs on n ≥ 8 vertices, Balaban index attains its maximum for the star Sn, where

J(Sn) =

√
(n− 1)3

2n− 3
,

and for graphs on n ≤ 7 vertices, Balaban index attains its maximum for the complete graph Kn, where

J(Kn) =
n3 − n2

2(n2 − 3n+ 4)
,

see [22] and [31]. However, if we consider n-vertex trees, then the Balaban index attains its minimum
for the path on n vertices Pn, see [17, 35], and limn→∞ J(Pn) = π, see [15]. One may expect that, if G
is an n-vertex r-regular graph, then J(Pn) ≤ J(G) ≤ J(Sn) for large n. As we will see later, this is not
the case.

In this chapter, we survey our recent results on Balaban index. First, we consider this index on
r-regular graphs, for which we show that the Balaban index tends to zero as the number of vertices
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increases. In other words, zero is also an accumulation point for Balaban index. This was derived from
an upper bound for Balaban index of r-regular graphs on n vertices from [29]. Even better upper bound
was obtained for fullerene graphs. We evaluate the Balaban index for nanotubical structures in [4].

Although the Balaban index was introduced 30 years ago, its minimum value and corresponding
extremal graphs are still unknown. We have shown that this value is of order Θ(n−1), and also that in
the class of balanced dumbbell graphs those with clique sizes 4

√
π/2

√
n + o(

√
n) and the path length

n − o(n) have asymptotically the smallest value. Next, we introduced dumbbell-like graphs, which are
the graphs with the smallest Balaban index value known to us. We conclude the chapter with various
open problems and conjectures.

2. Balaban index of regular graphs

In this section we concentrate on r-regular graphs with r ≥ 3. A result from [29] gives a surprising
upper bound for J(G) for these graphs.

Theorem 2.1. Let G be an r-regular graph on n vertices with r ≥ 3. Then

J(G) ≤ r2(r − 1)2

2(r − 2)2
⌊
logr−1

(r−2)n+2
r

⌋ .

This result implies the following interesting consequence.

Corollary 2.1. For r-regular graphs G on n vertices, where r ≥ 3, it holds

lim
n→∞

J(G) = 0.

In other words, Balaban index of regular graphs which are really big in the number of vertices, is close
to 0. The number of such graphs is enormously large, and we conclude that the Balaban index does not
distinguish them well.

Conclusion 2.2. Balaban index does not distinguish well r-regular graphs on n vertices for r > 2 and

large n.

2.1 Fullerene graphs

Fullerenes [34] are polyhedral molecules made of carbon atoms arranged in pentagonal and hexagonal
faces, and their corresponding graphs, fullerene graphs, are 3-connected, cubic planar graphs with only
pentagonal and hexagonal faces.

By Corollary 2.1, if G is the class of fullerenes, then

lim
n→∞

{J(G); G ∈ G and |V (G)| = n} = 0.

We remark that the upper bound given in Theorem 2.1 is very rough. For instance, if G is the well-known
Buckminster fullerene, then our bound with r = 3 gives J(G) ≤ 36

2blog2 62/3c = 4.5, while J(G) = 0.91.
Nevertheless, in [29] we give a better upper bound for the Balaban index of fullerene graphs, which

tends to 0 for n → ∞ much faster than 18/blog2(n+ 2)/3c.
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Theorem 2.3. Let G be a fullerene graph on n ≥ 60 vertices. Then

J(G) ≤ 25√
n
.

2.2 Cubic graphs with small value of Balaban index

There are cubic graphs for which the Balaban index tends to 0 even faster than for the fullerene graphs.
While for fullerene graphs Balaban index is bounded by 25n−1/2, these cubic graphs have Balaban index
32n−1 and even less.

Figure 1. The graph H16.

Let Hn be a graph obtained from n/4 copies of K4 − e (i.e., K4 without one edge) which are joined
by n/4 extra edges to form a connected cubic graph. Obviously, Hn has n vertices, see Figure 1 for H16.
We have the following statement in [29].

Proposition 2.4. For positive n divisible by 4, it holds

J(Hn) ≤
32

n
.

The last result means that if n approaches to ∞, then J(Hn) approaches to 0 quite fast. However,
among cubic graphs on n vertices Hn does not have the smallest value of Balaban index. We introduce
a class of graphs Ln with J(Ln) < J(Hn). Since it seems to be difficult to find a good upper bound for
J(Ln), in Table 1 below we present the values of J(Ln) and J(Hn) for a few small values of n divisible
by 4, and the bound 32

n
.

Figure 2. The graph L18.

Let n be even and n ≥ 10. If 4 - n, then Ln is obtained from (n− 10)/4 copies of K4 − e joined into
a path by edges connecting the vertices of degree 2, to which at the ends we attach two pendant blocks,
each on 5 vertices, see Figure 2 for L18. On the other hand, if 4 |n, then Ln is obtained from (n− 12)/4

copies of K4−e, joined into a path by edges connecting the vertices of degree 2, to which ends we attach
two pendant blocks, one on 5 vertices and the other on 7 vertices, see Figure 3 for L20.

Figure 3. The graph L20.
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n 12 16 20 24 28
32/n 2.68 2 1.60 1.33 1.14
J(Hn) 1.50 1.19 1.00 0.85 0.75
J(Ln) 1.36 1.03 0.83 0.70 0.61

Table 1. Balaban index for Hn and Ln for small number of vertices.

We conclude the section with a conjecture about Ln from [29].

Conjecture 2.1. Among n-vertex cubic graphs, Ln has the smallest Balaban index.

2.3 Nanotubical structures

Here we consider graphs which are almost regular, namely the nanotubical graphs. These graphs are
obtained by wrapping a long hexagonal grid into a tube so that hexagons with coodrinates (x, y) and
(x+ k, y+ l) are identified, and then possibly by closing the tube with patches (also called caps) see [4].
It is important to remark that from a mathematical point of view, nanotubical fullerenes are not well
defined as the term “long” is not precise enough. In practice, the ratio

length of the cylindrical part : circumference of the cylindrical part

can be of order 100 000 000:1. It is a well known fact that in a nanotubical fullerene of type (k, l) on
n vertices, the circumference of the cylindrical part is (k + l) and the diameter of the cylindrical part
is approximately n/(k + l), since when n is large enough comparing to k + l, the caps are negligible
small [2]. This encourages us to assume that nanotubical fullerenes of type (k, l) on n vertices satisfy

k + l ∈ o(n) .

In [4], infinite open nanotubes are considered. We have there the following result.

Theorem 2.5. Let v be an arbitrary vertex in an infinite open (k, l)-nanotube. Denote by ni the number

of vertices at distance i from v. Then

ni(v) =





3i, i < k + l
3i− (l + 1), i = k + l

3i− 2(l + 2q), i = k + l + q,
1 ≤ q ≤ k − l

2(k + l), i ≥ 2k.

Moreover, if i ≥ 2k, then at each side of the nanotube there are exactly k + l vertices at distance i from

v.

Using the above theorem we determined asymptotics for the Balaban index for nanotubical graphs.
The leading term depends on the circumference of the cylindrical part of the nanotubical graph, but not
on its specific type.
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Theorem 2.6. Let G be a nanotubical graph (open or not) of type (k, l) on n vertices. Then

J(G) ∼ 9π(k + l)

2n
.

3. Lower bounds

We start with a simple lower bound for the Balaban index in the class of graphs on n vertices from [28].

Theorem 3.1. Let G be a graph on n ≥ 4 vertices. Then

J(G) ≥ 4

n− 1
.

A direct consequence of Theorem 3.1 and Proposition 2.4 is the following corollary.

Corollary 3.1. As n increases, the minimum value of Balaban index in the class of graphs on n vertices

tends to zero. More precisely, this value is of order Θ(n−1).

Using more involved argument, we have proved the following lower bound in [28], which is for large
n roughly twice the bound of Theorem 3.1.

Theorem 3.2. Let G be a graph on n vertices, where n is big enough. Then

J(G) ≥ 8

n
+ o(n−1).

By Theorem 3.2, the asymptotic lower bound for J(G) is 8/n. Let us also mention that nanotubes
of type (k, l) (regardless if they are open or not) have asymptotic value of Balaban index 9π(k+l)

2n
by

Theorem 2.6. Hence, nanotubes of specific type have also the minimum possible asymptotic value of
Balaban index up to a multiplicative constant. However, in the sequel we show that there are graphs with
even smaller value of Balaban index.

By the results and arguments from [28], one would expect that a graph with the minimum Balaban
index will have Θ(n) edges, and vertices v with big value of w(v). For small values of n we determined
the extremal graphs and observed that they are either dumbbell graphs (i.e. graphs obtained from a
path and two complete graphs, which are attached to the end-vertices of the path) or graphs similar to
dumbbell graphs, see Figure 4. Motivated by this we studied the Balaban index of dumbbell graphs and
graphs alike.
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n = 6

n = 7

n = 8

n = 9

n = 10

n = 11

n = 3

n = 4

n = 5

n = 3

n = 4

n = 5

Figure 4. Graphs with the smallest value of Balaban index for n ∈ {3, 4, . . . , 10}. The case n = 11
was verified only for graphs with at most 22 edges in order to avoid the huge realm of
graphs.

4. Bounds for balanced dumbbell graphs

First we define dumbbell graphs more precisely. Let Ka and K ′
a′ be two disjoint complete graphs on a

and a′ vertices, respectively, and let Pb be a path on b vertices (v0, v1, . . . , vb−1) disjoint from the cliques.
The dumbbell graph Da,b,a′ is obtained from Ka ∪ Pb ∪K ′

a′ by joining all vertices of Ka with v0 and all
vertices of K ′

a′ with vb−1. Thus, Da,b,a′ has a + b + a′ vertices. In the literature, it is often assumed that
a = a′, here we call such graphs balanced dumbbell graphs. In what follows, we always assume a ≤ a′.

Considering small values of n (up to 200), our computer tests show that among dumbbell graphs
Da,b,a′ on n vertices, the minimum value of Balaban index is achieved for those with

a′ = a or a′ = a+ 1. (1)

We strongly believe this is true in general, and henceforth, we state it as a conjecture.

Conjecture 4.1. Among all dumbbell graphs Da,b,a′ on n vertices, the minimum value of Balaban index

is achieved for those with a′ = a or a′ = a+ 1.

The rest of this section is devoted to determining the sizes of a and b for the optimal dumbbell graphs.
When dealing with large graphs, there is not much difference between the cases a′ = a and a′ = a+1, so
for the sake of simplicity, we restrict ourselves to balanced dumbbell graphs. We denote such dumbbell
graphs by Da,b. Thus, Da,b stands for Da,b,a and it has 2a + b vertices. In [29] we proved the following
statement:

Theorem 4.1. Let Da,b be a balanced dumbbell graph on n vertices, where n is big enough, with the

smallest possible value of Balaban index. Then a and b are asymptotically equal to 4
√
π/2

√
n and n,

respectively. That is, a = 4
√
π/2

√
n+ o(

√
n) and b = n− o(n).

Observe that π appears in Theorem 4.1 naturally, since the extremal balanced dumbbell graphs con-
tain a very long path. Theorem 4.1 yields the following consequence.
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Corollary 4.1. Let D be a balanced dumbbell graph on n vertices, where n is big enough, with the

minimum value of Balaban index. Then

J(D) ∼ 1

n

[
π + 2

√
2π + 2

]
.
=

10.15

n
.

Comparing Corollary 4.1 with the lower bound presented in Theorem 3.2, we see that the asymptotic
value of Balaban index for optimum balanced dumbbell graph is only about 1.27 times higher than our
lower bound. Our expectation is that the optimal balanced dumbbell graph is not much different from
the optimal dumbbell graph. Guided by this we present an alternative version of Conjecture 4.1.

Conjecture 4.2. Among all dumbbell graphs Da,b,a′ on n vertices, the minimum is achieved for one with

a = 4
√
π/2

√
n+ o(

√
n), a′ = 4

√
π/2

√
n+ o(

√
n) and b = n− o(n).

Observe that Conjecture 4.1 and Theorem 4.1 imply Conjecture 4.2.

5. Bounds for dumbbell–like graphs

Dumbbell-like graphs are obtained from dumbbell graphs by deleting edges connecting the last vertex of
the path with the vertices of the clique. More precisely, let Da,b,a′ be a dumbbell graph and let k satisfy
0 ≤ k < a′. Recall that a ≤ a′ and all vertices of Ka′ are connected to vb−1. The dumbbell-like graph

D−k
a,b,a′ is obtained from Da,b,a′ by deleting k edges which connect vb−1 with k vertices of Ka′ . Hence,

the extremal graphs for n = 9 and n = 11 are dumbbell-like graphs D−1
2,4,3 and D−1

3,5,3, respectively, see
Figure 4.

We have the following conjecture which is supported by our computer experiments.

Conjecture 5.1. Dumbbell-like graphs attain the minimum value of Balaban index among graphs on n

vertices.

As mentioned above, it seems that among dumbbell graphs, those with the minimum Balaban index
have cliques, sizes of which differ by at most one. Hence, they have a “balanced” form. One would
therefore expect that, at least in the case when a = a′, extremal graphs can be obtained when we remove
edges from both sides of dumbbell graph in a balanced way. That is, if we remove from Da,b,a′ some
edges connecting v0 with vertices of Ka and some edges connecting vb−1 with vertices of Ka′ . However,
our computer experiments indicate that this is not the case and the minimum is obtained when we remove
edges only from one side, i.e., by dumbbell-like graphs.

Now we modify the notation of dumbbell-like graphs slightly. The reason for this is that if we
remove too many edges from Da,b,a′ , the dumbbell-like graph D−k

a,b,a′ looks more like the dumbbell graph
Da,b+1,a′−1. In fact, D−a′+1

a,b,a′ is the dumbbell graph Da,b+1,a′−1. Therefore, if k > a′−1
2

, instead of D−k
a,b,a′

we use the notation Da′−1−k
a,b+1,a′−1 if a′ > a and Da′−1−k

a′−1,b+1,a if a′ = a. Observe that the upper index is
positive in this modified notation. If a′ satisfies a ≤ a′ ≤ a + 1, the dumbbell-like graph Dk

a,b,a′ may be
viewed as obtained from the dumbbell graph Da,b,a′ by adding k edges joining v1 (the second vertex of
the path) with k vertices of Ka.
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In fact, the modified notation does not need to be restricted to the case k > a′−1
2

. This notation
suggests the following conjecture.

Conjecture 5.2. Among dumbbell graphs on n vertices, let Da,b,a′ be one with the minimum Balaban

index. Then there is (possibly negative) ` such that among dumbbell-like graphs on n vertices D`
a,b,a′ has

the minimum value of Balaban index.

We remark that Conjecture 5.2 was verified by computer for some values of n. Conjectures 4.1, 5.1
and 5.2 suggest a two-step process for finding graphs with the minimum Balaban index for given n:

(i) Find parameters a, b, a′, where a ≤ a′ ≤ a+1 and a+b+a′ = n, such that Da,b,a′ has the smallest
Balaban index.

(ii) Find ` such that D`
a,b,a′ has the smallest value of Balaban index.

Moreover, we believe the following conjecture holds.

Conjecture 5.3. Dumbbell graphs asymptotically attain the minimum value of Balaban index among

graphs on n vertices.

6. Conclusion and further work

Using computers, for n ≤ 11 we found graphs with the minimum value of Balaban index. All these
graphs but two are dumbbell graphs and the remaining two are dumbbell-like graphs. We found asymp-
totic lower and upper bounds for the minimum value of Balaban index and we have shown that they
differ by a multiplicative constant 1.27. Finally, we studied dumbbell-like graphs.

Since we expect that balanced dumbbell graphs are asymptotically the best ones, we pose the follow-
ing problem:

Problem 6.1. Find a tighter lower bound for the minimum value of Balaban index among graphs on n

vertices.

As regards upper bounds for the smallest value of Balaban index, the following problems are inter-
esting:

Problem 6.2. Find a, b and a′ such that among dumbbell graphs on n vertices Da,b,a′ has the smallest

value of Balaban index.

Problem 6.3. Find a, b, a′ and ` such that among dumbbell-like graphs on n vertices D`
a,b,a′ has the

smallest value of Balaban index.

Finally, the main problem still remains open although we believe that dumbbell-like graphs are the
optimum ones:

Problem 6.4. Among the graphs on n vertices, find those with the minimum value of Balaban index.

Beside the above conjectures one can study some more related problems. As a diversity of the
Balaban index J , further indices were developed omitting the fraction factor m/(m− n+ 2) in front of
the sum, and it would be interesting to explore similar bounds for indices introduced in [14].
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6.1 On sum–Balaban index

A derived measure, so called sum-Balaban index, is defined as:

SJ(G) =
m

m− n+ 2

∑

uv∈E(G)

1√
w(u) + w(v)

.

Regarding this index we obtained some results where some of them are the counterparts of Theorems 2.6,
3.1, 3.2, and 4.1 for this index, [4, 31–33].
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1. Introduction

The topological index, also known as molecular descriptor, is a single number that can be used to char-
acterize some property of the graph of a molecule [26, 27]. In 1947, Harold Wiener [31] introduced the
Wiener index for calculating the boiling point of alkanes. Wiener index of a graph is defined as the sum
of the distances between all unordered pairs of vertices of a graph. Probably, Wiener index is the first
topological index used in Mathematical Chemistry.

Twenty five years ago, D. Plavšić et al. [22] introduced a topological index, which was named the
Harary index in honour of Professor Frank Harary and presented in the Symposium held at the University
of Saskatchewan, Saskatoon, Canada from September 12 to 14, 1991 to celebrate the 70th birthday of
Prof. Frank Harary. At the same time the same topological index with different name called as reciprocal
distance sum index was independently introduced by O. Ivanciuc et al. [14]. However the term Harary
index nowdays is generally accepted for this molecular descriptor. Harary index of a graph is defined as
the sum of the reciprocal of the distances between all unordered pairs of vertices of a graph.
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Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). The order of a graph
G is the number of its vertices and the size of G is its number of edges. A graph G is said to be connected

if every pair of vertices of G is joined by some path. The distance between the vertices vi and vj is the
length of a shortest path joining them and is denoted by dG(vi, vj). The maximum distance between any
two vertices is called the diameter of G and is denoted by diam(G) [1]. The degree of a vertex v is the
number of edges incident to it in G and is denoted by dG(v). A graph G is said to be regular if all its
vertices have same degree. If G1 and G2 are isomorphic then it can be written as G1

∼= G2. As usual, we
denote the complete graph by Kn, the cycle by Cn, the path by Pn, the complete bipartite graph by Kp,q

where p+ q = n and the star by Sn = K1,n−1 on n vertices.
The Wiener index W (G) of a connected graph G is defined as [31]

W (G) =
∑

1≤i<j≤n

dG(vi, vj).

The Harary index of a connected graph G, denoted by H(G), is defined as [14, 22]

H(G) =
∑

1≤i<j≤n

1

dG(vi, vj)
.

�
�

@
@t ttt

v3 v4

v2

v1

Figure 1. Graph G.

For a graph G given in Fig. 1, H(G) = 1 + 1
2
+ 1

2
+ 1 + 1 + 1 = 5 and W (G) = 8.

For any connected graph G, H(G) ≤ W (G) with equality holds if and only if G ∼= Kn. It is easy to
see that

H(Kn) =
n(n− 1)

2
;

H(Kp,q) =
p(p− 1)

4
+

q(q − 1)

4
+ pq;

H(Sn) =
(n+ 2)(n− 1)

4
;

H(Pn) = 1 + n

n−1∑

k=2

1

k
;

H(Cn) =





1 + n
n−2∑
k=1

1
k
, if n is even

n
n−1∑
k=1

1
k
, if n is odd.

Harary index can be viewed as a graph invariant based on the reciprocal distance matrix of G [16,
19]. The important use of Harary index in Mathematical Chemistry is in the nonempirical quantitative
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structure-property relationships (QSPR) and quantitative structure-activity relationships (QSAR) [22,26,
27].

A review of the Harary index and its applications can be found in [36]. In this chapter we focus on
the bounds on the Harary index and extremal values.

One can easily observe that any edge addition will increase the Harary index and edge deletion
decrease the Harary index. Thus if u and v are nonadjacent vertices of a connected graph G and e ∈
E(G), then [33, 37]

H(G+ uv) > H(G) and H(G− e) < H(G).

By above expressions, it easily follows that for any connected graph of order n, H(G) ≤ H(Kn) =
n(n−1)

2
, with equlaity holds if and only G ∼= Kn.

Let d = diam(G). For any two vertices u and v of a connected graph G, dG(u, v) ≥ 1 and dG(u, v) ≤
d. Hence for any connected graph G of order n ≥ 2 and having diameter d,

n(n− 1)

2d
≤ H(G) ≤ n(n− 1)

2
,

with equality on both sides holds if and only if G ∼= Kn.

In a connected graph G on n vertices and with m edges, there are m pairs of vertices which are at
distance 1 and the remaining

(
n
2

)
−m pairs of vertices are at distance at least 2. Similarly

(
n
2

)
−m pairs

of vertices are at distance at most d = diam(G). Hence for any connected graph G of order n ≥ 2 and
with m edges and diameter d,

n(n− 1)

2d
+m

(
1− 1

d

)
≤ H(G) ≤ n(n− 1)

4
+

m

2
,

with equality on both sides holds if and only if diam(G) ≤ 2.

2. Harary index of trees

Following theorem gives the lower and upper bounds for the Harary index of trees.

Theorem 2.1. [10] Let T be a tree on n vertices. Then

1 + n

n−1∑

k=2

1

k
≤ H(T ) ≤ (n+ 2)(n− 1)

4
,

with left equality holds if and only if T ∼= Pn and right equality holds if and only if T ∼= Sn.

The Harary index increases by adding edges. Hence among all connected graphs, the extremal graph
with the minimal Harary index must be tree. Thus, next Corollary follows from Theorem 2.1.

Corollary 2.1. [39] Let G be a connected graph of order n. Then H(G) ≥ H(Pn), with equality holds

if and only if G ∼= Pn.
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A vertex v of a tree T is called a branching point if dT (v) ≥ 3. Let Tn(n1, n2, . . . , nk) be a star like

tree of order n obtained by inserting n1 − 1, n2 − 1, . . . , nk − 1 vertices into k edges of the star Sk+1

respectively, where n1 + n2 + · · · + nk = n− 1. Note that any tree with exactly one branching point is
a star like tree. Assume that T is any tree of order n with exactly two branching points v1 and v2 with
dT (v1) = r and dT (v2) = t. The orders of r−1 components which are paths of T−v1 are p1, p2, . . . , pr−1,
the order of the component which is not a path of T − v1 is pr = n − p1 − p2 − · · · − pr−1 − 1. The
orders of t − 1 components which are paths of T − v2 are q1, q2, . . . , qt−1, the order of the component
which is not a path of T − v2 is qt = n − q1 − q2 − · · · − qt−1 − 1. We denote the tree T with two
branching points as T = Tn(p1, p2, . . . , pr−1; q1, q2, . . . , qt−1) where r ≤ t, p1 ≥ p2 ≥ · · · ≥ pr−1 and
q1 ≥ q2 ≥ · · · ≥ qt−1. For convenience we use the symbol plk to indicate that the number pk is l times.
For example T16(2, 2, 3, 3, 5) = T16(2

2, 32, 51).
The ordering of trees with respect to Harary index has been given by K. Xu [32].

Theorem 2.2. [32] Suppose that T is a tree of order n ≥ 16. Then

H(Pn) < H(Tn(n− 3, 12)) < H(Tn(n− 4, 2, 1)) < H(Tn(1
2; 12))

< H(Tn(n− 5, 3, 1)) < H(Tn(1
2; 2, 1)) < H(Tn(n− 4, 13)) < H(T ).

Let T2, T3, . . . , T8 be the trees of order n ≥ 14 as shown in Fig. 2.
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Figure 2.

Theorem 2.3. [32] Suppose T is a tree of order n ≥ 16 and T /∈ {Sn, T2, T3, . . . , T8}. Then

H(T ) < H(T8) < H(T7) < H(T6) < H(T5) < H(T4) < H(T3) < H(T2) < H(Sn).

A vertex having degree equal to 1 is called a pendent vertex. A set of vertices is independent if no
two of them are adjacent. The largest number of vertices in such a set is called the point independence

number of G. An independent set of edges of G has no two of its edges adjacent and the maximum
cardinality of such a set is the line independence number or matching number of G.
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Theorem 2.4. [13] Let T be a tree with n vertices and k pendent vertices, where 2 ≤ k ≤ n − 2 and

0 ≤ r < k. Then

H(T ) ≤ H

(
Tn

(⌈n
k

⌉r
,
⌊n
k

⌋k−r
))

,

with equality holds if and only if T ∼= Tn

(⌈
n
k

⌉r
,
⌊
n
k

⌋k−r
)

.

The matching number of a tree Tn(2
β−1, 1n−2β+1) is β.

Theorem 2.5. [5, 13] Let T be a tree with n vertices and matching number β, where 2 ≤ β ≤ bn/2c.

Then

H(T ) ≤ H(Tn(2
β−1, 1n−2β+1)),

with equality holds if and only if T ∼= Tn(2
β−1, 1n−2β+1).

Corollary 2.2. [5, 13] Let T be a tree with n vertices and point independence number α. Then

H(T ) ≤ H(Tn(2
n−α−1, 12α−n+1)),

with equality holds if and only if T ∼= Tn(2
n−α−1, 12α−n+1).

The complete ∆-ary tree, denoted by Vn,∆, is defined as follows. Start with the root having ∆

children. Every vertex different from root, which is not in one of the last two levels, has exactly ∆ −
1 children. In the last level, while not all nodes have to exist, the nodes that do exist fill the level
consecutively. Thus, at most one vertex on the level second to last has its degree different from ∆ and 1.
The complete ∆-ary tree is called Volkmann tree [9, 18].

Theorem 2.6. [8, 12, 13, 28] Let T be a tree with n vertices and maximum degree ∆ ≥ 3. Then

H(Tn(n−∆, 1∆−1)) ≤ H(T ) ≤ H(Vn,∆),

with left equality holds if and only if T ∼= Tn(n − ∆, 1∆−1) and right equality holds if and only if

T ∼= Vn,∆.

The right hand side of Theorem 2.8 was conjectured in [13].
By Theorem 2.8, the following corollary can be easily obtained.

Corollary 2.3. [12] Let G be a connected graph of order n and with maximum degree ∆. Then

H(G) ≥ H(Tn(n−∆, 1∆−1)),

with equality holds if and only if G ∼= Tn(n−∆, 1∆−1).

Theorem 2.7. [12, 13] Let T be a tree with n vertices and diameter d, where 2 ≤ d ≤ n− 2. Then

H(T ) ≤ H

(
Tn

(⌈
d

2

⌉
,

⌊
d

2

⌋
, 1n−d−1

))
,

with equality holds if and only if T ∼= Tn

(⌈
d
2

⌉
,
⌊
d
2

⌋
, 1n−d−1

)
.
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The reciprocal complementary Wiener index RCW (G) of a graph G is defined as [15]

RCW (G) =
∑

1≤i<j≤n

1

d+ 1− dG(vi, vj)
,

where d is the diameter of G.

Obviously H(Sn) ≤ RCW (Sn) and H(Pn) ≥ RCW (Pn).

Denote by DSn1,n2 a double star obtained by adding a new edge between two central vertices of stars
Sn1+1 and Sn2+1.
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Figure 3. DS3,2.

Das, Zhou and Trinajstić [6] obtained the bounds for the Harary index of double star.

Theorem 2.8. [6] Let DSn1,n2 be a double star with n1 ≥ 3 and n2 ≥ 2. Then

H(DSn1,n2) ≤ RCW (DSn1,n2),

with equality holds if and only if n1 = 3 and n2 = 2.

A subdivision graph S(G) of a graph G is obtained by inserting new vertex on each edge of G.

Theorem 2.9. [6] Let DSn1,n2 be a double star with n1 ≥ 8n2. Then

H(S(DSn1,n2)) ≥ RCW (S(DSn1,n2)).

Let v be a vertex of a tree T and dT (v) = k + 1. Suppose that P (1), P (2), . . . P (k) are pendent
paths incident at v, with the starting points of paths v1, v2, . . . , vk respectively and length ni ≥ 1 (i =
1, 2, . . . , k). Let w be the neighbor of v distinct from vi. Let T ′ = δ(T, v) be a tree obtained from T

by removing the edges vv1, vv2, . . . , vvk−1 and adding edges wv1, wv2, . . . , wvk−1. We say that T ′ is a
δ-transform of T .
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v

v1

v2

vk−1
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Figure 4. δ-transfromation on the vertex v.

Ilić, Yu and Feng [13] obtained several results on the Harary index of trees.
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Theorem 2.10. [13] Let T be a tree rooted at the center vertex u with at least two vertices of degree 3.

Let v ∈ {z | dT (z) ≥ 3, z 6= u} be a vertex with the largest distance dT (u, v) from the center vertex.

Then for the δ-transform tree T ′ = δ(T, v), H(T ′) > H(T ).

If v is the branching vertex of a star like tree Tn(n1, n2, . . . , nk) then Tn(n1, n2, . . . , nk) − v =

Pn1 ∪ Pn2 ∪ · · · ∪ Pnk
, where n1 ≥ n2 ≥ · · · ≥ nk > 1.

The star like tree BTn,k
∼= Tn(n1, n2, . . . , nk) is balanced if all paths have almost equal length, that

is |ni − nj| ≤ 1 for 1 ≤ i < j ≤ k.
The broom Bn,k is a tree consisting of a star Sk+1 and a path of length n − k − 1 attached to an

arbitrary pendent vertex of the star.
Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two integer arrays of length n. We say that x

majorizes y and write x � y if the elements of these arrays satisfy following conditions.

(i) x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn.

(ii) x1 + x2 + · · ·+ xk ≥ y1 + y2 + · · ·+ yk for every 1 ≤ k ≤ n.

(ii) x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn.

Theorem 2.11. [13] Let p = (p1, p2, . . . , pk) and q = (q1, q2, . . . , qk) be two arrays of length k ≥ 2,

such that p ≺ q and n = p1 + p2 + · · ·+ pk = q1 + q2 + · · ·+ qk. Then

H(Tn(p1, p2, . . . , pk)) ≥ H(Tn(q1, q2, . . . , qk)).

Corollary 2.4. [13] Let T = Tn(n1, n2, . . . , nk) be a star like tree with n vertices and k pendent paths.

Then

H(Bn,k) ≤ H(T ) ≤ H(BTn,k).

Moreover, the left equality holds if and only T ∼= Bn,k and the right equality holds if and only if T ∼=
BTn,k.

Theorem 2.12. [13] Among all the trees on n vertices with k pendent vertices (3 ≤ k ≤ n − 2), BTn,k

is the unique tree having maximal Harary index.

Note that
H(Pn) = H(BTn,2) < H(BTn,3) < · · · < H(BTn,n−1) = H(Sn).

If n−1
2

< k ≤ n− 1, then the spur tree An,k is obtained from the star Sk+1 by adding a pendent edge
to each of n− k − 1 pendent vertices of the star Sk+1 (see Fig. 5). Note that An,k

∼= BTn,k.
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Figure 5. The spur tree A13,7.
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Theorem 2.13. [13] Let T be a tree on n vertices with matching number β. Then

H(T ) ≤ 1

24
(6n2 − 4βn+ β2 + 9β + 10n− 22),

with equality holds if and only T ∼= An,n−β .

Corollary 2.5. [13] Let T be a tree on n vertices with perfect matching. Then

H(T ) ≤ 1

4
(17n2 + 58n− 88),

with equality holds if and only T ∼= An,n/2.

Theorem 2.14. [13, 28] Let T be a tree on n vertices with point independence number α. Then

H(T ) ≤ 1

24
(3n2 + 2αn+ α2 − 9α + 19n− 22),

with equality holds if and only T ∼= An,α.

Let Cn,k(p1, p2, . . . , pk−1) be a caterpillar on n vertices from a path Pk+1 = v0v1 · · · vk−1vk by
attaching pi ≥ 0 pendent vertices to vi, 1 ≤ i ≤ k − 1, where n = k + 1 +

∑k−1
i=1 pi. Denote

Cn,k,i = Cn,k( 0, 0, . . . , 0︸ ︷︷ ︸
i−1

, n− k − 1, 0, 0, . . . , 0). Obviously Cn,k,i = Cn,k,n−i.

Theorem 2.15. [13] Among all trees on n vertices and diameter d, Cn,d,bd/2c is the unique tree having

maximal Harary index.

Corollary 2.6. [13] Let T be a tree on n vertices with radius r ≥ 2 and diameter d. Then

H(T ) ≤ H(Cn,2r−1,bd/2c),

with equality holds if and only if T ∼= Cn,2r−1,bd/2c.

Note that H(Pn) = H(Cn,n−1,b(n−1)/2c) < · · · < H(Cn,3,1) < H(Cn,2,1) = H(Sn).

Among all trees with n vertices, Cn,3,1 has the second maximal Harary index [13].

Theorem 2.16. [13] Let T be a tree on n vertices with the maximum degree ∆. Then H(T ) ≤ H(Bn,∆),

with equality holds if and only if T ∼= Bn,∆, a broom.

Note that H(Sn) = H(Bn,n−1) > H(Bn,n−2) > · · · > H(Bn,3) > H(Bn,2) = H(Pn).

Among all trees with n vertices, Bn,3 has the second minimum Harary index [13].

A branching point v of a tree T is said to be an out branching point if at most one of the components
of T − v is not a path, otherwise, v is an in branching point of T .

Consider the transformation T → TA → TB → TC as shown in the Fig. 6, where T is a tree of order
n and v is an out branching point of T with dT (v) = k and all the components T1, T2, . . . , Tk of T − v

except T1 are paths.
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Theorem 2.17. [32] Let T be a tree of order n with v as its out branching point and dT (v) = k ≥ 3.

Suppose that all components of T − v except T1 are paths. Then H(T ) ≥ H(TA) ≥ H(TB) > H(TC)

with H(T ) = H(TA) (or H(T ) = H(TB)) if and only if T ∼= TA (or T ∼= TB).

The tree T ′
n,s is obtained from t paths of order q+2 and s− t paths of order q+1 by identifying one

end of each of the s paths. Here n− 1 = sq + t, 0 ≤ t < s.

Theorem 2.18. [13] Let T be a tree of order n with s pendent vertices. Then

H(T ) ≤ H(T ′
n,s) = (s− 1)

(
n− 1 +

s

2

) 2q+1∑

i=1

1

i
− (s− 2)(n− 1− s)

q+1∑

i=1

1

i

+ s

(
s− 3

2
− q

)
+

t(t− 1)

4(q + 1)
,

with equality holds if and only if T ∼= T ′
n,s.

3. Harary index of unicyclic and bicyclic graphs

A unicyclic graph is connected graph of order n and with n edges. A bicyclic graph is a connected graph
with n vertices and n+ 1 edges.

Denote by Ck(n
l1
1 , n

l2
2 , . . . , n

lt
t ), the unicyclic graph obtained by attaching li paths of length ni, i =

1, 2, . . . , t to one vertex of a cycle Ck, where n1 > n2 > · · · > nt. For example, the graph C5(4
1, 31, 22)

is shown in the Fig. 7.
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Figure 7. C5(4

1, 31, 22).
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There are exactly two unicyclic graphs C4 and C3(1
1) of order 4 with H(C4) = H(C3(1

1)).

Xu and Das [34] obtained the bounds for the Harary index of unicyclic graphs and bicyclic graphs.

Theorem 3.1. [34] Let G be a unicyclic graph with n ≥ 5 vertices. Then

4 +
2

n− 2
+ n

n−3∑

i=1

1

i
≤ H(G) ≤ n2 + n

4
,

with the left equality holds if and only if G ∼= C3((n − 3)1) and the right equality holds if and only if

G ∼= C3(1
n−3) for n ≥ 6 and G ∼= C3(1

n−3) or G ∼= C5 for n ≥ 5.

The left equality of Theorem 3.1 was conjectured by Chen [2], as the extremal graph among all
unicyclic graphs with minimal Harary index is a graph C3((n − 3)1). The right hand side of Theorem
3.1 was also proved in [2].

For n = 5 and β = 2, there are only two graphs C5 and C3(1
2) which have the maximal Harary index

among all unicyclic graphs of order 5 with matching number 2 [34].

In [7], Diudea et al. showed that the unique graph C3(1
n−3) has the maximal Harary index among

all unicyclic graphs of order n and with matching number 2.

The Theorem 3.2 gives extremal unicyclic graphs with maximal Harary index among all the unicyclic
graphs with n vertices and matching number β ≥ 3.

Theorem 3.2. [35] Let G be a unicyclic graph with n ≥ 9 vertices and matching number β ≥ 3. Then

H(G) ≤ H(C3(2
β−2, 1n−2β+1)),

with equality holds if and only if G ∼= C3(2
β−2, 1n−2β+1).
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Let B(0)
n , B(1)

n , B(2)
n and θk,l,t be the graphs as shown in the Fig. 8.
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Theorem 3.3. [34] Let G be a bicyclic graph with n ≥ 5 vertices and i ∈ {1, 2, }. Then

H(G) ≤ n2 + n+ 2

4
,

with equality holds if and only if G ∼= B
(i)
n for n ≥ 7 and G ∼= B

(i)
n or G ∼= θ2,2,3 for n = 6 and G ∼= B

(i)
n

or G ∼= θ2,1,3 or G ∼= K2,3 for n = 5.

Theorem 3.4. [34] Let G be a bicyclic graph of order n ≥ 5. Then

H(G) ≥ n

n−4∑

i=1

1

i
− n+

19

2
−

n−4∑

i=1

(
3

i
− 2

i+ 1
− 1

i+ 2

)
,

with equality holds if and only if G ∼= B
(0)
n .

4. Harary index interms of graph parameters

Theorem 4.1. [25] Let G be a connected graph of order n and maximum dgree ∆(G) ≥ k ≥ 2. Then

H(G) ≥ k +
1

2

(
k − 1

2

)
+

k − 1

n− k + 1
+ n

n−k∑

i=2

1

i
,

with equality holds if and only if G ∼= Bn,k, a broom.

Denote G∗ a graph with diameter d (3 ≤ d ≤ 4) and |V (G∗)| ≥ d+ 2, such that for any two distinct
vertices u ∈ V (G∗) \ V (Pd+1) and v ∈ V (G∗), dG∗(u, v) = 1 or 2.
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Figure 9. Example of G∗-type graph.

Theorem 4.2. [6] Let G be a connected graph of order n with m edges and diameter d. Then

H(G) ≥ H(Pd+1) +
n(n− 1) + 2(m− d)(d− 1)

2d
− d+ 1

2
,

with equality holds if and only if G is a graph with diameter d ≤ 2 or G ∼= Pn Moreover,

H(G) ≤ H(Pd+1) +
n(n− 1) + 2m

4
− d(d+ 3)

2
,

with equality holds if and only if G is a graph with diameter d ≤ 2 or G ∼= Pn or G is isomorphic to

some G∗-type graph.
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Theorems 4.3 and 4.4 gives the bounds for Harary index interms of Wiener index.

Theorem 4.3. [33] Let G be a connected graph with n ≥ 2 vertices, m edges and diameter d. Then

(W (G)−m− d)

(
H(G)−m− 1

d

)
≥
(
n(n− 1)

2
−m− 1

)2

,

with equality holds if and only if G has diameter at most 2.

Theorem 4.4. [4] Let G 6= Kn be a connected graph of order n, m edges and diameter d. Then

m+

(
n(n−1)

2
−m

)2

W (G)−m
≤ H(G) ≤ m+

(
n(n−1)

2
−m

) [
2 +

(
n(n−1)

2
−m− 1

) (
d
2
+ 2

d

)]

2(W (G)−m)
,

with equality on both sides holds if and only if G has diameter d = 2.

The first and second Zagreb indices of a graph G are defined as [11]

M1(G) =
∑

u∈V (G)

(dG(u))
2 and M2(G) =

∑

uv∈E(G)

(dG(u))(dG(v)).

Denote by G∗∗ a triangle and quadrangle free graph of diameter 4 and order n ≥ 6 such that, for any
two distinct vertices u, v ∈ V (G∗∗) \ V (Pd+1), dG∗∗(u, v) ≤ 3 where Pd+1 is a path of order d + 1 in
G∗∗.

t t t t t
t

t
Figure 10. Example of G∗∗-type graph.

Following Theorems gives the Harary index interms of Zagreb indices.

Theorem 4.5. [6] Let G be a triangle and quadrangle free graph with n ≥ 2 vertices, m edges and

diameter d. Then

H(Pd+1) +
d− 2

4d
M1(G) + A0 ≤ H(G) ≤ H(Pd+1) +

1

12
M1(G) + A1

where A0 =
n(n−1)−2

2d
+ m

2
− 2(d− 1) and A1 =

n(n−1)+1
6

+ m
2
− d2

6
−d. Moreover, the left equality holds

if and only G is a graph of diameter at most 3 or a path Pn and right equality holds if and only if G is a

graph of diameter at most 3 or a path Pn or G is isomorphic to a graph G∗∗-type.

Theorem 4.6. [39] Let G be a triangle and quadrangle free graph with n ≥ 2 vertices, m edges. Then

H(G) ≤ n(n− 1)

6
+

m

2
+

M1(G)

12
,

with equality holds if and only G is a graph of diameter at most 3.
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Theorem 4.7. [5] Let T be a tree of order n and with diameter d. Then
(
1

3
− 1

d

)
M2(T ) +

(
1

2d
− 1

12

)
M1(T ) +B0 ≤ H(T ) ≤ 1

12
M2(T ) +

1

24
M1(T ) +B1,

where B0 =
n2

2d
+
(
5
6
− 3

2d

)
n+ 1

d
− 5

6
and B1 =

n2

8
+ 11n

24
− 7

12
. Moreover, the both equality holds if and

only T is a tree with diameter at most 4.

Zhou and Trinajstić [40] obtained the bound for the Harary index interms of the maximum eigenvalue
of the reciprocal distance matrix.

The reciprocal distance matrix RD(G) = [rcij] of a graph G is an n× n matrix [16], where

rcij =

{
1

dG(vi,vj)
, if i 6= j

0, otherwise.

Theorem 4.8. [40] Let G be a connected graph of order n and λ1 be the maximum eigenvalue of the

reciprocal distance matrix RD(G) of G. Then

H(G) ≤ n

2
λ1,

with equality holds if and only if RD(G) has equal row sum.

Xu and Das [33] obtained the bounds for the Harary index interms of diameter, clique number and
chromatic number.

Theorem 4.9. [33] Let G be a connected graph with n ≥ 2 vertices, m edges and diameter d. If there

exists two nonadjacent vertices u, v ∈ V (G), then

1

2
≤ H(G+ uv)−H(G) ≤ 1− 1

d
+

n(n− 1)− 2m− 2

2

(
1

2
− 1

d

)
,

with left equality holds if and only if dG(u) = dG(v) = 1 and dG(u, v) = 2 and right equality holds if

and only if G has diameter 2.

Theorem 4.10. [33] Let G be a triangle and quadrangle free graph with n ≥ 2 vertices, m edges and

diameter d. If there exists two nonadjacent vertices u, v ∈ V (G), then

1

2
≤ H(G+ uv)−H(G) ≤ 1− 1

d
+

n(n− 1)−M1(G)− 2

2

(
1

2
− 1

d

)
,

with left equality holds if and only if dG(u) = dG(v) = 1 and dG(u, v) = 2 and right equality holds if

and only if G has diameter 2.

The kite graph Kin,k is obtained by identifying one vertex of the complete graph Kk with one pendent
vertex of the path Pn−k+1.

The Turán graph Tn(k) is complete multipartite graph formed by partitioning a set of n vertices into
k subsets, with sizes as equal as possible. That is, it is a complete k-partite graph Kdn

k
e,dn

k
e,...,bn

k
c,bn

k
c. The
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Turán graph will have n(mod k) subsets of size dn
k
e and k − dn

k
e subsets of size bn

k
c. Each vertex has

degree either n− dn
k
e or n− bn

k
c.

The chromatic number of a graph G, denoted by χ(G) is the minimum number of colors require to
color the vertices of G such that no two adjacent vertices have the same color.

A clique of a graph G is the subgraph of G which is complete graph. The clique number of G,
denoted by w(G) is the number of vertices in the largest clique of G.

Let Wn,k be the set of connected graphs of order n with clique number k. Let Xn,k be the set of
connected graphs of order n with chromatic number k.

Theorem 4.11. [33] Let G ∈ Xn,k and 0 ≤ r < k. Then

H(G) ≤ n2

2
− n

4
− 1

4

[
(k − r)

⌊n
k

⌋2
+ r

⌈n
k

⌉2]
,

with the equality holds if and only if G ∼= Tn(k).

Theorem 4.12. [33] Let G ∈ Wn,k and 0 ≤ r < k. Then

H(G) ≤ n2

2
− n

4
− 1

4

[
(k − r)

⌊n
k

⌋2
+ r

⌈n
k

⌉2]
,

with the equality holds if and only if G ∼= Tn(k).

Theorem 4.13. [33] Let G ∈ Xn,k. Then

H(G) ≥ k(k − 1)

2
+ n

n−k∑

l=1

1

l + 1
,

with the equality holds if and only if G ∼= Kin,k, a kite graph.

Theorem 4.14. [33] Let G ∈ Wn,k. Then

H(G) ≥ k(k − 1)

2
+ n

n−k∑

l=1

1

l + 1
,

with the equality holds if and only if G ∼= Kin,k, a kite graph.

The vertex connectivity of a graph is the minimum number of vertices whose removal yields the
resulting graph disconnected or a trivial. The edge connectivity of a graph is the minimum number of
edges whose removal yields the resulting graph disconnected or a trivial.

Li and Fan [17] obtained the extremal Harary index with respect to vertex connectivity and edge
connectivity.

Let K(n − 1, r) be a graph obtained from Kn−1 by adding a vertex together with edges joining this
vertex to r vertices of Kn−1, where 1 ≤ r ≤ n− 2.

Theorem 4.15. [17] For each r = 1, 2, . . . , n − 2 the graph K(n − 1, r) is the unique one with the

maximum Harary index among all graphs of order n and vertex connectivity r.
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Theorem 4.16. [17] For each r = 1, 2, . . . , n − 2 the graph K(n − 1, r) is the unique one with the

maximum Harary index among all graphs of order n and edge connectivity r.

Corollary 4.1. [17] Let G be a graph of order n with vertex or edge connectivity r, where 1 ≤ r ≤ n−2.

Then

H(G) ≤ (n− 1)2 + r

2
,

with equality holds if and only if G ∼= K(n− 1, r).

The second maximum Harary index among all graphs of order n with vertex connectivity r is reported
in [17].

Ramane and Manjalapur [24] obtained the bounds for the Harary index interms of the eccentricities.

The eccentricity of a vertex v in G, denoted by ecc(v), is the maximum distance from it to any other
vertex. That is, ecc(v) = max{dG(u, v) | u ∈ V (G)}. The radius r(G) of a graph G is the minimum
eccentricity of the vertices. A vertex v is called central vertex of G if ecc(v) = r(G). A graph G is said
to be self-centered if every vertex of G is a central vertex. Thus in a self-centered graph, r(G) = d(G).
An eccentric vertex of a vertex v is a vertex farthest from v. An eccentric path P (v) of a vertex v is a
path of length ecc(v), joining v and its eccentric vertex. For a given vertex, there may exists more than
one eccentric paths.

Theorem 4.17. [24] Let G be a connected graph with n vertices, m edges and ei = ecc(vi), i =

1, 2, . . . , n. Then

H(G) ≤ 1

4

[
n(n− 2) + 2m+ 2

n∑

i=1

ei∑

j=1

1

j
−

n∑

i=1

ei

]
,

with equality holds if and only if for every vertex vi of G, if P (vi) is one of the eccentric path of vi, then

for every vj ∈ V (G) which is not on P (vi), dG(vi, vj) ≤ 2.

Corollary 4.2. [24] Let G be a self-centered graph with n vertices, m edges and radius r. Then

H(G) ≤ 1

4

[
n(n− r − 2) + 2m+ 2n

r∑

j=1

1

j

]
,

with equality holds if and only if for every vertex vi of a self-centered graph G, if P (vi) is one of the

eccentric path of vi, then for every vj ∈ V (G) which is not on P (vi), dG(vi, vj) ≤ 2.

Theorem 4.18. [24] Let G be a connected graph with n vertices and ei = ecc(vi), i = 1, 2, . . . , n. Then

H(G) ≤ 1

2

[
n(n− 1) +

n∑

i=1

ei∑

j=1

1

j
−

n∑

i=1

ei

]
,

with equality holds if and only if for every vertex vi of G, if P (vi) is one of the eccentric path of vi, then

for every vj ∈ V (G) which is not on P (vi), dG(vi, vj) = 1.
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Corollary 4.3. [24] Let G be a self-centered graph with n vertices and radius r. Then

H(G) ≤ n

2

[
n− r − 1 +

r∑

j=1

1

j

]
,

with equality holds if and only if for every vertex vi of a self-centered graph G, if P (vi) is one of the

eccentric path of vi, then for every vj ∈ V (G) which is not on the eccentric path P (vi), dG(vi, vj) = 1.

Theorem 4.19. [24] Let G be a connected graph with n vertices, m edges and diameter d. Let ei =

ecc(vi), i = 1, 2, . . . , n. Then

H(G) ≥ 1

2d

[
n(n− d) + 2m(d− 1) + d

n∑

i=1

ei∑

j=1

1

j
−

n∑

i=1

ei

]
,

with equality holds if and only if diameter d ≤ 2.

Corollary 4.4. [24] Let G be a self-centered graph with n vertices and radius r. Then

H(G) ≥ 1

2r

[
n(n− 2r) + 2m(r − 1) + nr

r∑

j=1

1

j

]
,

with equality holds if and only if G is self-centered graph with radius r ≤ 2.

5. Harary index of some class of graphs

A graph G is called quasi-tree graph if there exists a vertex v ∈ V (G) such that G− v is a tree. Clearly
any tree is a quasi-tree graph, since the deletion of any pendent vertex will deduce another new tree. A
graph G is called k-generalized quasi-tree graph [38] if there exists a subset Vk ⊂ V (G) with |Vk| = k

such that G−Vk is a tree but, for any subset Vk−1 ⊂ V (G) with cardinality k− 1, G−Vk−1 is not a tree.
For k ≥ 2, we denote by QT (k)(n) the set of k-generalized quasi-tree graphs of order n. Let Ck((n−

k)1) be a graph obtained by attaching a path of length n−k to any one vertex of the cycle Ck. We denote
by Cn−5

3,3 (see Fig. 11) a graph obtained by connecting two vertex-disjoint triangles by a path of length
n− 5.

��
�

HHH . . . . . . ��
�

HHHt
t t t t t t t

tv1 v2 vn−6

Figure 11. Cn−5
3,3 .

Any tree is called a trivial quasi-tree graph and other quasi-tree graphs are called non-trivial quasi-
tree graphs.

Xu, Wang and Liu [38] obtained the Harary index of quasi-tree graphs.
The join of two graphs G1 and G2 is a graph G1 ∨ G2 obtained from G1 and G2 by joining every

vertex of G1 to all vertices of G2. Let G be the complement of G.
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Theorem 5.1. [38] Let G be a non-trivial quasi-tree graph of order n ≥ 4. Then

3 + n

n−2∑

k=2

1

k
≤ H(G) ≤ (n− 2)(n+ 5)

4
+ 1,

with left equality holds if and only if G ∼= C3((n − 3)1) and right equality holds if and only if G ∼=
K2 ∨Kn−2.

Theorem 5.2. [38] Let G be a 2-generalized quasi-tree graph of order n ≥ 6. Then

H(G) ≥ 5 + n

n−3∑

k=2

1

k
+

1

n− 3
,

with equality holds if and only if G ∼= Cn−5
3,3 (Fig. 11).

Theorem 5.3. [38] For any graph G ∈ QT (k)(n) with n ≥ 6,

H(G) ≤ n(n− 1)

4
+

(k + 1)(n− k − 1)

2
+

k(k + 1)

4
,

with equality holds if and only if G ∼= Kk+1 ∨Kn−k−1.

A graph G is said to be bipartite if its vertex set V (G) can be partitioned into two sets V1 and V2 such
that every edge of G has one end in V1 and other end in V2.

Cui and Liu [3] obtained the bounds for the Harary index of bipartite graphs.

Theorem 5.4. [3] Let G be a connected bipartite graph of order n with bipartite sets V1 and V2 where

|V1| = p, |V2| = q and p+ q = n. Then

H(G) ≤ n

8

[
n− 2 +

√
n2 + 2pq

]
,

with equality holds if and only if G ∼= Kp,q, a complete bipartite graph.

Theorem 5.5. [3] Let G be a connected bipartite graph of order n with bipartite sets V1 and V2 where

|V1| = p, |V2| = q and p + q = n. Let ∆1 and ∆2 be maximum degrees among vertices in V1 and V2

respectively. Then

H(G) ≤ n

8
(n− 2) +

n

24

√
25 + 9n2 + 8p∆1 + 8q∆2 + 16∆1∆2 − 25n− 5pq,

with equality holds if and only if G ∼= Kp,q or G is a semi regular graph with vertex eccentricity equal 3.

The bounds on Harary index among all kth power of trees have been reported by Su, Xiong and
Gutman [25].

The kth power of G, denoted by Gk, is a graph with vertex set V (Gk) = V (G) such that two vertices
are adjacent in Gk if and only if they are at distance at most k in G [25].
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Theorem 5.6. [25] For any tree T of order n,

H(P k
n ) ≤ H(T k) ≤ H(Sk

n),

with left equality holds if and only if T k ∼= P k
n and right equality holds if and only if T k ∼= Sk

n.

Corollary 5.1. [25] Let G be a connected graph of order n. Then

H(P k
n ) ≤ H(Gk).

Problem 5.7. [25] Characterize the graphs G1 and G2 of the same order such that H(G1) ≤ H(G2)

implies H(Gk
1) ≤ H(Gk

2).

A connected graph G is called cactus if each block of G is either an edge or a cycle. Denote by
C (n, r) the set of connected cacti possessing n vertices and r cycles. Let C0(n, r) be the cactus graph
obtained from a star Sn by adding r independent edges between the leaves of Sn.

Theorem 5.8. [30, 41] Let G be any graph in C (n, r). Then

H(G) ≤ 1

4
(n− 2r − 1)(n− 2r − 2)− r2 + (n− 1)(r + 1),

with equality holds if and only if G ∼= C0(n, r).

Theorem 5.9. [29] Among all cacti of order 2n and with a perfect matching, the graph C0(2n, n− 1) is

the unique graph having the maximal Harary index.

A cut vertex of a graph is a vertex whose removal increases the number of components of the graph.
An edge is said to be cut edge if its removal increases the number of components of the graph.

Let C∗
n,k be a cactus obtained by identifying the vertex of degree n− 4 of C0(n− 3, n−k−4

2
) with one

vertex of C4 (see Fig. 12, for an example).
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Figure 12. The cactus C∗
11,3.

Theorem 5.10. [29] Among all cacti of order 2n and with k cut edges, the graph C0(n, n−k−1
2

) is the

unique graph with maximal Harary index when n− k is odd and C∗
n,k uniquely has the maximal Harary

index if n− k is even.

Theorem 5.11. [29] Among all cacti of order 2n and with k pendent vertices, the graph C0(n, n−k−1
2

)

is the unique graph with maximal Harary index when n − k is odd and C∗
n,k uniquely has the maximal

Harary index if n− k is even.
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Denote C†(2n, r) a graph of order 2n obtained by adding n− r− 1 paths of length 2 at the vertex of
maximum degree in C0(2r + 2, r).

Theorem 5.12. [41] Let G ∈ C (2n, r) with a perfect matching. Then

H(G) ≤ 1

24
(n− r − 1)(23n+ 17r − 2) + 2n+ r2 − 1,

with equality holds if and only if G ∼= C†(2n, r).

Let 1 ≤ k ≤ n and Kckn be the graph obtained by attaching k pendent vertices to one vertex of the
complete graph Kn−k.

Theorem 5.13. [37] Among all connected graphs with n vertices and k cut edges, the graph Kckn

uniquely has the maximal Harary index.

The Moore graph [20] is a regular graph of degree r with diameter d and girth 2d + 1, whose order
attains the upper bound

1 + r

d−1∑

i=0

(r − i)i.

Theorem 5.14. [39] Let G be a connected triangle and quadrangle free graph with n ≥ 2 vertices and

m edges. Then

H(G) ≤ n(n− 1)

4
+

m

2
,

with equality holds if and only if G is a star or a Moore graph of diameter 2.

Theorem 5.15. [8] Let G be a connected triangle and quadrangle free graph with n ≥ 4 vertices and

matching number β, where 2 ≤ β ≤ bn/2c.

(i) If β = bn/2c, then H(G) ≤ H(Kn) with equality holds if and only if G ∼= Kn.

(ii) If 2n
5

< β ≤ bn/2c − 1, then H(G) ≤ H(K1 ∨ (K2β−1 ∪ Kn−2β)) with equality if and only if

G ∼= K1 ∨ (K2β−1 ∪Kn−2β).

(iii) If 2 ≤ β < 2n
5

, then H(G) ≤ H(Kβ ∨Kn−β) with equality if and only if G ∼= Kβ ∨Kn−β .

(iv) If β = 2n
5

, then H(G) ≤ H(Kβ ∨Kn−β) = H(K1 ∨ (K2β−1 ∪Kn−2β)) with equality if and only

if G ∼= Kβ ∨Kn−β or G ∼= K1 ∨ (K2β−1 ∪Kn−2β).

For a vertex vi ∈ V (G), we define

QG(vi) =
∑

vj∈V (G)

dG(vi, vj)

1 + dG(vi, vj)
.

Theorem 5.16. [33] Let G be a connected graph with n vertices and vivj ∈ E(G). Then

H(G) ≥ H(G− vi) + n− 1−QG−vi(vj),

with equality holds if and only if vi is a pendent vertex of G.
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Let G be a graph with vi ∈ V (G). For two integers l ≥ k ≥ 1, let Gk,l be the graph obtained from G

by attaching at vi two new paths P ′ : viu1u2 · · ·uk and P ′′ : viu′
1u

′
2 · · ·u′

l of length k and l, respectively,
where u1, u2, . . . , uk and u′

1, u
′
2, . . . , u

′
l are new distinct vertices.
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w1 wl−1 wl vk

Figure 13. Graphs Gk,l and Gk−1,l+1.

Theorem 5.17. [32] Let G 6= K1 be a connected graph. If l ≥ k ≥ 1, then

H(Gk,l) > H(Gk−1,l+1).

Theorem 5.18. [33] Let G 6= K1 be a connected graph of order n > 2 and vi, vj be its distinct vertices

with QG(vi) = QG(vj). Suppose G∗
s,t is a graph obtained from G by attaching at vi one path P (vi) :

viu1u2 · · ·us and at vj the other path P (vj) : vju
′
1u

′
2 · · ·u′

t. If s ≥ t ≥ 1, then H(G∗
s,t) > H(G∗

s+1,t−1).

Following Corollary follows from Theorem 5.19.

Corollary 5.2. [33] Let G be a connected graph of order n > 2 and vi, vj be its distinct vertices with

QG(vi) = QG(vj). Suppose G∗
s,t is a graph obtained from G by attaching at vi one path of length s and

at vj the other path of length t. Let Gs+t be a graph obtained from G by attaching at vi (or vj) a path of

length s+ t. Then H(G∗
s,t) > H(Gs+t).

Theorem 5.19. [13] Let G0 be a connected graph and u ∈ V (G0). Let G1 be the graph obtained from

G0 by attaching a tree T (T 6= Pk and T 6= Sk) of order k to u, G2 be the graph obtained from G by

identifying u with end vertex of a path Pk, G3 is the graph obtained from G0 by identifying u with the

center of a star Sk. Then H(G2) < H(G1) < H(G3).

Theorem 5.20. [32] Let G1 and G2 be two graphs of same order and with vi as a pendent vertex of Gi

and uivi ∈ E(Gi) for i = 1, 2. If H(G2 − v2) ≥ H(G1 − v1) and QG1−v1(u1) ≥ QG2−v2(u2), then

H(G2) ≥ H(G1) with the equality holds if and only if the above two equalities holds simultaneously.

Suppose that G is a graph with v1 ∈ V (G) and v2, v3, . . . , vt+s are distinct new vertices (not in G). Let
G′ be the graph obtained from G by attaching at v1 a new path P : v1v2 · · · vt+s. Let Mt,t+s = G′ + vtu0

and Mt+i,t+s = G′ + vt+iu0, where 1 ≤ i ≤ s and u0 is a new vertex not in G′.
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. . . . . . . . . . . .t t t t t t
t

v1 v2 vt vt+1 vt+s

u0

Mt+1,t+s

Figure 14.
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Theorem 5.21. [32] Let G be a connected graph of order n ≥ 2. If t > s > 1, then

H(Mt,t+s) > H(Mt+i,t+s), for 1 ≤ i ≤ s.
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t

G1 G2v
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Figure 15. G and G′.

Theorem 5.22. [37] Let v1v2 ∈ E(G) be a cut edge in G, and G−v1v2 = G1∪G2 with ni = |V (Gi)| ≥ 2

for i = 1, 2. Suppose that vi ∈ V (Gi), i = 1, 2. Assume that G′ is a graph obtained from G by identifying

vertices v1 and v2 (the new vertex is labeled as v) and attaching a pendnet vertex v0 to this identified

vertex v (See Fig. 15). Then H(G) < H(G′).

Let G1 and G2 be two connected graphs with V (G1)∩V (G2) = {v}. Let G1vG2 be a new graph with
its vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). By applying Theorem 5.24, the following
result follows.

Corollary 5.3. [32] Let G be graph and Tk be a tree of order k with V (G) ∩ V (Tk) = {v}. Then

H(GvTk) ≤ H(GvSk), where v is identified with the center of the star Sk in GvSk. Moreover, the

equality holds if and only if Tk
∼= Sk.
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Theorem 5.23. [37] Let G1, G2 and G3 be three connected graphs with disjoint vertex sets. Suppose

that u and v are two vertices of G1, v0 is a vertex of G2, u0 is the vertex of G2. Let G be the graph

obtained from G1, G2 and G3 by identifying v with v0 and u with u0 respectively. Let G∗ be the graph

obtained from G1, G2 and G3 by identifying three vertices v, v0 and u0 (or by identifying the vertices u,

v0 and u0) (see Fig. 16). Then H(G∗) > H(G).

The line graph of G is a graph L(G) whose vertex set is in one-to-one correspondence with the edge
set of G and two vertices in L(G) are adjacent if and only if the corresponding edges are adjacent in G.
Ramane and Manjalapur [23] obtained the Harary index for the line graphs.
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Figure 17. The graphs F1, F2 and F3.

Theorem 5.24. [23] Let G be a connected graph with n vertices and m edges. Let dG(vi) be the degree

of a vertex vi in G and L(G) be the line graph of G. Then

H(L(G)) ≤ 1

4

[
m2 − 3m+

n∑

i=1

(dG(vi))
2

]
,

with equality holds if and only if none of the three graphs F1, F2 and F3 of Fig. 17 is an induced subgraph

of G.

Corollary 5.4. [23] If G is a connected regular graph of degree r on n vertices and L(G) is the line

graph of G, then

H(L(G)) ≤ 1

16
[nr(nr + 4r − 6)],

with equality holds if and only if G is a regular graph of degree r and none of the three graphs F1, F2

and F3 of Fig. 17 is an induced subgraph of G.

For a vertex v ∈ V (G), denote by NG(v) the neighborhood of v in G. For a subset W ⊂ V (G), let
G − W be the subgraph of G obtained by deleting the vertices of W together with the edges incident
with them. For a subset E1 ⊂ E(G), denote by G−E1 the subgraph of G obtained by deleting the edges
of E1.

Theorem 5.25. [17] Let G1, G2 and Ps be pairwise vertex disjoint connected graphs, where G1 contains

an edge uv such that NG1(u) \ {v} = NG1(v) \ {u} = {w1, w2, . . . , wk} (k ≥ 1), G2 contains a shortest

path Pt = x1x2 · · · xt from x1 to xt, Ps = z1z2 · · · zs, and t ≥ s + 2. Let G be obtained from G1 by

identifying u with x1 of G2 and identifying v with z1 of Ps and let G′ = G − {vw1, vw2, . . . , vwk} +

{x2w1, x2w2, . . . , x2wk}. Then H(G) < H(G′).

Corollary 5.5. [17] Let G be a connected graph containing an edge uv such that NG(u) \ {v} =

NG(v) \ {u} 6= φ. Let G(t, s) be obtained from G by attaching a path Pt at u and a path Ps at v. If

t ≥ s+ 2 ≥ 3, then H(G(t, s)) < H(G(t− 1, s+ 1)).
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Figure 18. G and G′ of Theorem 5.31.
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The graphs G and G′ of Fig. 18 possess the same number of cut vertices.

Theorem 5.26. [17] Let KpuKq be the graph obtained by identifying one vertex of Kp with one vertex

of Kq at u, p ≥ 3, q ≥ 3. Let G be obtained from KpuKq by attaching a path Pt at some vertex

w1 ∈ V (Kp) \ {u} and a path Ps at some vertex v1 ∈ V (Kq) \ {u} and possibly attaching some

connected graphs at vertices of V (KpuKq) \ {u, v1, w1} where t ≥ s ≥ 1 and let G′ be obtained from

G by deleting the edges of Kq incident to v1 except v1u and adding all possible edges between each of

V (Kq) \ {v1} and each of V (Kp) (see Fig. 18). Then H(G) < H(G′).

Let KP (n, k) be the graph obtained from Kn−k by attaching n− k paths of almost equal lengths to
its vertices respectively.

Theorem 5.27. [17] Among all graphs with n vertices and k cut vertices, where 0 ≤ k ≤ n − 2, the

maximal Harary index is attained uniquely at the graph KP (n, k).

Theorem 5.28. [17]

H(Kn) = H(KP (n, 0)) > H(KP (n, 1)) > · · · > H(KP (n, n− 2)) = H(Pn).

Theorem 5.29. [17] If a graph G of order n ≥ 3 contains cut vertices or cut edges, then H(G) ≤
H(KP (n, 1)), with equality holds if and only if G ∼= KP (n, 1).

Theorem 5.30. [17] Let Gn1,n2,n3 = (Kn1∪Kn2)∨Kn3 . If n1 ≥ n2 ≥ 2 and n3 ≥ 1, then H(Gn1,n2,n3) <

H(Gn1+1,n2−1,n3).

6. Haray index of graph operations

Das et al. [4] obtained the bounds for the Harary index of corona product and of Cartesian product.

Let G1 be the graph with n1 vertices and m1 edges. Let G2 be the graph with n2 vertices and m2

edges. The corona product G1 ◦ G2 of G1 and G2 is obtained by taking one copy of G1 and n1 copies
of G2, and then joining i-th vertex of G1 to every vertex of i-th copy of G2, i = 1, 2, . . . , n1. The graph
G1 ◦G2 has n1(n2 + 1) vertices and m1 + n1m2 + n1n2 edges.

Theorem 6.1. [4] Let Gi be the graph with ni vertices, mi edges and diameter di, i = 1, 2. Let G1 6=
Kn1 . Then the lower and upper bounds for H(G1 ◦G2) are

H(G1 ◦G2) ≥
[

1

W (G1)−m1

+
n2

W (G1)− 2m1 +
n1(n1−1)

2

+
m2

2

W (G1)− 3n1 + n1(n1 − 1)

](
n1(n1 − 1)

2
−m1

)2

+ m1

(
1 +

n2

2
+

n2
2

3

)
+

1

4
(n2 + 3)n1n2 +

1

2
n1m2.
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Moreover,

H(G1 ◦G2) ≤
(
n1(n1 − 1)

2
−m1

)

2 +

(
n1(n1−1)

2
−m1 − 1

)(
d1
2
+ 2

d1

)

2(W (G1)− n1)

+
n2

(
2 +

(
n1(n1−1)

2
−m1 − 1

)(
d1+1
3

+ 3
d1+1

))

2
(
W (G1)− 2m1 +

n1(n1−1)
2

)

+
n2
2

(
2 +

(
n1(n1−1)

2
−m1 − 1

)(
d1+2
4

+ 4
d1+2

))

2(W (G1)− 3m1 + n1(n1 − 1))




+ m1

(
1 +

n2

2
+

n2
2

3

)
+

1

4
(n2 + 3)n1n2 +

1

2
n1m2.

Equality holds in both cases if and only if d1 = 2.

The Cartesian product G1×G2 of graphs G1 and G2 has the vertex set V (G1×G2) = V (G1)×V (G2)

and two vertices (ui, vj) and (uk, vl) are adjacent in G1 ×G2 if ui = uk and vj is adjacent to vl in G2 or
vj = vl and ui is adjacent to uk in G1.

Theorem 6.2. [4] Let Gi be the graph with ni vertices, mi edges and diameter di, i = 1, 2. Let

u1, u2, . . . , un1 be the vertices of G1. Then

H(G1 ×G2) ≥ n1H(G2) + n2H(G1) + n2(n2 − 1)
∑

1≤i<k≤n1

1

dG1(ui, uk) + d2
,

and

H(G1 ×G2) ≤ n1H(G2) + n2H(G1) + n2(n2 − 1)
∑

1≤i<k≤n1

1

dG1(ui, uk) + 1
.

Equality in both cases holds if and only if G2
∼= Kn2 , a complete graph on n2 vertices.

Interchanging G1 and G2, the Theorem 6.2 holds good, with equality if and only if G1
∼= Kn1 .

Theorem 6.3. [4] Let Gi be the connected graph with ni vertices, mi edges and diameter di, i = 1, 2.

Let Gi 6= Kni
. Then

H(G1 ×G2) > n1m2 + n2m1 +
n2(n2 − 1)m1

d2 + 1
+

(
n2(n2−1)

2
−m2

2

)
n1

W (G2)−m2

+

[
n2

W (G1)−m1

+
n2(n2 − 1)

W (G1) +
n1(n1−1)

2
d2 − (d2 + 1)m1

]

×
(
n1(n1 − 1)

2
−m2

1

)
.
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Moreover,

H(G1 ×G2) < n1m2 + n2m1 +
n2(n2 − 1)m1

2

+
n1

(
n2(n2−1)

2
−m2

) [
2 +

(
n2(n2−1)

2
−m2

)(
d2
2
+ 2

d2

)]

2(W (G2)−m2)

+



n2

(
2 +

(
n1(n1−1)

2
−m1 − 1

)(
d1
2
+ 2

d1

))

2(W (G1)−m1)

+
n2(n2 − 1)

(
2 +

(
n1(n1−1)

2
−m1 − 1

)(
d1+1
3

+ 3
d1+1

))

2
(
W (G1) +

n1(n1−1)
2

− 2m1

)




×
(
n1(n1 − 1)

2
−m1

)
.

7. Nordhaus–Gaddum type results

In this section we report the Nordhaus-Gaddum [21] type results with respect to Harary index.

Theorem 7.1. [39] Let G be a connected graph of order n ≥ 5 and its complement G be the connected

graph. Then

1 +
(n− 1)2

2
+ n

n−1∑

k=2

1

k
≤ H(G) +H(G) ≤ 3n(n− 1)

4
,

with left equality holds if and only if G ∼= Pn or G ∼= Pn and with right equality holds if and only if both

G and G have diameter 2.

Theorem 7.2. [6] Let G be a connected graph of order n ≥ 2 with a connected complement G. If the

graph G has diameter d, then

H(G) +H(G) ≤ H(Pd+1) +
3n(n− 1)

4
− d(d+ 3)

4
,

with equality holds if and only if both G and G have diameter 2 or G ∼= Pn.

Since H(Pn) <
(n−1)(n+2)

4
, for n > 4, the upper bound in Theorem 7.2 is better than that in Theorem

7.1.

Theorem 7.3. [6] Let G be a connected graph of order n ≥ 2 with a connected complement G. Denote

by d and d the diameter of G and G respectively. Then

H(G) +H(G) ≥ H(Pk+1) +
n(n− 1)

2

(
1 +

1

k

)
− 3k +

7

2
,

where k = max{d, d}. Moreover, the equality holds if and only if both G and G have diameter 2.
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Theorem 7.4. [6] Let G be a triangle and quadrangle free graph with n ≥ 2 vertices, m edges and with

a connected complement G. Then

H(G) +H(G) ≤ 1

6
M1(G) +

7n(n− 1)

12
+

n(n− 1)2

12
− m(n− 1)

3
,

with equality holds if and only if both G and G have diameter at most 3.

Recall that the kth power of a connected graph G is a graph Gk with vertex set V (Gk) = V (G) such
that two vertices are adjacent in Gk if and only if they are at distance at most k in G.

Theorem 7.5. [25] Let G be a connected graph of order n ≥ 9 and a connected complement G. Then

(
n

2

)
+

n−1∑

j=1

n− j

d j
k
e = H(P k

n ) +H(Pn
k
) ≤ H(Gk) +H(G

k
) ≤ n

(
n

2

)
.
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[11] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, III, total π-electron energy of alter-
nant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.

[12] C. He, P. Chen, B. Wu, The Harary index of a graph under perturbation, Discr. Math. Algor. Appl.
2 (2010) 247–255.



227
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aDepartamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
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1. Introduction to the harmonic index

The topological indices based on end-vertex degrees of edges have been used over 40 years. Among
them, several indices are recognized to be useful tools in chemical researches. Probably, the best known
such descriptor is the Randić connectivity index R(G) [75] introduced by the chemist Milan Randić in
1975. There are many papers and a couple of books dealing with this index (see, e.g., [43, 57, 76] and
the references therein).

During many years, scientists were trying to improve the predictive power of the Randić index. This
led to the introduction of a large number of new topological descriptors that resemble the original Randić
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index, which is defined as
R(G) =

∑

uv∈E(G)

1√
d(u)d(v)

,

where d(u) denotes the degree of a vertex u of the graph G and uv the edge connecting the vertices u and
v. Randić noticed that this index was well correlated with a variety of physico-chemical properties of
alkanes: boiling point, enthalpy of formation, surface area, solubility in water, etc. Eventually, this index
became one of the most successful molecular descriptors in structure property and structure activity re-
lationship studies [40,55,56,72], and scores of its pharmacological and chemical applications have been
reported. Mathematical properties of this descriptor have also been studied extensively, as summarized
Gutman [43, 57].

Two of the main successors of the Randić index are the first and second Zagreb indices, denoted by
M1 and M2, respectively, and defined as

M1(G) =
∑

uv∈E(G)

(
d(u) + d(v)

)
=

∑

u∈V (G)

d(u)2, M2(G) =
∑

uv∈E(G)

d(u)d(v)

(see, e.g., [18,42]). The Zagreb indices and their variants have been used to study molecular complexity
and chirality whilst the overall Zagreb indices exhibit a potential applicability for deriving multilinear
regression models. Various researchers also use the Zagreb indices in their QSPR and QSAR studies.
Mathematical properties of the Zagreb indices were also subjects of several studies.

Other indices motivated in studying and predicting the properties of the molecules, are the sum-

connectivity index χ(G) and the general sum-connectivity index χα(G), proposed by Zhou and Trinajstić
in [107, 108], and defined as

χ(G) =
∑

uv∈E(G)

(
d(u) + d(v)

)−1/2
, χα(G) =

∑

uv∈E(G)

(
d(u) + d(v)

)α
,

where α is a real number. It has been found that the general sum-connectivity index and the Randić index
correlate well between themselves and with the π-electronic energy of benzenoid hydrocarbons [64,65].
Some mathematical properties of these indices were given in [30–33, 80, 107, 108].

In 1987 [36], Fajtlowicz introduced the harmonic index H(G) of a graph G, defined as

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
.

(Note that the harmonic index can be viewed as a particular case of the general sumconnectivity index,
since H(G) = 2χ−1(G).)

Although this quantity was first mentioned in a mathematical paper [36] in 1987, it did not attract
the attention of scholars until quite recently. In the last few years, a remarkably large number of studies
of the properties of the harmonic index have appeared (see, e.g., [24, 63, 94, 95, 97, 100, 101, 104, 109]).
The chemical applicability of the harmonic index was also recently investigated [39, 48]. The harmonic
index has reasonably good correlation abilities; in fact, it gives similar correlations with physical and
chemical properties compared with the well-known Randić index.
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Finding bounds for indices of a given class of graphs, as well as related problem of finding the graphs
with extremal indices, attracted the attention of many researchers, and many results have been obtained.
In particular, estimating bounds for H(G) are of great interest, and many results have been obtained. For
example, Favaron, Mahéo and Saclé [37] considered the relationship between the harmonic index and
the eigenvalues of graphs, and Zhong and Xu [100, 101, 104] determined the minimum and maximum
values of the harmonic index for connected graphs, trees, unicyclic graphs, and bicyclic graphs, and
characterized the corresponding extremal graphs, respectively. It turns out that trees with maximum and
minimum harmonic index are the path Pn and the star Sn, respectively.

Ilić [53] and Xu [97] independently proved an inequality involving the harmonic index and the first
Zagreb index.

Estrada, Torres and Rodrı́guez [35] introduced the atom-bond connectivity (ABC) index, which has
been applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. Zhong
and Xu [105] have recently shown a relationship between H(G) and ABC(G).

Chang and Zhu [13] found the minimum values of the harmonic index for graphs with minimum de-
gree at least two and for triangle-free graphs with minimum degree at least k (k ≥ 1), and characterized
the corresponding extremal graphs. Moreover, Wu, Tang and Deng [94, 95] also considered the relation
between the harmonic index and the girth of a graph.

Deng, Balachandran, Ayyaswamy and Venkatakrishnan considered the relation connecting the har-
monic index H(G) and the chromatic number χ∗(G) and proved that χ∗(G) ≤ 2H(G) by using the effect
of removal of a minimum degree vertex on the harmonic index [24]. (This inequality strengthens a result
relating the Randić index and the chromatic number conjectured by the system AutoGraphiX and proved
by Hansen and Vukicević [51].) The same authors in [25] determined the trees with the second-the sixth
maximum harmonic indices, unicyclic graphs with the second-the fifth maximum harmonic indices, and
bicyclic graphs with the first-the fourth maximum harmonic indices.

Li and Shiu [59] studied the harmonic index subject to perturbations and provided a simpler method
for determining unicyclic graphs with maximum and minimum harmonic index among all unicyclic
graphs. Another important work from the numerical point of view is developed by Lv and Li [66] which
study the relationship between the harmonic index and the matching number for trees, and determine
the trees with minimum harmonic index among trees with a perfect matching. Also they study the same
relationship for unicyclic graphs. The graphs with minimum harmonic index among all unicyclic graphs
with a perfect matching and with a given matching number are determined in [67].

Liu [60] proposed a conjecture concerning the relation between the harmonic index and the diameter
of a connected graph, and showed that the conjecture is true for trees. Likewise Deng, Tang and Zhang
[26] considered the harmonic index H(G) and the radius r(G) and strengthened some results relating
the Randić index and the radius in [61, 99].

The two next sections contain bounds for the harmonic index involving other topological indices
and some important parameters of graphs, respectively. The last section deals with some inequalities
involving the natural generalization of the harmonic index: the general sum-connectivity index. We have
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included the results that we believe are the most important. Other results can be found in the bibliography
at the end of the chapter.

Notations. Throughout this work, G = (V (G), E(G)) denotes a (nonoriented) finite simple (without
multiple edges and loops) nontrivial (E(G) 6= ∅) graph. In many cases, we deal with connected graphs.
Note that the connectivity of G is not an important restriction, since if G has connected components
G1, . . . , Gr, then H(G) = H(G1) + · · ·+H(Gr). Furthermore, every molecular graph is connected.

We use Sn, Pn and Kn to denote the star, the path and the complete graph with n vertices, respectively.
Kn1,n2 will denote the complete bipartite graph.

If G1 and G2 are isomorphic graphs, then we write G1
∼= G2.

2. Relations between the harmonic index and other
topological indices

2.1 Inequalities relating the harmonic and the Randić indices

Among the topological indices based on end-vertex degrees of edges, probably, the best known such
descriptor is the Randić connectivity index R(G) [75] introduced by the chemist Milan Randić in 1975.
This index became one of the most successful molecular descriptors in structure property and structure
activity relationship studies [40, 55, 56, 72, 76], and scores of its pharmacological and chemical applica-
tions have been reported. Mathematical properties of this descriptor have also been studied extensively,
see [43, 57].

The following result provides bounds for the harmonic index by using the Randić index [105, Theo-
rem 3.1]. The upper bound was proved before in [97, Theorem 2.1] for the case of connected graphs.

Theorem 2.1. [105, Theorem 3.1] If G is a nontrivial graph with n vertices, then

2
√
n− 1

n
R(G) ≤ H(G) ≤ R(G).

The lower bound is attained if and only if G ∼= Sn, and the upper bound is attained if and only if all

connected components of G are regular.

Proof. Let us consider the function

f(x, y) =

2

x+ y
1√
xy

=
2
√
xy

x+ y

with 1 ≤ x ≤ y ≤ n− 1. Since

∂f(x, y)

∂x
=

√
y (y − x)√
x (x+ y)2

≥ 0 and
∂f(x, y)

∂y
=

√
x (x− y)√
y (x+ y)2

≤ 0,
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we have f(x, y) is strictly increasing in x and strictly decreasing in y. Hence, the minimum value of
f(x, y) is attained for (x, y) = (1, n − 1), and the maximum value is attained for x = y (for each
1 ≤ x ≤ n− 1). Thus,

2
√
n− 1

n
= f(1, n− 1) ≤ f(x, y) ≤ f(x, x) = 1.

Fix uv ∈ E(G). By the symmetry between u and v, we can assume that 1 ≤ d(u) ≤ d(v) ≤ n − 1.
Consequently,

2
√
n− 1

n
≤ H(G)

R(G)
≤ 1,

with the left equality if and only if (d(u), d(v)) = (1, n− 1) for every uv ∈ E(G), and the right equality
if and only if d(u) = d(v) for every uv ∈ E(G). This proves the theorem.

The argument in the proof of Theorem 2.1 allows to obtain the following improvement.

Theorem 2.2. If G is a nontrivial graph with maximum degree ∆ and minimum degree δ, then

2
√
∆δ

∆+ δ
R(G) ≤ H(G) ≤ R(G).

The lower bound is attained if and only if one vertex has degree ∆ and the other vertex has degree δ

for every edge of G, and the upper bound is attained if and only if all connected components of G are

regular.

2.2 Relations between harmonic and Zagreb indices

Recall that the first Zagreb index [18, 42] of a graph G is defined as

M1(G) =
∑

v∈V (G)

d(v)2 =
∑

uv∈E(G)

(
d(u) + d(v)

)
.

The Zagreb indices and their variants have been used to study molecular complexity and chirality whilst
the overall Zagreb indices exhibit a potential applicability for deriving multilinear regression models.
Various researchers also use the Zagreb indices in their QSPR and QSAR studies. Mathematical proper-
ties of the Zagreb indices were also subjects of several studies.

Ilić and Xu independently proved the following inequality involving the harmonic and the first Zagreb
indices.

Theorem 2.3. [53] [97, Theorem 2.5] Let G be a graph with m ≥ 1 edges. Then

H(G) ≥ 2m2

M1(G)

with equality if and only if d(u) + d(v) is a constant for every uv ∈ E(G).
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Proof. Using the formula M1(G) =
∑

uv∈E(G)(d(u) + d(v)) and the Cauchy-Schwarz inequality, we
have ( ∑

uv∈E(G)

2

d(u) + d(v)

)( ∑

uv∈E(G)

d(u) + d(v)

2

)
≥
( ∑

uv∈E(G)

1
)2

= m2

or, equivalently,

H(G) ≥ 2m2

M1(G)

with equality if and only if d(u) + d(v) is a constant for each uv ∈ E(G).

Denote by M1(G) =
∑

uv 6∈E(G)(d(u) + d(v)) the first Zagreb coindex [5, 29]. This invariant was
formally introduced in [29] in the hope that it will improve our ability to quantify the contributions of
pairs of non-adjacent vertices to various properties of molecules. Furthermore, it allowed to obtain more
compact expressions for the vertex-weighted Wiener polynomials of some composite graphs.

Lemma 2.4. [20, Lemma 3] Let G be a nontrivial graph with n vertices and m edges. Then M1(G) +

M1(G) = 2m(n− 1).

Theorem 2.3 and Lemma 2.4 have the following consequence.

Corollary 2.1. [97, Corollary 2.1] Let G be a nontrivial graph with n vertices and m edges. Then

H(G) ≥ 2m2

2m(n− 1)−M1(G)

with equality if and only if d(u) + d(v) is a constant for each uv ∈ E(G).

In order to obtain bounds for H(G), we need the following classical result, known as Polya-Szegö
inequality (see [50, p.62]).

Lemma 2.5. If 0 < n1 ≤ aj ≤ N1 and 0 < n2 ≤ bj ≤ N2 for 1 ≤ j ≤ k, then

( k∑

j=1

a2j

)1/2( k∑

j=1

b2j

)1/2
≤ 1

2

(√
N1N2

n1n2

+

√
n1n2

N1N2

)( k∑

j=1

ajbj

)
.

Theorem 2.6. If G is a nontrivial graph with m ≥ 1 edges, maximum degree ∆ and minimum degree δ,

then

H(G) ≤ (∆ + δ)2m2

2∆δM1(G)

and the equality is attained if G is regular.

Proof. Since
√
δ ≤

√
d(u) + d(v)

2
≤

√
∆,

1√
∆

≤
√

2

d(u) + d(v)
≤ 1√

δ
,
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Lemma 2.5 gives

H(G)
M1(G)

2
=
( ∑

uv∈E(G)

2

d(u) + d(v)

)( ∑

uv∈E(G)

d(u) + d(v)

2

)

≤ (∆ + δ)2

4∆δ

( ∑

uv∈E(G)

1
)2

=
(∆ + δ)2

4∆δ
m2,

and the inequality holds.
If the graph G is regular (i.e., ∆ = δ), then H(G) = m

∆
, M1(G) = 2∆m, and we have the equality.

2.3 Inequalities relating the harmonic and the sum–connectivity indices

Recall that the sum-connectivity index χ(G) is defined as

χ(G) =
∑

uv∈E(G)

(
d(u) + d(v)

)−1/2
,

It has been found that the sum-connectivity index correlates well with the π-electronic energy of ben-
zenoid hydrocarbons [64,65]. Some mathematical properties of this index were given in [30–32,80,107].

In this section, we present some inequalities relating the harmonic index and the sumconnectivity
index.

Theorem 2.7. [105, Theorem 4.1] If G is a connected graph with n ≥ 3 vertices, then
√

2

n− 1
χ(G) ≤ H(G) ≤ 2√

3
χ(G).

The lower bound is attained if and only if G ∼= Kn, and the upper bound is attained if and only if

G ∼= P3.

Proof. Let us define the function

f(x, y) =

2

x+ y
1√
x+ y

=
2√
x+ y

with 1 ≤ x ≤ y ≤ n − 1 and y ≥ 2. Since f(x, y) is strictly decreasing in both x and y, the minimum
value of f(x, y) is f(n− 1, n− 1), and the maximum value of f(x, y) is f(1, 2). Hence,

√
2

n− 1
= f(n− 1, n− 1) ≤ f(x, y) ≤ f(1, 2) =

2√
3
.

Fix uv ∈ E(G). By symmetry, we can assume that 1 ≤ d(u) ≤ d(v) ≤ n − 1. Since G is a connected
graph with n ≥ 3 vertices, we have d(v) ≥ 2. Thus,

√
2

n− 1
≤ H(G)

χ(G)
≤ 2√

3
.

The left equality holds if and only if (d(u), d(v)) = (n − 1, n − 1) for every uv ∈ E(G), and the right
equality holds if and only if (d(u), d(v)) = (1, 2) for every uv ∈ E(G). This finishes the proof.
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If the graph G has minimum degree δ ≥ 2, then we can improve the upper bound in Theorem 2.7.

Corollary 2.2. [105, Corollary 4.2] Let G be a connected graph with minimum degree at least k ≥ 2.

Then

H(G) ≤
√

2

k
χ(G)

with equality if and only if G is a k-regular graph.

Theorem 2.7 and Corollary 2.2 can be generalized as follows.

Corollary 2.3. Let G be a graph with maximum degree ∆ and minimum degree δ ≥ 2. Then
√

2

∆
χ(G) ≤ H(G) ≤

√
2

δ
χ(G).

Each bound is attained if and only if G is a regular graph.

Let G be any nontrivial graph. Denote by mi,j the number of edges connecting a vertex of degree i

with a vertex of degree j in G. If f(x, y) is a symmetric function, then the vertex-degree based topolog-
ical index

F (G) =
∑

uv∈E(G)

f(d(u), d(v))

can be written as
F (G) =

∑

1≤i≤j≤n−1

f(i, j)mi,j.

If the equality m1,2 = 0 holds for a graph G, then we can improve the upper bound in Theorem 2.7
in the following way.

Theorem 2.8. [82, Corollary 4] Let G be a connected graph with n ≥ 3 vertices and m1,2 = 0. Then

H(G) ≤ χ(G)

with equality if and only if G ∼= S4 or G ∼= Cn.

Proof. We can write

H(G) =
∑

1≤i≤j≤n−1

2mi,j

i+ j
, χ(G) =

∑

1≤i≤j≤n−1

mi,j√
i+ j

,

and so
H(G)− χ(G) =

∑

1≤i≤j≤n−1

(
2

i+ j
− 1√

i+ j

)
mi,j.

Since m1,1 = m1,2 = 0, it suffices to consider 1 ≤ i ≤ j ≤ n− 1 with i+ j ≥ 4. We have

2

i+ j
− 1√

i+ j
≤ 0 ⇔ i+ j ≥ 4.

Hence, H(G) ≤ χ(G) with equality if and only if G ∼= S4 or G ∼= Cn.
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The argument in the proof of Theorem 2.8 has the following consequence.

Corollary 2.4. [82, Corollary 6] Let G be a connected graph with n ≥ 3 vertices and d(u) + d(v) ≤ 4

for any uv ∈ E(G). Then

H(G) ≥ χ(G)

with equality if and only if G ∼= S4 or G ∼= Cn.

2.4 Inequalities relating the harmonic and the ABC indices

The atom-bond connectivity index of a nontrivial graph G, denoted by ABC(G), is defined [17, 23, 45,
46, 96] as

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
.

In the paper [48], the atom-bond connectivity index appears as the second-best vertex-degree-based
molecular structure-descriptor. Consequently, this index is useful in designing quantitative structureprop-
erty relations.

Theorem 2.9. [49, Proposition 1] Let G be a graph with n ≥ 3 vertices. Then

3
√
2

4
H(G) ≤ ABC(G) ≤ γ H(G),

where

γ =





√
2n− 4 if 3 ≤ n ≤ 6,

n

2

√
n− 2

n− 1
if n ≥ 7.

The lower bound is attained if and only if every connected component of G is isomorphic to P3. If

3 ≤ n ≤ 6 (respectively, n ≥ 7), then the equality in the upper bound holds if and only if G ∼= Kn

(respectively, G ∼= Sn).

Proof. Fix uv ∈ E(G). By symmetry, we may assume that 1 ≤ d(u) ≤ d(v) ≤ n − 1. Since G is a
connected graph with n ≥ 3 vertices, we have d(v) ≥ 2.

Let us define the function

Q(x, y) =

√
x+ y − 2

xy
2

x+ y

=
x+ y

2

√
x+ y − 2

xy

with 1 ≤ x ≤ y ≤ n− 1 and y ≥ 2. Since

∂Q(x, y)

∂y
=

x(y + 2) + y2 − x2 + y(y − 2)

4y
√
xy(x+ y − 2)

> 0,

Q(x, y) is strictly increasing in y. Hence, the minimum value of Q(x, y) is either Q(1, 2) or Q(2, 2), and
its maximum value is Q(x, n− 1) for some 1 ≤ x ≤ n− 1, which still needs to be determined.
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Since

Q(1, 2) =
3
√
2

4
<

√
2 = Q(2, 2),

Q attains its minimum value for (x, y) = (1, 2). Therefore,
ABC(G)

H(G)
≥ 3

√
2

4
with equality if and only

if (d(u), d(v)) = (1, 2) for every uv ∈ E(G), i.e., every connected component of G is isomorphic to P3.
Let us consider the function

Q(x, n− 1) =
x+ n− 1

2

√
x+ n− 3

(n− 1)x
.

Thus,
dQ(x, n− 1)

dx
=

2x2 + (n− 3)x− (n− 1)(n− 3)

4x
√

(n− 1)x(x+ n− 3)
.

Note that the roots of 2x2 + (n− 3)x− (n− 1)(n− 3) = 0 are

x =
−(n− 3)±

√
(n− 3)(9n− 11)

4
.

If n = 3 or n = 4, then
dQ(x, n− 1)

dx
> 0 for x ∈ (1, n − 1]. Hence, Q(x, n − 1) is strictly increasing

in x, and the maximum value of Q(x, y) is Q(n − 1, n − 1) =
√
2n− 4. If n ≥ 5, then Q(x, n − 1) is

strictly decreasing in

1 ≤ x ≤ −(n− 3) +
√
(n− 3)(9n− 11)

4
,

and strictly increasing in

−(n− 3) +
√
(n− 3)(9n− 11)

4
≤ x ≤ n− 1.

Then the maximum value of Q(x, n− 1) is

max
{
Q(1, n− 1), Q(n− 1, n− 1)

}
= max

{n
2

√
n− 2

n− 1
,
√
2n− 4

}

=





√
2n− 4 if n = 5, 6,

n

2

√
n− 2

n− 1
if n ≥ 7.

Therefore, if 3 ≤ n ≤ 6, then
ABC(G)

H(G)
≤

√
2n− 4 with equality if and only if (d(u), d(v)) =

(n− 1, n− 1) for every uv ∈ E(G), i.e., G ∼= Kn. If n ≥ 7, then

ABC(G)

H(G)
≤ n

2

√
n− 2

n− 1

with equality if and only if (d(u), d(v)) = (1, n− 1) for every uv ∈ E(G), i.e., G ∼= Sn.

Similarly, we can improve the lower bound in Theorem 2.9 by Corollary 2.2 and [105, Corollary
6.2].
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Corollary 2.5. [105, Corollary 7.2] Let G be a connected graph with minimum degree at least k ≥ 2.

Then √
2k − 2H(G) ≤ ABC(G)

with equality if and only if G is a k-regular graph.

Molecular graphs

A nontrivial connected graph with maximum degree at most four is a molecular graph representing
hydrocarbons [90].

Let us recall the definition of the function

Q(x, y) =

√
x+ y − 2

xy
2

x+ y

=
x+ y

2

√
x+ y − 2

xy
. (1)

In the case of molecular graphs, the analysis of the relation between the harmonic and ABC indices
is much simpler, since in these graphs we have just nine different types of edges. The respective Q-values
are given in Table I.

The argument in the proof of Theorem 2.9 and the values from Table I allow to obtain the following
result.

Proposition 2.10. [49, Proposition 2] Let G be any molecular graph with n > 2 vertices. Then

Q(1, 2)H(G) ≤ ABC(G) ≤ Q(4, 4)H(G),

where the values of Q(i, j) are given in Table I. The equality ABC(G) = Q(1, 2)H(G) occurs if and

only if G is the molecular graph of propane. In the case of ordinary molecular graphs, the equality

ABC(G) = Q(4, 4)H(G) is not possible, but could be satisfied if G is the graph representation of a

diamond-like nanostructure [27, 28].

For benzenoid systems, in which only (2,2)-, (2,3)- and (3,3)-type edges occur (i.e., the only non-zero
multipliers are m2,2,m2,3,m3,3) [15, 44, 73, 74], the following special case of Proposition 2.10 holds.

Proposition 2.11. [49, Proposition 3] Let G be the molecular graph of a benzenoid system. Then

Q(2, 2)H(G) ≤ ABC(G) ≤ Q(3, 3)H(G),

where the values of Q(i, j) are given in Table I. The equality ABC(G) = Q(2, 2)H(G) occurs if and

only if G is the molecular graph of benzene. The equality ABC(G) = Q(3, 3)H(G) occurs in the cases

of nanotubes and nanotoruses, as well as fullerenes [27, 28].

TABLE I. The values of the auxiliary function Q in (1), for all possible edge-types that may occur
in molecular graphs; i, j are the degrees of the end-vertices of the respective edges.
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i, j Q(i, j)
1,2 1.061
1,3 1.633
1,4 2.165
2,2 1.414
2,3 1.768
2,4 2.121
3,3 2.000
3,4 2.259
4,4 2.449

2.5 Relations between harmonic and geometric–arithmetic indices

The first geometric-arithmetic index GA1 was introduced by Vukicević and Furtula in [92] as

GA1(G) =
∑

uv∈E(G)

√
d(u)d(v)

1
2
(d(u) + d(v))

.

Although GA1 was introduced in 2009, there are many papers dealing with this index (see, e.g., [19,
21, 22, 77–79, 92] and the references therein). The GA1 index gives better correlation coefficients than
Randić index for the properties of octanes, but the differences between them are not significant. However,
the predicting ability of the GA1 index compared with Randić index is reasonably better (see [21, Table
1]). Furthermore, the graphic in [21, Fig.7] (from [21, Table 2], [89]) shows that there exists a good linear
correlation between GA1 and the heat of formation of benzenoid hydrocarbons (the correlation coeffi-
cient is equal to 0.972). Hence, one can think that GA1 index should be considered in the QSPR/QSAR
researches.

In this section, we include some relations between the harmonic index and the first geometric-
arithmetic index.

Theorem 2.12. [82, Corollaries 1 and 2] Let G be a connected graph with n ≥ 2 vertices. Then

GA1(G)

n− 1
≤ H(G) ≤ GA1(G). (2)

The first equality occurs if and only if G ∼= Kn. The second equality occurs if and only if G ∼= K2.

Proof. For any uv ∈ E(G) we have 1 ≤ d(u)d(v) ≤ (n− 1)2. Consequently,

1

n− 1

2
√
d(u)d(v)

d(u) + d(v)
≤ 2

d(u) + d(v)
≤ 2

√
d(u)d(v)

d(u) + d(v)

and
GA1(G)

n− 1
≤ H(G) ≤ GA1(G). (3)

The first equality occurs if and only if d(u) = d(v) = n− 1 for any uv ∈ E(G), which implies G ∼= Kn.
The second equality occurs if and only if d(u) = d(v) = 1 for any uv ∈ E(G), which implies G ∼= K2.
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By using the inequalities δ2 ≤ d(u)d(v) ≤ ∆2 in the argument in the proof of Theorem 2.12, we
obtain the following improvement.

Theorem 2.13. [77, Proposition 3.9] Let G be a nontrivial connected graph with maximum degree ∆

and minimum degree δ. Then
GA1(G)

∆
≤ H(G) ≤ GA1(G)

δ
(4)

and the equality in each inequality is attained if and only if G is regular.

Theorem 2.14. [80, Theorem 2.23] Let G be a nontrivial graph with m edges, maximum degree ∆ and

minimum degree δ. Then

H(G) +
1√
∆δ

GA1(G) ≤ 2m

δ
,

and the equality holds if and only if G is regular.

Proof. Note that
(√

d(u)−
√
δ
)(√

∆−
√
d(v)

)
≥ 0. Therefore,

√
∆
(√

d(u) +
√
d(v)

)
≥

√
∆
√
d(u) +

√
δ
√
d(v) ≥

√
d(u)d(v) +

√
∆δ.

Since
√
d(w) ≤ d(w)/

√
δ for every vertex w ∈ V (G), we obtain

√
d(u)d(v) +

√
∆δ ≤

√
∆

δ
(d(u) + d(v)),

1√
∆δ

2
√
d(u)d(v)

d(u) + d(v)
+

2

d(u) + d(v)
≤ 2

δ
,

H(G) +
1√
∆δ

GA1(G) ≤ 2m

δ
.

If the graph is regular, then GA1(G) = m and H(G) = m/δ, and the equality holds. If the equality is
attained, then

√
d(w) = d(w)/

√
δ for every vertex w ∈ V (G); thus, d(w) = δ for every w ∈ V (G) and

G is regular.

The argument in the proof of Theorem 2.1 has the following useful consequence.

Lemma 2.15. Let f be the function f(x, y) =
2
√
xy

x+y
with 0 < a ≤ x, y ≤ b. Then 2

√
ab

a+b
≤ f(x, y) ≤ 1.

The equality in the lower bound is attained if and only if either x = a and y = b, or x = b and y = a,

and the equality in the upper bound is attained if and only if x = y.

We need the following particular case of Jensen’s inequality.

Lemma 2.16. If f is a convex function in an interval I and x1, . . . , xm ∈ I , then

f
(x1 + · · ·+ xm

m

)
≤ 1

m

(
f(x1) + · · ·+ f(xm)

)
.

Recall that a (∆, δ)-biregular graph is a bipartite graph for which any vertex in one side of the given
bipartition has degree ∆ and any vertex in the other side of the bipartition has degree δ.
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Theorem 2.17. Let G be a nontrivial graph with m edges, maximum degree ∆ and minimum degree δ.

Then

H(G) ≥ 2
√
δ m2

√
∆(∆ + δ)GA1(G)

and the equality holds if and only if G is regular.

Proof. Since f(x) = 1/x is a convex function in R+, Lemma 2.16 gives

m
∑

uv∈E(G)
2
√

d(u)d(v)

d(u)+d(v)

≤ 1

m

∑

uv∈E(G)

d(u) + d(v)

2
√

d(u)d(v)

d(u) + d(v)

2

2

d(u) + d(v)
,

Lemma 2.15 and the inequality d(u) + d(v) ≤ 2∆ give

m2

GA1(G)
≤ ∆+ δ

2
√
∆δ

∆H(G),

and we obtain the desired inequality.
If the graph is regular, then H(G) = m/∆, GA1(G) = m and we have the equality. If the equality

holds, then d(u) = d(v) = ∆ for every uv ∈ E(G); hence, G is regular.

2.6 Relations between harmonic and modified Narumi–Katayama indices

The modified Narumi-Katayama index

NK∗(G) =
∏

u∈V (G)

d(u)d(u) =
∏

uv∈E(G)

d(u)d(v)

is introduced in [41], inspired in the Narumi-Katayama index defined in [70].

Next, we prove an inequality relating the harmonic and the modified Narumi-Katayama indices.

Theorem 2.18. [80, Theorem 2.22] Let G be a nontrivial connected graph with m edges, maximum

degree ∆ and minimum degree δ. Then

H(G) ≥ 2
√
∆δ

∆+ δ
mNK∗(G)−1/(2m)

with equality if and only if G is regular or biregular.

Proof. Using Lemma 2.15 and the fact that the geometric mean is at most the arithmetic mean, we obtain

1

m
H(G) =

1

m

∑

uv∈E(G)

2

d(u) + d(v)
≥ 1

m

∑

uv∈E(G)

2
√
∆δ

∆+ δ

1√
d(u)d(v)

≥ 2
√
∆δ

∆+ δ

( ∏

uv∈E(G)

(d(u)d(v))−1/2
)1/m

=
2
√
∆δ

∆+ δ
NK∗(G)−1/(2m).

If the graph is regular or biregular, then H(G) = 2m/(∆ + δ), NK∗(G) = (∆δ)m and we have the
equality.

If the equality holds, then we have d(u) = δ and d(v) = ∆ or vice versa for every uv ∈ E(G);
hence, G is regular or biregular.
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3. General bounds for the harmonic index

Theorem 2.1 allows to obtain a well-known upper bound for the harmonic index in terms of n (see
also [63, Theorem 2.2]).

Theorem 3.1. Let G be a nontrivial graph with n vertices. Then

H(G) ≤ n

2

with equality if and only if G contains no isolated vertices and all connected components of G are

regular.

Proof. Theorem 2.1 gives
H(G) ≤ R(G) ≤ n

2

with equalities if and only if G contains no isolated vertices and all connected components of G and G

are regular.

There are several results studying how the harmonic index behaves when the graph is subject to
perturbations (see Theorems 3.2, 3.6 and 3.29). The first one deals with the behavior of the harmonic
index when we join two pendent paths.

Theorem 3.2. [53, Theorem 3.1] Let w be a vertex of a nontrivial connected graph G. For nonnegative

integers p and q, let G(p, q) denote the graph obtained from G by attaching to the vertex w pendent paths

P = wv1v2 . . . vp and Q = wu1u2 . . . uq of lengths p and q, respectively. If p, q > 0, then

H(G(p, q)) < H(G(p+ q, 0)).

Proof. By symmetry, we can assume that p ≥ q > 0. Since G is a nontrivial connected graph, we have
x = d(w) > 2, and after transformation the vertex degree of w decreases by one and the weights of the
edges in G either remain the same or decrease (the later are the edges adjacent to w). We will consider
the difference ∆ = H(G(p+ q, 0))−H(G(p, q)) in three cases.

Case 1. p = q = 1.

∆ >
1

x+ 1
+

1

3
− 1

x+ 1
− 1

x+ 1
=

1

3
− 1

x+ 1
> 0.

Case 2. p > q = 1.

∆ >
1

x+ 1
+

1

3
+

p− 1

4
− 1

x+ 1
− 1

x+ 2
− p− 2

4
− 1

3
=

1

4
− 1

x+ 2
> 0.

Case 3. p ≥ q > 1.

∆ >
1

x+ 1
+

1

3
+

p+ q − 2

4
− 2

x+ 2
− p+ q − 4

4
− 2

3
=

1

6
− 2

x+ 2
+

1

x+ 1
> 0.

This completes the proof.
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By repetitive application of this transformation on branching vertices that are on the largest distance
from the center of T , we have the following consequence, that improves Theorem 3.1 for trees.

Corollary 3.1. [53, Corollary 3.2] Let T be a tree with n ≥ 3 vertices. Then

H(T ) ≤ 4

3
+

n− 3

2

with equality if and only if T ∼= Pn.

This corollary generalizes [101, Theorem 2], by including the case n = 3, and provides a shorter
proof.

Theorem 3.1 has the following direct consequence (see also [52, Theorem 6] and [100, Theorem 2]).

Corollary 3.2. Let G be a connected unicyclic graph with n ≥ 3 vertices. Then

H(G) ≤ n

2

with equality if and only if G ∼= Cn.

Theorem 3.1 can be improved for bicyclic graphs.

Let us denote by Bn the set of bicyclic graphs obtained from Cn by adding an edge between two
non-adjacent vertices, and by B′

n the set of bicyclic graphs with n vertices obtained by connecting two
disjoint cycles by means of a new edge.

Theorem 3.3. [52, Theorem 7] [109, Theorem 2.2] Let G be a connected bicyclic graph with n ≥ 4

vertices. Then

H(G) ≤ n

2
− 1

15

with equality if and only if G ∈ Bn ∪ B′
n.

Recall that Theorem 2.3 gives the inequality

H(G) ≥ 2m2

M1(G)

with equality if and only if d(u) + d(v) is a constant for every uv ∈ E(G).

There are many upper bounds for the first Zagreb index, from which we may deduce lower bounds
for the harmonic index by Theorem 2.3. The next three examples appear in [105].

Corollary 3.3. Let G be a graph with m ≥ 1 edges containing no isolated vertices. Then

H(G) ≥ 2m

m+ 1

with equality if and only if G ∼= Sm+1 or G ∼= K3.
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Proof. For each uv ∈ E(G), we have d(u) + d(v) ≤ m+1 with equality if and only if every other edge
of G is adjacent to the edge uv. Then

M1(G) ≤
∑

uv∈E(G)

(m+ 1) = m(m+ 1),

and thus Theorem 2.3 gives

H(G) ≥ 2m

m+ 1

with equality if and only if G has no two independent edges, i.e., G ∼= Sm+1 or G ∼= K3.

The distance, d(u, v), between two vertices u and v in a graph G is the number of edges in a shortest
path connecting them. We denote by D(G) the diameter of graph G, i.e., D(G) := max{d(u, v) |u, v ∈
V (G)}.

Corollary 3.4. Let G be a triangle-free and quadrangle-free graph with n vertices and m ≥ 1 edges.

Then

H(G) ≥ 2m2

n(n− 1)

with equality if and only if G ∼= Sn or G is a Moore graph of diameter 2.

Proof. We have M1(G) ≤ n(n − 1) with equality if and only if G ∼= Sn or G is a Moore graph of
diameter 2 [106], and thus Theorem 2.3 gives the result.

Corollary 3.5. Let G be a graph with n vertices, m ≥ 1 edges, maximum degree ∆ and minimum degree

δ. Then

H(G) ≥ 2m2

2m(∆ + δ)− n∆δ

with equality if and only if one vertex has degree ∆ and the other vertex has degree δ for every edge of

G.

Proof. M1(G) ≤ 2m(∆+ δ)− n∆δ with equality if and only if G has only two types of degrees ∆ and
δ [16], and thus Theorem 2.3 gives the result.

Proposition 3.4. [53] Let G be a graph such that d(u) + d(v) ≤ n for all edges uv ∈ E(G). Then

H(G) ≥ 2m

n

with equality if and only if d(u) + d(v) = n for all edges uv ∈ E(G).

Proof. Since d(u) + d(v) ≤ n for every uv ∈ E(G), we have

H(G) ≥
∑

uv∈E(G)

2

n
=

2m

n
.

The equality holds if and only if d(u) + d(v) = n for every uv ∈ E(G).
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In triangle-free graphs no two neighboring vertices have a common neighbor, and therefore all
triangle-free graphs satisfy d(u) + d(v) ≤ n for every uv ∈ E(G). Hence, we have the following
consequence.

Corollary 3.6. [53] Let G be a nontrivial triangle-free graph with n vertices. Then

H(G) ≥ 2(n− 1)

n

with equality if and only if G is isomorphic to a complete bipartite graph.

Corollary 3.7. [53, Corollary 2.1] Let T be a nontrivial tree with n vertices. Then

H(T ) ≥ 2(n− 1)

n

with equality if and only if T ∼= Sn.

Corollary 3.7 is generalized in [101, Theorem 3] for connected graphs. Using Corollary 3.3, we can
generalize [101, Theorem 3] to graphs with n vertices containing no isolated vertices, and the unique
extremal graph is still Sn.

Theorem 3.5. [105, Theorem 2.2] Let G be a nontrivial graph with n vertices containing no isolated

vertices. Then

H(G) ≥ 2(n− 1)

n
with equality if and only if G ∼= Sn.

Proof. First suppose that G is a connected graph. Let m be the number of edges of G, thus m ≥ n− 1.

Since
2m

m+ 1
is strictly increasing in m ≥ 1, Corollary 3.3 gives H(G) ≥ 2m

m+ 1
≥ 2(n− 1)

n
with

equalities if and only if G ∼= Sm+1 and m = n− 1, i.e., G ∼= Sn.

So we may assume that G is disconnected. Let G1, G2, . . . , Gk be the connected components of G
with ni = |V (Gi)| for each 1 ≤ i ≤ k. Since G contains no isolated vertices, we have ni ≥ 2 and∑k

i=1 ni = n. Thus,

H(G) =
k∑

i=1

H(Gi) ≥
k∑

i=1

2(ni − 1)

ni

.

Since ni ≥ 2, we obtain

2(n1 − 1)

n1

+
2(n2 − 1)

n2

− 2(n1 + n2 − 1)

n1 + n2

=

= 2
(n1n2 − n1 − n2)(n1 + n2) + n1n2

n1n2(n1 + n2)
> 0.

We conclude that

H(G) >
2(n1 + n2 − 1)

n1 + n2

+
k∑

i=3

2(ni − 1)

ni

>
2(n1 + n2 + n3 − 1)

n1 + n2 + n3

+
k∑

i=4

2(ni − 1)

ni

> · · · > 2(n1 + n2 + · · ·+ nk − 1)

n1 + n2 + · · ·+ nk

=
2(n− 1)

n
.
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Let us define the weight of an edge uv ∈ E(G) as

2

d(v) + d(u)
.

The next result also studies how the harmonic index behaves when the graph is subject to pertur-
bations. In fact, it deals with the behavior of the harmonic index if we remove an edge of maximal
weight.

Theorem 3.6. [13, Lemma 2.1] Let uv be an edge of maximal weight in a graph G with m ≥ 2 edges.

Then

H(G− uv) < H(G).

Theorem 3.6 is used in the proof of the following result.

Given positive integers n and δ with n ≥ 2δ, let us denote by K∗
δ,n−δ the graph obtained from a

complete bipartite graph Kδ,n−δ by joining each pair of vertices in the part with δ vertices by a new edge.

Theorem 3.7. [13, Theorem 2.2] Let G be a graph with n ≥ 4 vertices and minimum degree δ ≥ 2.

Then

H(G) ≥ 4 +
1

n− 1
− 12

n+ 1

with equality if and only if G ∼= K∗
2,n−2.

The following technical result will be used in the proof of Theorem 3.9 below.

Lemma 3.8. [13, Lemma 3.1] The harmonic index of a graph G without isolated vertices can be rewrit-

ten as

H(G) =
n

2
− 1

2

∑

1≤i<j≤n−1

(1
i
+

1

j
− 4

i+ j

)
mi,j.

Proof. The harmonic index can be rewritten as

H(G) =
∑

1≤i≤j≤n−1

2mi,j

i+ j
=

∑

1≤i<j≤n−1

2mi,j

i+ j
+

n−1∑

i=1

mi,i

i
. (5)

If we denote by ni the number of vertices with degree i, then

n−1∑

j=1,j 6=i

mi,j + 2mi,i = ini,

ni =
1

i

( n−1∑

j=1,j 6=i

mi,j + 2mi,i

)
.

Since G does not have isolated vertices, the equality n1 + n2 + · · · + nn−1 = n holds. This fact and
mi,j = mj,i give

∑

1≤i<j≤n−1

(1
i
+

1

j

)
mi,j + 2

n−1∑

i=1

mi,i

i
= n.
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Hence, (5) allows to conclude

n− 2H(G) =
∑

1≤i<j≤n−1

(1
i
+

1

j
− 4

i+ j

)
mi,j

and this finishes the proof.

The following results improve Theorem 3.5 for triangle-free graphs.

Theorem 3.9. [13, Theorem 3.2] Let G be a triangle-free graph with n vertices and minimum degree

δ ≥ k ≥ 1. Then

H(G) ≥ 2k(n− k)

n
with equality if and only if G ∼= Kk,n−k.

Proof. Let us denote by m the number of edges of G. Since G is triangle-free, we have d(u)+ d(v) ≤ n

for every uv ∈ E(G).
If m > k(n− k), then

H(G) ≥ 2m

n
>

2k(n− k)

n
and equality is not possible.

Hence, we may assume that m ≤ k(n − k). Since G is a triangle-free graph, the maximum degree
of G is at most n− δ (in particular, we have n ≥ 2δ). By Lemma 3.8, H(G) can be rewritten as

H(G) =
n

2
+

1

2

∑

δ≤i<j≤n−δ

( 4

i+ j
− 1

i
− 1

j

)
mi,j

≥ n

2
+

1

2

∑

δ≤i<j≤n−δ

( 4
n
− 1

i
− 1

n− i

)
mi,j

since 4
i+j

− 1
j

is a decreasing function on j ∈ (i, n− i]. Hence,

H(G) ≥ n

2
+

1

2

∑

δ≤i<j≤n−δ

( 4
n
− n

i(n− i)

)
mi,j

≥ n

2
+

1

2

∑

δ≤i<j≤n−δ

( 4
n
− n

δ(n− δ)

)
mi,j

=
n

2
− m

2

(n− 2δ)2

nδ(n− δ)
≥ n

2
− k(n− k)

2

(n− 2δ)2

nδ(n− δ)

≥ n

2
− k(n− k)

2

(n− 2k)2

nk(n− k)
=

2k(n− k)

n
.

In this inequality chain equality holds throughout if and only if m = k(n − k) = mk,n−k, which is
equivalent to G ∼= Kk,n−k.

Theorem 3.10. [95, Theorem 3.1] Let G be a triangle-free graph with n ≥ 4 vertices and minimum

degree δ ≥ 2. Then

H(G) ≥ 4− 8

n
with equality if and only if G ∼= K2,n−2.
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A vertex in a graph is said to be a pendent vertex if it has degree one. An edge in a graph is said to
be a pendent edge if it is incident to a pendent vertex.

For each 3 ≤ k ≤ n, let Cn
k be the graph with n vertices obtained from a cycle Ck by attaching n− k

pendent vertices to exactly one vertex of Ck.

Theorem 3.11. [102, Theorem 2.4] Let G be a connected graph with n vertices and girth g(G) ≥ k ≥ 3.

Then

H(G) ≥ 1 +
k

2
+

4

n− k + 4
− 6

n− k + 3

with equality if and only if G ∼= Cn
k .

We have several lower bounds of the harmonic index involving the number of the pendent vertices.

Theorem 3.12. [97, Theorem 2.4] Let G be a nontrivial connected graph with n vertices, m edges and

p pendent vertices. Then

H(G) ≥ p

n− 1
+

m− p

(n− 1− p
2
)2
.

Proof. Since 0 < 1
d(u)

, 1
d(v)

≤ 1, we have for each edge uv ∈ E(G),

2

d(u) + d(v)
≥

1
d(u)

+ 1
d(v)

d(u) + d(v)
=

1

d(u)d(v)
.

For each pendent edge uv, we clearly have

1

d(u)d(v)
≥ 1

n− 1
.

If uv is a non-pendent edge, then d(u) + d(v) ≤ 2(n− 1)− p, since any pendent vertex is adjacent to at
most one of u and v. So

d(u)d(v) ≤
(
d(u) + d(v)

2

)2

≤
(
n− 1− p

2

)2
,

and
H(G) ≥ p

n− 1
+

m− p

(n− 1− p
2
)2
.

Remark 3.13. If n− 1− p
2
= 0, then p = m and the inequality in Theorem 3.12 is

H(G) ≥ p

n− 1
.

Furthermore, since p = m and G is connected, we have G ∼= Sm+1 and

H(G) = H(Sm+1) =
2m

m+ 1
=

2(n− 1)

n
.

The argument in the proof of Theorem 3.12, using the inequalities d(u) + d(v) ≤ ∆ + 1 for any
pendent edge uv, and d(u) + d(v) ≤ 2(n − 1) − p for any non-pendent edge uv, gives the following
improvement.
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Corollary 3.8. Let G be a nontrivial connected graph with n vertices, m edges, p pendent vertices

(m > p) and maximum degree ∆. Then

H(G) ≥ 2p

∆+ 1
+

m− p

n− 1− p
2

.

By using the inequality d(u) + d(v) ≤ 2∆ for any non-pendent edge uv, we obtain the following
result.

Corollary 3.9. [59, Theorem 2.1] Let G be a nontrivial connected graph with m edges, p pendent

vertices and maximum degree ∆. Then

H(G) ≥ 2p

∆+ 1
+

m− p

∆
.

Let us denote by Sn,p the tree obtained by attaching p − 1 pendent vertices to an end vertex of the
path graph Pn−p+1.

Theorem 3.14. [62, Theorem 8] Let T be a tree with n vertices and p pendent vertices, where 2 ≤ p ≤
n− 2. Then

H(T ) ≥ 2

p+ 2
− 4

p+ 1
+

n− p

2
+

5

3

with equality if and only if T ∼= Sn,p.

Corollary 3.10. [62, Corollary 10] Among all trees with n vertices, the minimum harmonic index is

attained uniquely by the star graph Sn.

Theorem 3.14 can be improved for molecular trees.

Let us introduce two classes of molecular trees with n vertices and p pendent vertices. Denote by
Le(n, p) for even p with 6 ≤ p ≤ b(n+ 3)/2c the set of those trees that are composed of (p− 2)/2 star
graphs S5, which are connected by paths whose lengths may be zero. Denote by Ll(n, p) for odd p with
9 ≤ p ≤ b(n + 2)/2c the set of those trees that are composed of (p − 3)/2 star graphs S5 and a star
graph S4, which are connected by paths whose lengths may be zero, and the unique star S4 is connected
to three stars S5.

Theorem 3.15. [62, Theorem 11] Let T be a molecular tree with n vertices and p ≥ 5 pendent vertices.

Then

H(T ) ≥ n

2
− 4p

15
+

1

6

with equality if and only if T ∈ Le(n, p) for even p with 6 ≤ p ≤ b(n+ 3)/2c. Moreover, if p is odd and

9 ≤ p ≤ b(n+ 2)/2c, then

H(T ) ≥ n

2
− 4p

15
+

1

5

with equality if and only if T ∈ Ll(n, p).
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Theorem 3.16. [62, Theorem 13] Let T be a molecular tree with n vertices and p ≥ 2 pendent vertices.

Then

H(T ) ≤ n

2
− p

12

with equality if and only if T ∼= Pn.

Let us denote by S+
n the unicyclic graph obtained from the star Sn by adding an edge joining two

pendent vertices. The bicyclic graph S1
n is obtained from Sn by adding a path of length 2 joining three

pendent vertices. Finally, denote by S2
n the bicyclic graph obtained from Sn by adding two edges joining

two different pairs of pendent vertices.

Theorem 3.17. [52, Theorem 4] [100, Theorem 1] Let G be a connected unicyclic graph with n ≥ 3

vertices. Then

H(G) ≥ 5

2
− 2(n+ 3)

n(n+ 1)

with equality if and only if G ∼= S+
n .

Theorem 3.18. [52, Theorem 5] [109, Theorem 3.1] Let G be a connected bicyclic graph with n ≥ 4

vertices. Then

H(G) ≥ 14

5
− 2n2 + 14n+ 16

n(n+ 1)(n+ 2)

with equality if and only if G ∼= S1
n.

Two different edges in a graph G are called independent if they are not adjacent. A matching of G
is a set of mutually independent edges in G. The largest matching is called a maximum matching. The
matching number of G is the cardinality of a maximum matching of G. If M is a matching of G, then
M is called the µ-matching of G if M contains exactly µ edges of G. A vertex v ∈ G is said to be
M -saturated if it is incident with an edge of M . The matching M of G is called a perfect matching if all
vertices of G are M -saturated.

Let T 0(n, µ) be a tree with n vertices obtained from a star graph Sn−µ+1 by attaching a pendant edge
to each of certain µ− 1 non-central vertices of Sn−µ+1. It is clear that T 0(n, µ) has a µ-matching.

Theorem 3.19. [66, Theorem 3.1] Let T be a tree with n = 2µ vertices and a perfect matching. Then

H(T ) ≥ 2

µ+ 1
+

2(µ− 1)

µ+ 2
+

2(µ− 1)

3

with equality if and only if T ∼= T 0(2µ, µ).

Theorem 3.20. [66, Theorem 3.2] Let T be a tree with n vertices and a µ-matching, where n > 2µ.

Then

H(T ) ≥ 2(n− 2µ+ 1)

n− µ+ 1
+

2(µ− 1)

n− µ+ 2
+

2(µ− 1)

3

with equality if and only if T ∼= T 0(n, µ).



252

A subset S ⊂ V (G) is called a dominating set of G if for every vertex v ∈ V (G) \ S, there exists
a vertex u ∈ S such that v is adjacent to u. The domination number of G is defined as the minimum
cardinality of dominating sets of G.

Theorem 3.21. [58, Theorem 3.3] Let T be a tree with n vertices and domination number γ. Then

H(T ) ≥ 2(n− 2γ + 1)

n− γ + 1
+

2(γ − 1)

n− γ + 2
+

2(γ − 1)

3

with equality if and only if T ∼= T 0(n, γ).

Let L∗
n,3 be the unicyclic graph with n vertices obtained by attaching n− 4 and one pendent vertices

to two adjacent vertices u, v of a triangle, respectively. For each 4 ≤ k ≤ n − 2, let L∗
n,k be the set

of unicyclic graphs with n vertices obtained by attaching n − k − 1 and one pendent vertices to two
non-adjacent vertices u, v of the cycle graph Ck, respectively.

Theorem 3.22. [103, Theorem 2.3] Let G 6∼= Ln,k be a unicyclic graph with n ≥ 5 vertices and girth k,

where 3 ≤ k ≤ n.

(1) If k = 3, then

H(G) ≥ 2

n+ 1
+

2

n
+

2(n− 4)

n− 1
+

9

10

with equality if and only if G ∼= L∗
n,3.

(2) If 4 ≤ k ≤ n− 2, then

H(G) ≥ k − 3

2
+

4

n− k + 3
+

2(n− k − 1)

n− k + 2
+

4

5

with equality if and only if G ∈ L∗
n,k.

Theorem 3.23. [82, Corollary 9] Let G be a nontrivial connected graph with n vertices and m edges.

Then
m

n− 1
≤ H(G) ≤ m.

The lower bound is attained if and only if G ∼= Kn. The upper bound is attained if and only if G ∼= K2.

Proof. Since for any edge uv ∈ E(G) we have 2 ≤ d(u) + d(v) ≤ 2n− 2, we have

1

2n− 2
≤ 1

d(u) + d(v)
≤ 1

2
.

Hence, ∑

uv∈E(G)

1

n− 1
≤

∑

uv∈E(G)

2

d(u) + d(v)
≤

∑

uv∈E(G)

1,

and
m

n− 1
≤ H(G) ≤ m.

Furthermore, the lower and upper bounds are attained if and only if G ∼= Kn and G ∼= K2, respectively.
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Theorem 3.24. [82, Theorem 17] Let G be a connected graph with n vertices and maximum degree

∆ ≥ 2. Then

H(G) ≥ 2n∆

(∆ + 1)2

with equality if and only if G ∼= Sn.

Denote by btc (respectively, dte) the lower (respectively, upper) integer part of the real number t.

Proposition 3.25. [82, Corollary 13] Let G be a complete bipartite graph with n ≥ 4 vertices and m

edges. Then
2(n− 1)

n
≤ H(G) =

2m

n
≤ 2

n

⌊n
2

⌋ ⌈n
2

⌉
.

The lower bound is attained if and only if G ∼= K1,n−1
∼= Sn. The upper bound is attained if and only if

G ∼= Kbn/2c,dn/2e.

Proof. Since G is a complete bipartite graph, we have d(u) + d(v) = n for any uv ∈ E(G). Thus,

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
=

2m

n
.

The complete bipartite graph G that has the minimum value of edges is K1,n−1 and the complete bipartite
graph that has the maximum value of edges is Kbn/2c,dn/2e. Hence,

2(n− 1)

n
≤ H(G) ≤ 2

n

⌊n
2

⌋ ⌈n
2

⌉
.

Recall that a nontrivial connected graph with maximum degree at most four is a molecular graph
representing hydrocarbons. If G is a molecular graph with n vertices and m edges, then

n− 1 ≤ m ≤ 2n.

Theorem 3.26. [82, Theorem 14] If G is a molecular graph with n ≥ 3 vertices and m edges, then

3m+ 4n

20
≤ H(G) ≤ m+ 2n

6
. (6)

The lower bound is attained if and only if G has only vertices of degree one and four, and the upper

bound is attained if and only if G is either a path or a cycle.

We present another result that studies how the harmonic index behaves when the graph is subject to
perturbations. In fact, it deals with the behavior of the harmonic index if we remove a vertex of minimal
degree. We use NG(v) to denote the neighborhood of vertex v ∈ V , and N2

G(v) to denote the set of
vertices at distance 2 of v ∈ V .

Lemma 3.27. [24, Lemma 1] Let δ ≤ d(i), d(j) and d(i), d(j) ≥ 2. Then

1

(d(i)− 1)(δ + d(i))
+

1

(d(j)− 1)(δ + d(j))
≥ 2

d(i) + d(j)− 2
− 2

d(i) + d(j)
.
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Lemma 3.28. [24, Lemma 2] Let δ ≤ d(p) and d(i) ≥ 2. Then

1

(d(i)− 1)(δ + d(i))
≥ 1

d(i) + d(p)− 1
− 1

d(i) + d(p)
.

Theorem 3.29. [24, Theorem 3] Let G be a nontrivial graph with minimum degree δ ≥ 1 and v ∈ V (G)

with degree δ. Then

H(G) ≥ H(G− v).

Proof. Removal of a vertex v with d(v) = δ and of all edges incident with v entails reduction by 1 of
both end-degrees of all edges ij ∈ E(G) both vertices of which are adjacent to v, and reduction by 1 of
the first end-degree of all edges ip ∈ E(G) for which the first vertex is adjacent to v and the second one
at distance 2 from v. Let d′(i) = dG−v(i) be the degree of vertex i in G− v.

We can assume that d(i) ≥ 2 for every i ∈ NG(v), since otherwise δ = 1 and the connected
component of v in G has just an edge.

H(G)−H(G− v)

=
∑

pq∈E(G)

2

d(p) + d(q)
−

∑

pq∈E(G−v)

2

d′(p) + d′(q)

=
∑

i∈NG(v)

2

δ + d(i)
+

∑

ij∈E(G)|i,j∈NG(v)

(
2

d(i) + d(j)
− 2

d(i) + d(j)− 2

)

+
∑

ip∈E(G)|i∈NG(v),p∈N2
G(v)

(
2

d(i) + d(p)
− 2

d(i) + d(p)− 1

)
.

Note that
∑

i∈NG(v)

2

δ + d(i)
=

∑

i∈NG(v)

∑

p∈NG(i)\{v}

2

(d(i)− 1)(δ + d(i))

=
∑

i∈NG(v)

∑

p∈N2
G(v)∩NG(i)

2

(d(i)− 1)(δ + d(i))

+
∑

ij∈E(G)|i,j∈NG(v)

(
2

(d(i)− 1)(δ + d(i))
+

2

(d(j)− 1)(δ + d(j))

)
.

Hence

H(G)−H(G− v)

=
∑

i∈NG(v)

∑

p∈N2
G(v)∩NG(i)

( 2

(d(i)− 1)(δ + d(i))
+

2

d(i) + d(p)
− 2

d(i) + d(p)− 1

)

+
∑

ij∈E(G)|i,j∈NG(v)

( 2

(d(i)− 1)(δ + d(i))
+

2

(d(j)− 1)(δ + d(j))

+
2

d(i) + d(j)
− 2

d(i) + d(j)− 2

)

and H(G)−H(G− v) ≥ 0 from Lemmas 3.27 and 3.28.
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Theorem 3.29 can be used in order to prove the following result. Recall that we denote the chromatic
number of a graph G by χ∗(G).

Theorem 3.30. [24, Theorem 4] Let G be a nontrivial graph. Then

H(G) ≥ 1

2
χ∗(G).

with equality if and only if G is a complete graph possibly with some additional isolated vertices.

For a vertex u in a connected nontrivial graph G, let us define the eccentricity of u as

eccG(u) = max{dG(u, v) | v ∈ V (G)},

where dG denotes the distance in G. The radius r(G) of G is defined as

r(G) = min{eccG(u) | u ∈ V (G)}.

Theorem 3.31. [97, Theorem 2.3] Let G be a nontrivial connected graph with n vertices and m edges.

Then

H(G) ≥ m

n− r(G)
.

Furthermore, the equality is attained for the complete graph Kn.

Proof. Note that for each vertex u ∈ V (G), we have d(u) ≤ n − eccG(u). Thus, for each edge uv ∈
E(G),

2

d(u) + d(v)
≥ 2

2n− eccG(u)− eccG(v)
≥ 1

n− r(G)
,

H(G) ≥ m

n− r(G)
.

It is easily seen that the complete graph Kn attains the equality.

The study of Gromov hyperbolic graphs is a subject of increasing interest, both in pure and applied
mathematics (see, e.g., [7], [9], [68] and the references cited therein). We say that a graph G is t-
hyperbolic (t ≥ 0) if any side of every geodesic triangle in G is contained in the t-neighborhood of
the union of the other two sides. We define the hyperbolicity constant δ(G) of G as the infimum of the
constants t ≥ 0 such that G is t-hyperbolic. We consider that every edge has length 1.

The following inequality relates the harmonic index with the hyperbolicity constant δ(G).

Theorem 3.32. Let G be a nontrivial graph that is not a tree. Then

H(G) ≥ 4δ(G)− 1

2δ(G)
.

Furthermore, if G is a triangle-free graph with minimum degree greater or equal to k ≥ 1, then

H(G) ≥ k(4δ(G)− k)

2δ(G)

with equality if and only if k = 2 and G ∼= C4.
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Proof. Theorem 3.5 gives

H(G) ≥ 2(n− 1)

n
.

It is well-known that if G is not a tree, then δ(G) > 0. Since the function f(x) = 2(x−1)
x

is increasing in
(0,∞), and δ(G) ≤ n

4
by [68, Theorem 30], we have n ≥ 4δ(G) > 0 and

H(G) ≥ 2(n− 1)

n
≥ 2(4δ(G)− 1)

4δ(G)
.

By using Theorem 3.9 instead of Theorem 3.5, the previous argument gives

H(G) ≥ k(4δ(G)− k)

2δ(G)

with equality if and only if G ∼= Kk,n−k and δ(G) = n
4
. If G ∼= Kk,n−k is not a tree (i.e., if k ≥ 2), then

[81, Thoerem 10] gives δ(Kk,n−k) = 1. Since n ≥ 2k, we have the equality if and only if G ∼= Kk,n−k,
n = 4 and k ≥ 2, i.e., G ∼= K2,2

∼= C4.

One can think that perhaps it is possible to obtain an upper bound for H(G) in terms of δ(G), i.e.,
the inequality

H(G) ≤ Ψ
(
δ(G)

)
,

for every graph G and some function Ψ. However, this is not possible, as the following example shows.
For each integer d ≥ 3 consider two copies Ad and Bd of the path graph with (ordered) vertices a1, . . . , ad
and b1, . . . , bd, respectively. Let Gd be the graph obtained from Ad and Bd by connecting with an edge
the vertices ai and bi for every i ∈ {1, . . . , d}. One can check that δ(G) = 3

2
for every d ≥ 3. However,

limd→∞ H(Gd) = ∞.

We relate now the harmonic index of a graph with its girth.

Theorem 3.33. [94, Theorem 3] Let G be a connected graph with n ≥ 3 vertices and girth g(G). Then

H(G) + g(G) ≥ 11

2
− 6

n
+

4

n+ 1
, H(G)g(G) ≥ 15

2
− 18

n
+

12

n+ 1

with equalities if and only if G ∼= S+
n .

Theorem 3.34. [102, Theorem 2.6] Let G be a connected graph with n vertices and girth g(G) ≥ k ≥ 3.

Then

1 +
3k

2
− 6

n− k + 3
+

4

n+ 1
≤ H(G) + g(G) ≤ 3n

2

and

k
(
1 +

k

2
− 6

n− k + 3
+

4

n+ 1

)
≤ H(G)g(G) ≤ n2

2
.

The lower bounds are attained if and only if G ∼= Cn
k , and the upper bounds are attained if and only if

G ∼= Cn.
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Theorem 3.35. [102, Theorem 2.7] Let G be a connected graph with n vertices and girth g(G) ≥ k ≥ 3.

Then

−n

2
≤ H(G)− g(G) ≤ n

2
− k,

1

2
≤ H(G)

g(G)
≤ n

2k
.

The lower bounds are attained if and only if G ∼= Cn, and the upper bounds are attained if and only if G

is a regular graph with g(G) = k.

Next, we relate the harmonic index of a graph with its diameter. Theorem 3.1 allows to deduce the
following result.

Theorem 3.36. [60, Theorem 2.2] Let G be a connected graph with n ≥ 4 vertices and diameter D(G).

Then

H(G)−D(G) ≤ n

2
− 1,

H(G)

D(G)
≤ n

2

with equality if and only if G ∼= Kn.

Theorem 3.37. [60, Theorem 2.5] Let T be a connected tree with n ≥ 4 vertices and diameter D(T ).

Then

H(T )−D(T ) ≥ 5

6
− n

2
,

H(T )

D(T )
≥ 1

2
+

1

3(n− 1)

with equality if and only if T ∼= Pn.

The inequalities in Theorem 3.37 can be improved for unicyclic graphs.

Let C be a set of graphs obtained from C4 by attaching one pendant edge and a path of length n− 5

to two diametrically nonadjacent vertices of C4. For each n ≥ 7, we have exactly one graph in this set.

Theorem 3.38. [3, Theorem 3.1] Let G be a unicyclic graph with n ≥ 7 vertices and diameter D(G).

Then

H(G)−D(G) ≥ 5

3
− n

2

with equality if G ∈ C.

Let Ux,y
n,l be a unicyclic graph obtained from a cycle Cl by attaching two paths Px and Py to two

diametrically opposite vertices of Cl such that n = l + x+ y.

Theorem 3.39. [4, Theorem 3.1] Let G be a unicyclic graph with n ≥ 7 vertices and diameter D(G).

Then
H(G)

D(G)
≥ 1

2
+

2

3(n− 2)

with equality if and only if G ∼= U1,n−5
n,4 .
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3.1 Harmonic index of graph operations

Caporossi et al. [10] showed that among all graphs with n vertices, the graphs containing no isolated
vertices, in which all connected components are regular, have the maximum value

n

2
for the Randić

index. By Theorem 2.1, we know that these graphs are also the extremal graphs with the maximum
harmonic index. This implies the following NordhausGaddumtype results for the harmonic index.

The complement G of a graph G is the graph whose vertex set is V (G) and uv ∈ E(G) if and only
if uv /∈ E(G) for u, v ∈ V (G).

Theorem 3.40. [105, Theorem 3.2] Let G be a graph with n vertices, then

n

2
≤ H(G) +H(G) ≤ n.

The lower bound is attained if and only if G ∼= Kn or G ∼= Kn, and the upper bound is attained if and

only if G is a k-regular graph with 1 ≤ k ≤ n− 2.

Proof. Let us denote by m and m the number of edges in G and G, respectively. Then

H(G) +H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
+
∑

uv∈E(G)

2

(n− 1− d(u)) + (n− 1− d(v))

≥
∑

uv∈E(G)

2

2n− 2
+
∑

uv∈E(G)

2

2n− 2

=
1

n− 1
(m+m) =

1

n− 1
· n(n− 1)

2
=

n

2
,

with equality if and only if either d(u) = d(v) = n − 1 for every edge uv of G or E(G) = ∅, i.e.,
G ∼= Kn or G ∼= Kn.

In order to prove the upper bound, Theorem 2.1 gives

H(G) +H(G) ≤ R(G) +R(G) ≤ n

2
+

n

2
= n,

with equalities if and only if both G and G contain no isolated vertices (i.e., 1 ≤ δ(G) ≤ ∆(G) ≤ n−2)
and all connected components of G and G are regular.

Let us prove that G is a regular graph.
Seeking for a contradiction assume that there exist u, v ∈ V (G) with d(u) 6= d(v). Thus, u and v

are contained in two different connected components of G, and hence uv ∈ E(G). Hence, u and v lie in
the same component of G. Since each connected component of G is regular, we have n − 1 − d(u) =

n− 1− d(v), a contradiction. This finishes the proof.

In [84], some bounds for the harmonic index of the join, corona product, Cartesian product, compo-
sition and symmetric difference of graphs are obtained.

It is well-known that the composition G = G1[G2] of graphs G1 and G2 with disjoint vertex sets
V (G1) and V (G2) and edge sets E(G1) and E(G2) is the graph with vertex set V (G1) × V (G2) and
(ui, vj) is adjacent with (uk, vl) whenever ui is adjacent with uk, or ui = uk and vj is adjacent with vl.
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Theorem 3.41. [84, Theorem 2.1] Let G1 and G2 be two connected graphs with n1, n2 vertices and

m1,m2 edges, respectively. Then

H(G1[G2]) ≤
1

(1 + n2)2

( n1

2
ABC(G2) + n1R(G2) + n1n2m2

+
n3
2

2
ABC(G1) + n3

2R(G1) + n2
2m1

)
.

Recall that the Cartesian product G1 × G2 of graphs G1 and G2 has the vertex set V (G1 × G2) =

V (G1)×V (G2) and (ui, vj)(uk, vl) is an edge of G1×G2 if ui = uk and vjvl ∈ E(G2), or uiuk ∈ E(G1)

and vj = vl.

Theorem 3.42. [84, Theorem 2.2] Let G1 and G2 be two connected graphs with n1, n2 vertices and

m1,m2 edges, respectively. Then

H(G1 ×G2) ≤
1

8

(
n1ABC(G2) + 2n1R(G2) + 2n1m2

+ n2ABC(G1) + 2n2R(G1) + 2n2m1

)
.

Let G1 and G2 be two graphs we define the corona product G1 ◦G2 as the graph obtained by taking
|V (G1)| copies of G2 and joining each vertex of the i-th copy with vertex vi ∈ V (G1).

One can check that

|V (G1 ◦G2)| = |V (G1)| (1 + |V (G2)|)
|E(G1 ◦G2)| = |E(G1)|+ |V (G1)| (|V (G2)|+ |E(G2)|).

Theorem 3.43. [84, Theorem 2.3] For i ∈ {1, 2}, let Gi be a graph with ni vertices, mi edges, minimum

degree δi and maximum degree ∆i. Then

H(G1 ◦G2) ≥
m1

∆1 + n2

+
m2n1

∆2 + 1
+

2n1n2

∆1 +∆2 + n2 + 1
,

H(G1 ◦G2) ≤
m1

δ1 + n2

+
m2n1

δ2 + 1
+

2n1n2

δ1 + δ2 + n2 + 1
.

Proof. The edges of G1 ◦G2 are partitioned into three subsets E1, E2 and E3 as follows

E1 = {e ∈ E(G1 ◦G2), e ∈ E(G1)},
E2 = {e ∈ E(G1 ◦G2), e ∈ E(G2i) i = 1, 2 . . . , |V (G1)|},
E3 = {e ∈ E(G1 ◦G2), e = uv, u ∈ V (G2i), i = 1, 2, . . . , |V (G1)| and v ∈ V (G1)}.

If u is a vertex of G1 ◦G2, then

dG1◦G2(u) =

{
dG1(u) + |V (G2)| if u ∈ V (G1)
dG2(u) + 1 if u ∈ V (G2).

Let G1 = (Vi, Ei), i ∈ {1, 2} and G1 ◦G2 = (V,E). Thus,

H(G1 ◦G2) =
∑

uv∈E(G1◦G2)

2

dG1◦G2(u) + dG1◦G2(v)

= Q1 +Q2 +Q3,
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with

Q1 =
∑

uv∈E1

2

dG1(u) + n2 + dG1(v) + n2

≥ 2m1

∆1 + n2 +∆1 + n2

=
m1

∆1 + n2

,

Q2 = n1

∑

uv∈E2

2

dG2(u) + 1 + dG2(v) + 1

≥ 2n1m2

∆2 + 1 +∆2 + 1
=

n1m2

∆2 + 1
,

Q3 =
∑

uv∈E3,u∈V1,v∈V2

2

dG1(u) + n2 + dG2(v) + 1

≥ 2n1n2

∆1 +∆2 + n2 + 1
.

Thus,

H(G1 ◦G2) ≥
m1

∆1 + n2

+
m2n1

∆2 + 1
+

2n1n2

∆1 +∆2 + n2 + 1
.

We deduce the upper bound in a similar way.

The join G1 + G2 of two graphs G1 and G2 is defined as the graph obtained from disjoined graphs
G1 and G2 by taking one copy of G1 and one copy of G2 and joining by an edge each vertex of G1 with
each vertex of G2.

Theorem 3.44. [84, Theorem 2.4] Let G1 and G2 be two connected graphs with n1, n2 vertices and

m1,m2 edges, respectively. Then

H(G1 +G2) ≥
2

m1 + 2n2 + 1
R(G1) +

2

m2 + 2n1 + 1
R(G2) +

n1n2

n1 + n2 − 1
.

Proof. Let V (G1) = {u1, u2, . . . , un1} and V (G2) = {v1, v2, . . . , vn2}. If u ∈ V (G1 +G2), then

dG1+G2(u) =

{
dG1(u) + |V (G2)| if u ∈ V (G1)
dG2(u) + |V (G1)| if u ∈ V (G2).

Hence,

H(G1 +G2) =
∑

uv∈E(G1+G2)

2

dG1+G2(u) + dG1+G2(v)

=
∑

uv∈E(G1)

2

dG1(u) + n2 + dG1(v) + n2

+
∑

uv∈E(G2)

2

dG2(u) + n1 + dG2(v) + n1

+
∑

u∈V (G1),v∈V (G2)

2

dG1(u) + n2 + dG2(v) + n1

= A1 + A2 + A3,

where Ai denotes the i-th sum.
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For each uv ∈ E(G), we have dG(u) + dG(v) ≤ |E(G)| + 1 with equality if and only if every
other edge of G is adjacent to the edge uv. Also, 1 ≤

√
d(u)d(v), and the equality holds if and only if

d(u) = d(v) = 1. Hence,

A1 ≥
∑

uv∈E(G1)

2

|E(G1)|+ 1 + 2n2

1√
d(u)d(v)

=
2

m1 + 1 + 2n2

R(G1).

Similarly,

A2 ≥
2

m2 + 1 + 2n1

R(G2).

Since for any graph G with n vertices we have d(w) ≤ n− 1 for any w ∈ V (G), we deduce

A3 =
∑

u∈V (G1),v∈V (G2)

2

dG1(u) + n2 + dG2(v) + n1

≥
∑

u∈V (G1),v∈V (G2)

2

n1 − 1 + n2 + n2 − 1 + n1

=
n1n2

n1 + n2 − 1
.

Thus,
H(G1 +G2) ≥

2

m1 + 2n2 + 1
R(G1) +

2

m2 + 2n1 + 1
R(G2) +

n1n2

n1 + n2 − 1
.

Finally, we define the symmetric difference G1 ⊕ G2 of two graphs G1 and G2 as the graph with
vertex set V (G1) × V (G2) and E(G1 ⊕ G2) = {(u1, u2)(v1, v2) | u1v1 ∈ E(G1) or u2v2 ∈ E(G2) but
not both}.

Theorem 3.45. [84, Theorem 2.5] For i ∈ {1, 2}, let Gi be a graph with ni vertices, mi edges and

diameter D(Gi). Then

H(G1 ⊕G2)≥
n2
2m1 + n2

1m2 − 4m1m2

n2(n1 −D(G1)) + n1(n2 −D(G2))− 2(n1 −D(G1))(n2 −D(G2))
.

3.2 Harmonic polynomial of a graph

The characterization of any graph by a polynomial is one of the open important problems in graph the-
ory. In recent years there have been many works on graph polynomials (see, e.g., [2,11,12,83,91]). The
research in this area has been largely driven by the advantages offered by the use of computers: it is sim-
pler to represent a graph by a polynomial (a vector with dimension O(n)) than by the adjacency matrix
(an n×n matrix). Some parameters of a graph allow to define polynomials related to a graph. Although
several polynomials are interesting since they compress information about the graphs structure, unfor-
tunately, the well-known polynomials do not solve this problem since there are often non-isomorphic
graphs with the same polynomial.
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In this subsection we introduce the harmonic polynomial of a graph and we present explicit formulas
for this polynomial for several families of graphs. The harmonic polynomial of a graph G is defined
in [54] as

H(G, x) =
∑

uv∈E(G)

2xd(u)+d(v)−1.

Note that the harmonic index H(G) can be obtained by integrating this polynomial:

H(G) =

∫ 1

0

H(G, x) dx.

Proposition 3.46. [54, Proposition 1] If G is a k-regular graph with n vertices and m edges, then

H(G, x) = 2mx2k−1, H(G) =
n

2
.

Proof. Since G is k-regular graph, so for every edge in G we have xd(u)+d(v)−1 = x2k−1 and hence,

H(G, x) = 2mx2k−1.

Since 2m = nk for every k-regular graph, the previous equality gives H(G) =
∫ 1

0
H(G, x) dx = n

2
.

Proposition 3.46 has the following consequences on the graphs: Kn (the complete graph with n

vertices), Cn (the cycle with n vertices), Πn (the n-sided prism), An (the n-sided antiprism) and Qn (the
n-dimensional hypercube).

Corollary 3.11. [54, Proposition 2] We have

H(Kn, x) = n(n− 1)x2n−3,

H(Cn, x) = 2nx3,

H(Πn, x) = 6nx5,

H(An, x) = 8nx7,

H(Qn, x) = n2nx2n−1.

Proposition 3.47. [54, Proposition 4-5] Let Kn1,n2 be a complete bipartite graph with n1+n2 vertices.

For n1, n2 ≥ 1, we have

H(Kn1,n2 , x) = 2n1n2x
n1+n2−1.

In particular, if Sn = Kn−1,1 denotes the star graph with n ≥ 2 vertices, then

H(Sn, x) = 2(n− 1)xn−1.

In the following results, we compute the harmonic polynomial of other well-known families of
graphs.

Proposition 3.48. [54, Proposition 7] Let Pn be the path graph with n vertices. Then

H(Pn, x) = 4x2 + 2(n− 3)x3.
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Proposition 3.49. Let Wn be the wheel graph with n ≥ 4 vertices. Then

H(Wn, x) = 2(n− 1)(xn+1 + x5)

and

H(Wn) =
2(n− 1)

n+ 2
+

n− 1

3
.

Proposition 3.50. Let Sn1,n2 be a double star graph. For n1, n2 ≥ 1, we have

H(Sn1,n2 , x) = 2n1x
n1+1 + 2n2x

n2+1 + 2xn1+n2+1

and

H(Sn1,n2) =
2n1

n1 + 2
+

2n2

n2 + 2
+

2

n1 + n2 + 2
.

Moreover, in [54], the lower and upper bounds for harmonic index of caterpillars with diameter four
are computed.

At the light of the results on harmonic polynomials we asked the following question: How many
graphs can be characterized by their harmonic polynomial? Another fundamental problem is to obtain
properties of harmonic polynomials and their coefficients.

4. Generalization of the harmonic index

In this final section, we show some important inequalities on a generalization of the harmonic index
known as general sum connectivity index. In particular, we relate these indices to other well-known
topological indices.

With motivation from the first Zagreb, harmonic and sum-connectivity indices, the general sum-

connectivity index χα(G) is defined by Zhou and Trinajstić in [108], as

χα(G) =
∑

uv∈E(G)

(
d(u) + d(v)

)α
,

with α ∈ R.

Note that χ1(G) is the first Zagreb index M1(G), 2χ−1(G) is the harmonic index H(G), χ−1/2(G) is
the sum-connectivity index χ(G), etc.

4.1 Inequalities for the general sum–connectivity index

For molecular graphs, in [14] appear efficient formulas for calculating the general sum-connectivity
index of benzenoid systems and their phenylenes.

The following inequalities for the harmonic index are known: H(G) ≤ n/2 and for n ≥ 3, 2(n−1)
n

≤
H(G). The corollary of the next result generalizes these inequalities for χα(G).
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Theorem 4.1. [80, Theorem 2.3] Let G be a nontrivial connected graph with maximum degree ∆ and

minimum degree δ, and α ∈ R. Then

2α−1∆α−1M1(G) ≤ χα(G) ≤ 2α−1δα−1M1(G), if α < 1,

2α−1δα−1M1(G) ≤ χα(G) ≤ 2α−1∆α−1M1(G), if α ≥ 1,

and the equality holds in each inequality for some α 6= 1 if and only if G is regular.

Corollary 4.1. [80, Corollary 2.4] Let G be a nontrivial connected graph with n vertices, m edges,

maximum degree ∆ and minimum degree δ, and α ∈ R. Then

2α+1∆α−1m
2

n
≤ χα(G) ≤ 2αδα−1∆m, if α < 1,

2α+1δα−1m
2

n
≤ χα(G) ≤ 2α∆αm, if α ≥ 1,

and the equality holds in each inequality for some α 6= 1 if and only if G is regular.

Proof. Since 4m2/n ≤ M1(G) (see [34]) and M1(G) ≤ 2m∆, Theorem 4.1 gives the inequalities.
If the graph is regular, then the lower and upper bounds are the same, and they are equal to χα(G).

If some equality holds for some α 6= 1, then some equality holds in Theorem 4.1 and G is regular.

Recall that a biregular graph is a bipartite graph for which any vertex in one side of the given biparti-
tion has degree ∆ and any vertex in the other side of the bipartition has degree δ. If there are n1 vertices
with degree δ and n2 vertices with degree ∆, then m = δn1 = ∆n2 and we deduce ∆δn =

(
∆+ δ

)
m.

Note that a regular graph is biregular if and only if it is bipartite.

Next, we present several inequalities relating general sum connectivity indices with different param-
eters.

Theorem 4.2. [80, Theorem 2.7] Let G be a nontrivial connected graph with m edges, α ∈ R and

β > 0. Then

χα(G) ≥ m1+1/βχ−αβ(G)−1/β,

and the equality is attained for some values α 6= 0 and β if and only if G is regular or biregular.

Proof. Since f(x) = x−β is a convex function in R+ for each β > 0, Lemma 2.16 gives

(
m∑

uv∈E(G)(d(u) + d(v))α

)β

≤ 1

m

∑

uv∈E(G)

(d(u) + d(v))−αβ,

m

χα(G)
≤ 1

m1/β
χ−αβ(G)1/β.

Assume that α 6= 0. Since f(x) = x−β is a strictly convex function, the equality is attained if and
only if d(u) + d(v) is constant for every uv ∈ E(G), and this is equivalent to the following: for each
vertex u ∈ V (G), every neighbor of u has the same degree. Since G is connected, this holds if and only
if G is regular or biregular.
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Next, we prove nonlinear relations between χα(G), χα+β(G) and χα−β(G) which allow to obtain a
family of linear inequalities (see Corollary 4.3).

Theorem 4.3. [80, Theorem 2.8] Let G be a nontrivial connected graph with maximum degree ∆ and

minimum degree δ, and α, β ∈ R. Then

cα,β

√
χα+β(G)χα−β(G) ≤ χα(G) ≤

√
χα+β(G)χα−β(G) ,

with

cα,β := min
{ 2(∆δ)β/2

∆β + δβ
,
2(∆δ)α/2

∆α + δα

}
=

{
2(∆δ)β/2

∆β+δβ
, if |α| < |β|,

2(∆δ)α/2

∆α+δα
, if |α| ≥ |β|.

The lower bound is attained for every values of α, β if G is regular. The upper bound is attained for

some values of α, β with β 6= 0 if and only if G is regular or biregular.

Proof. Cauchy-Schwarz inequality gives

∑

uv∈E(G)

(
d(u) + d(v)

)α
=

∑

uv∈E(G)

(
d(u) + d(v)

)(α+β)/2+(α−β)/2

≤
( ∑

uv∈E(G)

(
d(u) + d(v)

)α+β
)1/2( ∑

uv∈E(G)

(
d(u) + d(v)

)α−β
)1/2

=
√
χα+β(G)χα−β(G) .

Since (
2δ
)(α+β)/2 ≤

(
d(u) + d(v)

)(α+β)/2 ≤
(
2∆
)(α+β)/2 if α + β ≥ 0,

(
2∆
)(α+β)/2 ≤

(
d(u) + d(v)

)(α+β)/2 ≤
(
2δ
)(α+β)/2 if α + β ≤ 0,

(
2δ
)(α−β)/2 ≤

(
d(u) + d(v)

)(α−β)/2 ≤
(
2∆
)(α−β)/2 if α− β ≥ 0,

(
2∆
)(α−β)/2 ≤

(
d(u) + d(v)

)(α−β)/2 ≤
(
2δ
)(α−β)/2 if α− β ≤ 0,

Lemma 2.5 gives, if (α + β)(α− β) ≥ 0 (i.e., |α| ≥ |β|),

χα(G) =
∑

uv∈E(G)

(
d(u) + d(v)

)α

≥

(∑
uv∈E(G)

(
d(u) + d(v)

)α+β
)1/2(∑

uv∈E(G)

(
d(u) + d(v)

)α−β
)1/2

1
2

((
∆
δ

)α/2
+
(

δ
∆

)α/2)

=
2(∆δ)α/2

∆α + δα

√
χα+β(G)χα−β(G)

= cα,β

√
χα+β(G)χα−β(G)

and, if (α + β)(α− β) < 0 (i.e., |α| < |β|), then

χα(G) =
∑

uv∈E(G)

(
d(u) + d(v)

)α
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≥

(∑
uv∈E(G)

(
d(u) + d(v)

)α+β
)1/2(∑

uv∈E(G)

(
d(u) + d(v)

)α−β
)1/2

1
2

((
∆
δ

)β/2
+
(

δ
∆

)β/2)

=
2(∆δ)β/2

∆β + δβ

√
χα+β(G)χα−β(G)

= cα,β

√
χα+β(G)χα−β(G).

If the graph is regular, then the lower and upper bounds are the same, and they are equal to χα(G). If
G is biregular, then χt(G) = (∆ + δ)tm and the upper bound is attained. If the upper bound is attained
for some values of α, β, then

(
d(u) + d(v)

)(α+β)/2
/
(
d(u) + d(v)

)(α−β)/2
=
(
d(u) + d(v)

)β is constant
for every uv ∈ E(G). If β 6= 0, then d(u) + d(v) is constant for every uv ∈ E(G); hence, for each
vertex u ∈ V (G), every neighbor of u has the same degree, and thus G is regular or biregular. (Note that
the upper bound is χα(G) ≤ χα(G) if β = 0.)

Theorem 4.3 with β = α has the following consequence.

Corollary 4.2. [80, Corollary 2.9] Let G be a nontrivial connected graph with m edges, maximum

degree ∆ and minimum degree δ, and α ∈ R. Then

2(∆δ)α/2

∆α + δα

√
mχ2α(G) ≤ χα(G) ≤

√
mχ2α(G) .

The lower bound is attained for every value of α if G is regular. The upper bound is attained for some

α 6= 0 if and only if G is regular or biregular.

Theorem 4.3 and the inequality
√
ab ≤ s

2
a + 1

2s
b (for a, b ≥ 0 and s > 0) give the following family

of linear inequalities.

Corollary 4.3. [80, Corollary 2.10] Let G be a nontrivial connected graph with maximum degree ∆

and minimum degree δ, s > 0 and α, β ∈ R. Then

χα(G) ≤ s

2
χα+β(G) +

1

2s
χα−β(G),

Theorem 4.4. [80, Theorem 2.12] Let G be a nontrivial connected graph with m edges, maximum

degree ∆ and 2∆ ≤ m− 1. We have for any integer α ≥ 1

χα(G) ≤ (m− 1)α−1χ 1
α
(G)α.

The following results relate χα(G) with M1(G) and M2(G).

Theorem 4.5. [80, Theorem 2.13] Let G be a nontrivial connected graph with m edges and minimum

degree δ, and 0 < α ≤ 1. Then

χα(G) ≤ δαm+ αδα−2M2(G).
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Proof. We have
(d(u)− δ)(d(v)− δ) ≥ 0,

d(u)d(v) + δ2 ≥ δ
(
d(u) + d(v)

)
,

(
δ−2d(u)d(v) + 1

)α ≥ δ−α
(
d(u) + d(v)

)α
.

Bernoulli inequality (1 + x)α ≤ 1 + αx for x ≥ −1 gives

δ−α
(
d(u) + d(v)

)α ≤
(
δ−2d(u)d(v) + 1

)α ≤ 1 + αδ−2d(u)d(v),

δ−αχα(G) ≤ m+ αδ−2M2(G).

Theorem 4.6. [108, Proposition 1] Let G be a graph with m ≥ 1 edges. If 0 < α < 1, then χα(G) ≤
Mα

1 (G)m1−α, and if α < 0 or α > 1, then χα(G) ≥ Mα
1 (G)m1−α, and either equality holds if and only

if d(u) + d(v) is a constant for any edge uv ∈ E(G).

Proof. If 0 < α < 1, then −xα for x > 0 is strictly convex, and thus:
(M1(G)

m

)α
=
( 1

m

∑

uv∈E(G)

(d(u) + d(v))
)α

≥ 1

m

∑

uv∈E(G)

(
d(u) + d(v)

)α
=

1

m
χα(G),

i.e., χα(G) ≤ Mα
1 (G)m1−α, with equality if and only if d(u) + d(v) is a constant for any uv ∈ E(G).

Similarly, if α < 0 or α > 1, then xα for x > 0 is strictly convex, and thus χα(G) ≥ Mα
1 (G)m1−α, with

equality if and only if d(u) + d(v) is a constant for any uv ∈ E(G).

Theorem 4.7. [80, Theorem 2.14] Let G be a nontrivial connected graph with m edges, and α ≥ 1.

Then

m+ αM1(G) ≤
(
χα(G)1/α +m1/α

)α
.

The forgotten topological index is defined as F (G) =
∑

u∈V (G) d(u)
3 (see [38]).

Theorem 4.8. [80, Theorem 2.15] Let G be a nontrivial connected graph with n vertices, m edges,

maximum degree ∆ and minimum degree δ. Then

χ2(G) = F (G) + 2M2(G),

χ2(G) ≥ max
{
4M2(G),

M1(G)2

2m
+ 2M2(G),

M1(G)2

m

}
≥ δM1(G) + 2M2(G),

χ2(G) ≤ min
{
4M2(G) +m(n− 2), ∆M1(G) + 2M2(G)

}
.

4.2 Trees, unicyclic and bicyclic graphs

Let Tn be the tree obtained by attaching n−1
2

paths on two vertices to a common vertex for odd n, and
obtained by attaching a path on three vertices and n−4

2
paths on two vertices to a common vertex for even

n, where n ≥ 4.
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Theorem 4.9. [33, Theorem 1] Let T be a tree with n ≥ 4 vertices and α < α0, where α0 = −4.3586 . . .

is the unique root of the equation 4α−5α

5α−6α
= 3. Then

χα(T ) ≤





n−1
2

(
3α + (n+3)α

2α

)
, if n is odd,

n−2
2

(
3α + (n+2)α

2α

)
+ 4α , if n is even,

with equality if and only if T ∼= Tn.

See [33] for more information on general sum-connectivity index of trees.

Lemma 4.10. [86, Lemma 2.3] For every −1 ≤ α < 0 and x > 1 we have

xα − (x− 1)α ≥ −xα

x− 1
,

and the equality holds if α = −1.

Proposition 4.11. [86, Lemma 3.1] Let uv be an edge of a graph G such that d(u) + d(v) is minimum.

If −1 ≤ α < 0, then

χα(G− uv) < χα(G).

Proof. Suppose that d(u) = p, d(v) = q, N(u) = v, x1, ..., xp−1 and N(v) = u, y1, ..., yq−1, p, q ≥ 1.
By the hypothesis we have p+d(xi) ≥ p+q for i = 1, ..., p−1 and q+d(yj) ≥ p+q for j = 1, ..., q−1.
By Lemma 4.10 we can write

χα(G)− χα(G− uv) = (d(u) + d(v))α +

p−1∑

i=1

[
(p+ d(xi))

α − (p+ d(xi)− 1))α
]

+

q−1∑

j=1

[
(q + d(yj))

α − (q + d(yj)− 1))α
]

≥ (d(u) + d(v))α −
p−1∑

i=1

(p+ d(xi))
α

p+ d(xi)− 1
−

q−1∑

j=1

(q + d(yj))
α

q + d(yj)− 1
.

We have
(p+ d(xi))

α ≤ (p+ q)α,

p+ d(xi)− 1 ≥ p+ q − 1,

(p+ d(xi))
α

p+ d(xi)− 1
≤ (p+ q)α

p+ q − 1
.

A similar argument gives
(q + d(yj))

α

q + d(yj)− 1
≤ (p+ q)α

p+ q − 1
.

Hence,
χα(G)− χα(G− uv)

≥ (p+ q)α − (p− 1)
(p+ q)α

p+ q − 1
− (q − 1)

(p+ q)α

p+ q − 1
=

(p+ q)α

p+ q − 1
> 0.
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Theorem 4.12. [86, Theorem 3.2] Let G be a graph with n ≥ 3 vertices and maximum degree δ ≥ 2. If

−1 ≤ α < α0, then

χα(G) ≥ 2(n− 2)(n+ 1)α + 2α(n− 1)α

with equality if and only if G ∼= K2 +Kn−2.

Proposition 4.13. [108, Proposition 4] Let G be a triangle-free graph with n vertices and m ≥ 1 edges.

If α > 0, then χα(G) ≤ mnα, with equality if and only if G is a complete bipartite graph. If α < 0, then

the above inequality on χα(G) is reversed.

Denote by Sn,p the tree with p pendant vertices formed by attaching p − 1 pendant vertices to an
endvertex of the path Pn−p+1. In particular Sn,2 = Pn and Sn,n−1 = K1,n−1. Minimum value of χα(T )

for trees of given diameter D(G) and −1 ≤ α < 0 has been deduced in [87] using graph transformations:

Theorem 4.14. [87, Theorem 3.1] For −1 ≤ α < 0, in the set of trees T with n ≥ 3 vertices and

diameter 2 ≤ D(G) ≤ n− 1, χα(T ) is minimum if and only if T ∼= Sn,n−D(G)+1.

Another important result is the following.

Theorem 4.15. [87, Theorem 3.4] Let T be a tree with n ≥ 5 vertices and p pendant vertices, where

3 ≤ p ≤ n− 2, and −1 ≤ α < 0. Then

χα(T ) ≥ (p− 1)(p+ 1)α + (p+ 2)α + 3α + (n− p− 2)4α

with equality if and only if T ∼= Sn.p.

For n ≥ 3 and 0 ≤ k ≤ n − 3, let Cn−k,k denote the unicyclic graph with n vertices consisting of a
cycle Cn−k and k pendant edges attached to a unique vertex of Cn−k.

Theorem 4.16. [88, Theorem 3.1] Let G be a connected unicyclic graph with n ≥ 3 vertices and k

pendant vertices (0 ≤ k ≤ n− 3). If −1 ≤ α < 0, then

χα(T ) ≥ k(k + 3)α + 2(k + 4)α + (n− k − 2)4α

with equality if and only if G ∼= Cn−k,k.

We have a similar result for bicyclic graphs.

Theorem 4.17. [1, Theorem 3.7] For −1 ≤ α < 0, in the set of connected bicyclic graphs with n ≥ 4

vertices, the minimum general sum-connectivity index is reached only by the graph consisting of two

triangles with a common edge and n − 4 pendant vertices adjacent to a vertex of degree three of this

graph.
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4.3 Further results on general sum–connectivity index

Recall that the variable Zagreb index (also called general Randić index) is defined in [69] as

Zα(G) =
∑

uv∈E(G)

(
d(u)d(v)

)α
,

with α ∈ R \ {0}. The variable Zagreb index was used in the structure-boiling point modeling of
benzenoid hydrocarbons. Note that Z−1/2(G) is the usual Randić index, Z1(G) is the second Zagreb
index M2(G), Z−1(G) is the modified Zagreb index [71], etc.

We have several inequalities relating χα(G) with the variable Zagreb index.

Theorem 4.18. [80, Theorem 2.16] Let G be a nontrivial connected graph with maximum degree ∆ and

minimum degree δ, and α, β ∈ R. Then

kα,β

(∆+ δ√
∆δ

)α√
Zβ(G)Zα−β(G) ≤ χα(G) ≤ 2α

√
Zβ(G)Zα−β(G) , if α < 0,

kα,β 2
α
√
Zβ(G)Zα−β(G) ≤ χα(G) ≤

(∆+ δ√
∆δ

)α√
Zβ(G)Zα−β(G) , if α ≥ 0,

with

kα,β :=

{
2(∆δ)(2β−α)/2

∆2β−α+δ2β−α , if β(α− β) < 0,
2(∆δ)α/2

∆α+δα
, if β(α− β) ≥ 0.

Each one of the three first inequalities is attained for some values of α, β with α 6= 0 if and only if G is

regular. The last inequality is attained for some values of α, β with α 6= 0 if and only if G is regular or

biregular.

Proof. By Lemma 2.15, we have

2
√
d(u)d(v) ≤ d(u)d(v) ≤ ∆+ δ√

∆δ

√
d(u)d(v) .

If α ≥ 0, then

2α
(
d(u)d(v)

)α/2 ≤
(
d(u) + d(v)

)α ≤
(∆+ δ√

∆δ

)α(
d(u)d(v)

)α/2
.

If α < 0, then
(∆+ δ√

∆δ

)α(
d(u)d(v)

)α/2 ≤
(
d(u) + d(v)

)α ≤ 2α
(
d(u)d(v)

)α/2
.

Cauchy-Schwarz inequality gives

∑

uv∈E(G)

(
d(u)d(v)

)α/2
=

∑

uv∈E(G)

(
d(u)d(v)

)β/2+(α−β)/2

≤
( ∑

uv∈E(G)

(
d(u)d(v)

)β)1/2( ∑

uv∈E(G)

(
d(u)d(v)

)α−β
)1/2

=
√
Zβ(G)Zα−β(G) .



271

Since
δβ ≤

(
d(u)d(v)

)β/2 ≤ ∆β if β > 0,

∆β ≤
(
d(u)d(v)

)β/2 ≤ δβ if β < 0,

δα−β ≤
(
d(u)d(v)

)(α−β)/2 ≤ ∆α−β if α− β ≥ 0,

∆α−β ≤
(
d(u)d(v)

)(α−β)/2 ≤ δα−β if α− β < 0,

Lemma 2.5 gives, if β(α− β) ≥ 0,

∑

uv∈E(G)

(
d(u)d(v)

)α/2

≥

(∑
uv∈E(G)

(
d(u)d(v)

)β)1/2(∑
uv∈E(G)

(
d(u)d(v)

)α−β
)1/2

1
2

((
∆
δ

)α/2
+
(

δ
∆

)α/2)

=
2(∆δ)α/2

∆α + δα

√
Zβ(G)Zα−β(G)

= kα,β

√
Zβ(G)Zα−β(G),

and, if β(α− β) < 0, then

∑

uv∈E(G)

(
d(u)d(v)

)α/2

≥

(∑
uv∈E(G)

(
d(u)d(v)

)β)1/2(∑
uv∈E(G)

(
d(u)d(v)

)α−β
)1/2

1
2

((
∆
δ

)(2β−α)/2
+
(

δ
∆

)(2β−α)/2
)

=
2(∆δ)(2β−α)/2

∆2β−α + δ2β−α

√
Zβ(G)Zα−β(G)

= kα,β

√
Zβ(G)Zα−β(G).

If the graph is regular, then the lower and upper bounds are the same, and they are equal to χα(G).

If the second or the third inequality is attained for some values of α, β with α 6= 0, then 2
√

d(u)d(v)

= d(u) + d(v) for every uv ∈ E(G), and Lemma 2.15 gives d(u) = d(v) for every uv ∈ E(G); since G

is connected, G is regular.

Assume now that the first or the last inequality is attained for some values of α, β with α 6= 0. Thus,
d(u) + d(v) = ∆+δ√

∆δ

√
d(u)d(v) for every uv ∈ E(G). By Lemma 2.15, this holds if and only if every

edge joins a vertex of degree δ with a vertex of degree ∆, and this is equivalent to the following: for
each vertex u ∈ V (G), we have d(u) ∈ {δ,∆}, if d(u) = δ then every neighbor of u has degree ∆, and
if d(u) = ∆ then every neighbor of u has degree δ. Since G is connected, this holds if and only if G is
regular or biregular.

If G is regular or biregular, then
√
Zβ(G)Zα−β(G) =

√
(∆δ)βm(∆δ)α−βm = (∆δ)α/2m and

χα(G) = (∆ + δ)αm. Hence, the last inequality is attained. If α 6= 0, then the first inequality is
attained if and only if kα,β = 1, and this holds if and only ∆ = δ by Lemma 2.15, i.e., G is regular.
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We have the following consequence.

Corollary 4.4. [80, Corollary 2.17] Let G be a nontrivial connected graph with maximum degree ∆

and minimum degree δ, and α ∈ R. Then

2(∆ + δ)α

∆α + δα
Zα/2(G) ≤ χα(G) ≤ 2αZα/2(G), if α < 0,

2α+1(∆δ)α/2

∆α + δα
Zα/2(G) ≤ χα(G) ≤

(∆+ δ√
∆δ

)α
Zα/2(G), if α ≥ 0.

Each one of the three first inequalities is attained for some value of α 6= 0 if and only if G is regular. The

last inequality is attained for some value of α 6= 0 if and only if G is regular or biregular.

In [85] appears the following result.

Lemma 4.19. [85, Lemma 3] Let h be the function h(x, y) = 2xy
x+y

with δ ≤ x, y ≤ ∆. Then δ ≤
h(x, y) ≤ ∆. Furthermore, the lower (respectively, upper) bound is attained if and only if x = y = δ

(respectively, x = y = ∆).

Theorem 4.20. [80, Theorem 2.19] Let G be a nontrivial connected graph with m edges, maximum

degree ∆ and minimum degree δ, and α ∈ R. Then

2αm2

δαZ−α(G)
≤ χα(G) ≤ ∆3α/2 + δ3α/2

∆7α/4δ3α/4
2α−1m2

Z−α(G)
, if α < 0,

2αm2

∆αZ−α(G)
≤ χα(G) ≤ ∆3α/2 + δ3α/2

∆3α/4δ7α/4
2α−1m2

Z−α(G)
, if α ≥ 0,

and each inequality is attained for some value of α 6= 0 if and only if G is regular.

Proof. By Lemma 4.19, we have

( 2

∆

)α/2
≤
(
d(u) + d(v)

)α/2
(
d(u)d(v)

)α/2 ≤
(2
δ

)α/2
, if α ≥ 0,

(2
δ

)α/2
≤
(
d(u) + d(v)

)α/2
(
d(u)d(v)

)α/2 ≤
( 2

∆

)α/2
, if α < 0.

Cauchy-Schwarz inequality gives

 ∑

uv∈E(G)

(
d(u) + d(v)

)α/2
(
d(u)d(v)

)α/2



2

≤
( ∑

uv∈E(G)

(
d(u) + d(v)

)α)( ∑

uv∈E(G)

(
d(u)d(v)

)−α
)

= χα(G)Z−α(G).

These inequalities provide the lower bounds.
Since

(2δ)α/2 ≤
(
d(u) + d(v)

)α/2 ≤ (2∆)α/2,∆−α ≤
(
d(u)d(v)

)−α/2 ≤ δ−α, if α ≥ 0,

(2∆)α/2 ≤
(
d(u) + d(v)

)α/2 ≤ (2δ)α/2,δ−α ≤
(
d(u)d(v)

)−α/2 ≤ ∆−α, if α < 0,
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Lemma 2.5 gives in both cases


 ∑

uv∈E(G)

(
d(u) + d(v)

)α/2
(
d(u)d(v)

)α/2



2

≥

(∑
uv∈E(G)

(
d(u) + d(v)

)α)(∑
uv∈E(G)

(
d(u)d(v)

)−α
)

1
2

((
∆
δ

)3α/4
+
(

δ
∆

)3α/4)

=
2(∆δ)3α/4

∆3α/2 + δ3α/2
χα(G)Z−α(G),

and this gives the upper bounds.

If the graph is regular, then the lower and upper bounds are the same, and they are equal to χα(G).
If some bound is attained for some value of α 6= 0, then Lemma 4.19 gives d(u) = d(v) = δ for every
uv ∈ E(G) or d(u) = d(v) = ∆ for every uv ∈ E(G); hence, G is regular.

Theorem 4.21. [80, Theorem 2.20] Let G be a nontrivial connected graph with n vertices, and α > 1.

Then

nα ≤ χα(G)Z −α
α−1

(G)α−1 ,

and the equality is attained for some value of α > 1 if and only if G is regular or biregular.

Proof. Recall that
∑

uv∈E(G)

(
f(d(u)) + f(d(v))

)
=
∑

u∈V (G) d(u)d(v). Hence,

n =
∑

u∈V (G)

d(u)

d(u)
=

∑

uv∈E(G)

( 1

d(u)
+

1

d(v)

)
=

∑

uv∈E(G)

d(u) + d(v)

d(u)d(v)
.

Since α > 1, Hölder inequality gives

n ≤
( ∑

uv∈E(G)

(
d(u) + d(v)

)α) 1
α
( ∑

uv∈E(G)

(
d(u)d(v)

) −α
α−1
)α−1

α

= χα(G)
1
αZ −α

α−1
(G)

α−1
α .

If G is regular or biregular, then ∆δn =
(
∆+ δ

)
m, χα(G) = (∆ + δ)αm, Z −α

α−1
(G) = (∆δ)

−α
α−1m,

and the equality is attained.

If the equality is attained for some value of α > 1, then
(
d(u)d(v)

) −α
α−1

/
(
d(u) + d(v)

)α is constant
for every uv ∈ E(G), i.e., d(u)d(v)

(
d(u) + d(v)

)α−1 is constant for every uv ∈ E(G). Since the
function F (t) = d(u)t

(
d(u) + t

)α−1 is increasing when t ∈ [1,∞), we have the following: for each
vertex u ∈ V (G), every neighbor v of u has the same degree, and the degree of every neighbor of v is
d(u). Since G is connected, G is regular or biregular.

We have the following consequence, that improves the lower bound in Theorem 4.20 when α = 2,
since 2m ≤ ∆n.
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Corollary 4.5. [80, Corollary 2.21] Let G be a nontrivial connected graph with n vertices. Then

n2 ≤ χ2(G)Z−2(G),

and the equality is attained if and only if G is regular or biregular.

We need the following result.

Lemma 4.22. [108, Proposition 2] Let G be a graph with n ≥ 2 vertices. If 0 < α < 1, then

χα(G) ≥ M1(G)α with equality if and only if G ∼= K2 ∪ Kn−2 or G ∼= Kn, and if α < 0, then

χα(G) ≤ 2α−1n(n− 1) with equality if and only if G ∼= K2.

Zhou and Trinajstić [108] showed a result for the general sum-connectivity index of Nordhaus-
Gaddum type.

Theorem 4.23. [108, Proposition 5] Let G be a graph with n ≥ 2 vertices.

If α > 0, then

χα(G) + χα(G) ≤ 2α−1n(n− 1)α+1

with equality if and only if G ∼= Kn or G ∼= Kn,

χα(G) + χα(G) ≥ 2−1n(n− 1)α+1 for α ≥ 1,

with equality if and only if G is a regular graph of degree n−1
2

, and

χα(G) + χα(G) > 2−αnα(n− 1)2α for 0 < α < 1.

If α < 0, then

2α−1n(n− 1)α+1 ≤ χα(G) + χα(G) < 2αn(n− 1)

with left equality if and only if G ∼= Kn or G ∼= Kn,

Proof. Let m and m be respectively the numbers of edges of G and G. Thus, m+m = n(n−1)
2

. If α > 0,
then

χα(G) + χα(G) =
∑

uv∈E(G)

(
dG(u) + dG(v)

)α
+

∑

uv∈E(G)

(
dG(u) + dG(v)

)α

≤ m(2n− 2)α +m(2n− 2)α = (m+m)(2n− 2)α = 2α−1n(n− 1)α+1

with equality if and only if either d(u) = d(v) = n − 1 for every edge uv ∈ E(G) or E(G) = ∅, i.e.,
G ∼= Kn or G ∼= Kn.

Similarly, if α < 0, then
χα(G) + χα(G) ≥ 2α−1n(n− 1)α+1

with equality if and only if G ∼= Kn or G ∼= Kn.

It is easily seen that

χ1(G) + χ1(G) =
∑

u∈V (G)

(
dG(u)

2 + dG(u)
2
)

≥
∑

u∈V (G)

(
dG(u) + dG(u)

)2

2
=

n(n− 1)2

2
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with equality if and only if dG(u) = dG(u) for all u ∈ V (G), i.e., G is a regular graph of degree n−1
2

. If
α > 1, then xα is strictly convex and thus

χα(G) + χα(G)

≥ (m+m)

(∑
uv∈E(G)(dG(u) + dG(v)) +

∑
uv∈E(G)(dG(u) + dG(v))

m+m

)α

= (m+m)1−α
(
χ1(G) + χ1(G)

)α

≥
(
n(n− 1)

2

)1−α(
n(n− 1)2

2

)α

= 2−1n(n− 1)α+1

with equality if and only if G is a regular graph of degree n−1
2

. If 0 < α < 1, then

χα(G) + χα(G) ≥


 ∑

uv∈E(G)

(dG(u) + dG(v)) +
∑

uv∈E(G)

(dG(u) + dG(v))




α

=
(
χ1(G) + χ1(G)

)α ≥
(
n(n− 1)2

2

)α

= 2−αnα(n− 1)2α.

Since a graph G with |E(G) ∪ E(G)| ≤ 1 is not possible to be a regular graph of degree n−1
2

for
n ≥ 2, we have

χα(G) + χα(G) > 2−αnα(n− 1)2α.

If α < 0, then by Lemma 4.22,

χα(G) + χα(G) < 2α−1n(n− 1) + 2α−1n(n− 1) = 2αn(n− 1).

The proof is now completed.
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62 (2009) 143–154.

[62] S. Liu, J. Li, Some properties on the harmonic index of molecular trees, ISRN Appl. Math. (2015)
#781648.

[63] J. Liu, Q. Zhang, Remarks on harmonic index of graphs, Util. Math. 88 (2012) 281–285.
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[90] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.

[91] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 3–4.
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[108] B. Zhou, N. Trinajstić, On general sum–connectivity index, J. Math. Chem. 47 (2010) 210–218.

[109] Y. Zhu, R.Chang, X. Wei, The harmonic index on bicyclic graphs, Ars Comb. 110 (2013) 97–104.





MCM 19
I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.),
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Abstract

The Wiener polarity index Wp(G) of a graph G, proposed by Wiener in 1947, is the number of
unordered pairs of vertices {u, v} of G such that the distance between u and v is 3. We survey some
recent development on bounding the Wiener polarity index and related results.
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1. Introduction

In theoretical chemistry molecular structure descriptors are used for modeling physico-chemical, phar-
macologic, toxicologic, biological and other properties of chemical compounds [24]. There exist several
types of such indices, especially those based on vertex and edge distances. One of the best known such
indices is the Wiener index, defined as the sum of distances between all pairs of vertices of the molecular
graph [15]:

W (G) =
∑

u,v∈V (G)

d(u, v).
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The Wiener index was introduced by Wiener [49] in 1947. It has since become one of the best known
chemical indices. For more results on the Wiener index, we refer the readers to the survey paper [15]
written by Dobrynin, Entringer and Gutman.

Wiener also introduced another index for acyclic molecules, called the Wiener polarity index and
defined as

Wp(G) := |{{u, v}|d(u, v) = 3, u, v ∈ V (G)}|.

Wiener [49] used a linear formula of W and WP to calculate the boiling points tB of the paraffins, i.e.,

tB = aW + bWp + c, where a, b and c are constants for a given isomeric group. Like W (G), the
Wiener polarity index received much attention from biochemical point of view. Through the Wiener
polarity index, the authors of [37] demonstrated quantitative structure-property relationships in a series
of acyclic and cycle-containing hydrocarbons. Hosoya presented a physical-chemical interpretation of
WP (G) in [26]. In recent years there has been more studies on the mathematical properties of this index.
In 2009, Du, Li and Shi [17] described a linear time algorithm APT for computing the Wiener polarity
index of trees, and characterized the trees maximizing the Wiener polarity index among all trees of
given order. The extremal Wiener polarity index of (chemical) trees with given different parameters (e.g.
order, diameter, maximum degree, the number of pendants, etc.) were studied in [17,18,20,36,38]. The
unicyclic graphs minimizing (resp. maximizing) the Wiener polarity index among all unicyclic graphs
of order n were given in [29]. There are also extremal results on some other graphs, such as fullerenes,
hexagonal systems, lattices and cactus graphs [10, 11, 13, 19].

We aim to report some of the most recent results on bounding the Wiener polarity index. In the next
section we present the necessary background information. Section 3 discusses bounds of the Wiener
polarity index for trees and trees with certain restrictions. In Section 4 we consider the unicyclic graphs
and the extremal problem with respect to the Wiener polarity index. Section 5 presents some results on
the Wiener polarity index of graph products and the Nordhaus-Gaddum-type inequality. In Section 6,
we discuss representing and bounding the Wiener polarity index in terms of other graph invariants such
as the Wiener index, hyper-Wiener index, first Zagreb index, second Zagreb index, etc.. Last but not
least, we briefly discuss the generalization of the Wiener polarity index and related extremal problems
in Section 7.

2. Preliminaries

We follow [4] for general graph theoretical notations and terminologies. For a graph G, let V (G), E(G),
|G|, e(G), and G denote the set of vertices, the set of edges, the order, the size and the complement of G,
respectively. The set of neighbors of a vertex v in G is denoted by NG(v) or simply N(v). The degree

dG(v) = d(v) of a vertex v is the number of edges adjacent to v. A vertex of degree 1 is a pendent vertex.
We let δ(G) := min{d(v)|v ∈ V } denote the minimum degree of G, and let ∆(G) := max{d(v)|v ∈ V }
denote its maximum degree. The minimum length of a cycle in a graph G is the girth g(G) of G. The
distance dG(u, v) in G of two vertices u, v is the length of a shortest u − v path in G; if no such path
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exists, we set d(u, v) := ∞. The greatest distance between any two vertices in G is the diameter of G,
denoted by diam(G).

An acyclic graph is called a forest. A connected forest is called a tree. The pendant vertices in a tree
are its leaves. A unicyclic graph is a connected graph containing exactly one cycle. It is easily to see
that |V (G)| = |E(G)| for any unicyclic graph G. A graph is called k-cyclic if |E(G)| = |V (G)|−1+k,
where k ≥ 2. Let K1,n−1, Cn and Pn be the star, cycle and path of order n, respectively. A “hanging
tree” on vertex v in G, denoted by T [v], is a pendant subtree rooted at v.

It is easy to see that WP (G) =
∑t

i=1Wp(Gi) if G1, G2, · · · , Gt (where t ≥ 2) are the connected
components of a graph G. So it suffices to consider the Wiener polarity index of connected graphs. We
first present some operations that decrease or increase the Wiener polarity index of connected graphs. Al-
though we are not going to present any proofs in this survey, it is worth pointing out that these operations
pay crucial roles in the proofs of most of the extremal results.

Let T(n) denote the set of trees on n vertices. Let T ∈ T(n) be a tree with diam(T ) = k ≥ 4.
Suppose that P (T ) = v0v1v2 · · · vk is a longest path of T . Let T ~ v0 denote the tree obtained from T

by removing the edge v0v1 and adding a new edge v0v3. This operation, shown in Figure 1, is called a
maximization operation as it only increases the Wiener polarity index.

v0 v2v1 v3 v4 vn

v2v1 v3 v4 vn

v0

A Long Path P (T ) of T

The subgraph corresponding to P (T )

Figure 1. Maximization operation of a tree T .

Theorem 2.1. [17] Let T = (V,E) be a tree and P (T ) = v0v1v2 · · · vk be a longest path of T with

k ≥ 4. Then

i) Wp(T ) < Wp(T ~ v0) if diam(T ) ≥ 5;

ii) Wp(T ) ≤ Wp(T ~ v0) if diam(T ) = 4.

Next we introduce the transformation “Sigma” on unicyclic graphs that only increases the Wiener
polarity index:
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Let T [vi] denote a hanging tree on vertex vi of a unicyclic graph U with g(U) ≥ 4, where vi ∈ V (C)

and C = v1v2 · · · vgv1 is the cycle of U . Among all hanging trees, suppose Pl = viu1 · · ·ul is one of the
longest path from the root vi to a leaf ul of the hang tree T [vi]. If l ≥ 2, then after removing the edge
viu1 from U , we obtain a unicyclic graph A and a tree B such that vi ∈ A and u1 ∈ B. Let U∗ denote
the unicyclic graph obtained from A and B by identifying u1 and vi+1(mod g) and adding a new leaf w1

adjacent to vi (see Figure 2).

vi

vi

u1

T [vi]

w1

vi+1 = u1vi+1

Figure 2. The transformation “Sigma”.

Theorem 2.2. [30] Let U be a unicyclic graph with g(U) ≥ 4 and U∗ be the unicyclic graph obtained

from U by applying transformation Sigma. If g(U) ≥ 5, then

Wp(U) < Wp(U
∗),

If g(U) = 4, then

Wp(U) ≤ (Wp(U
∗).

The “Edge rotation”, as described below, also only incrases the Wiener polarity index. Let Cg =

v1v2 · · · vg be the cycle of a unicyclic graph Cg(k1, · · · , kg) with g(U) ≥ 4. Here ki is the number
of pendant edges at vertex vi, and every edge not on the cycle is a pendant edge. Without loss of
generality, let v1 and v3 be the two vertices such that d(v1) + d(v3) = max{d(vi) + d(vi+2)}, where
i = 1, 2, · · · , g (mod g). We can construct a new graph Cg(k1, k2 + ki, k3, · · · , ki−1, 0, ki+1, · · · , kg) by
removing ki pendant vertices from vi and reattaching them to v2 as shown in Figure 3 (4 ≤ i ≤ g).
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︷
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︷
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︷ ︸︸ ︷

k2

︷

︸
︸

︷

k
3

v1

v2

v3

vi

︸ ︷︷ ︸

ki

︷

︸︸

︷
k 1

︷ ︸︸ ︷

k2 + ki

︷

︸
︸

︷

k
3

v1

v2

v3

vi

Figure 3. Edge rotation.

Theorem 2.3. [30] Let g ≥ 4, then

Wp(Cg(k1, k2, · · · , kg) ≤ Wp(Cg(k1, k2 + ki, · · · , kg).

3. Bounds for the Wiener polarity index of trees

We start with the following formula of the Wiener polarity index of a tree.

Lemma 3.1. [17] Let T = (V,E) be a tree, then Wp(T ) =
∑

uv∈E
(dT (u)− 1)(dT (v)− 1).

We now define some specific trees. Let T(n) denote the set of the trees on n vertices. Let T3(n) :=

{T ∈ T(n)|diam(T ) = 3,Wp(T ) = bn−2
2
cdn−2

2
e}, and T4(n) := {T (k1, k2, k3, l1, · · · , lm) ∈ T(n)|m+

k2 + 1 = bn−2
2
c or dn−2

2
e}. Here T (k1, k2, k3, l1, · · · , lm) is a tree with diameter 4 as in Figure 4, with

ki ≥ 0 (i = 1, 2, 3), m ≥ 1, 1 ≤ j ≤ m, and k1 + k2 + k3 + l1 + · · ·+ lm = n− 5−m.

l
m

︷ ︸︸ ︷

l1
︷ ︸︸ ︷

k1
︷ ︸︸ ︷

k3
︷ ︸︸ ︷

︷︸︸︷

k2

v0 v1

v2

v3 v4

u1 u
m

Figure 4. The tree T (k1, k2, k3, l1, · · · , lm).
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Theorem 3.1. [17] A tree T of order n has Wiener polarity index

Wp ≤ bn− 2

2
cdn− 2

2
e

with equality if and only if T ∈ T3(n) ∪ T4(n).

It is obvious that the Wiener polarity index of a star is zero. So it is natural to leave the star out when
we consider the minimum Wiener polarity index. A general double star P (k; a, b) is a tree obtained from
a path Pk = v0v1 · · · vk (k ≥ 3) by attaching a pendent vertices and b pendent vertices to the vertices v1
and vk, respectively. Such structures have been shown to minimize the Wiener polarity index.

Theorem 3.2. [38] Suppose that T ∈ T(n)\{K1,n−1}, then

Wp(T ) ≥ n− 3

with equality if and only if T ∼= P (k;n− k − b, b), where k ≥ 3, n− k ≥ b ≥ 0.

Besides bounding the Wiener polarity index among general trees, it is of interest to consider more
specific classes of trees under various constraints. To introduce such work we present some more defi-
nitions. A chemical graph is a graph with maximum degree no more than 4. In general, let T∆

n be the
set of all trees with n vertices and maximum degree ∆. For a positive integer p and nonnegative integers
n1, n2, let Sp

n1,n2
be a tree obtained from a path v1v2 · · · vp by attaching n1 and n2 pendant edges to the

vertices v1 and vp, respectively. Let V (∆)(T ) = {v ∈ V (T )|dT (v) = ∆}, N (∆)(T ) = ∪u∈V (∆)(T )NT (u),
h = n − (∆ + 1) and T0 = S∆+1, construct Ti from Ti−1 by attaching a vertex to one vertex of
N (∆)(Ti−1)\V (∆)(Ti−1) for i = 1, 2, · · · , h. The set of all possible Th after h steps is denoted by T n,∆

max.
Deng et al. obtained the maximum Wiener polarity index among chemical trees on n vertices.

Theorem 3.3. [14] Let T be a chemical tree of order n (≥ 7), then

Wp(T ) ≤ 3(n− 5)

with equality if and only if T ∈ T n,4
max.

This result was generalized to the following theorem, which determines the maximum and minimum
Wiener polarity indices in T∆

n . Here S(n−∆+1− l; ∆−1, l) is a tree obtained from a path Pn−∆+1−l =

v1v2 · · · vn−∆+1−l by attaching ∆− 1 pendant vertices to v1 and a pendant vertex to vk.

Theorem 3.4. [36] Let T ∈ T∆
n , where 3 ≤ ∆ ≤ n− 3. Then

n− 3 ≤ WP (T ) ≤ (n−∆− 1)(∆− 1).

The left equality holds if and only if T ∼= S(n−∆+1−l; ∆−1, l) where 0 ≤ l ≤ min{∆−1, n−∆−2},

while the right equality holds if and only if T ∈ T n,∆
max.

Let T(n, d) be the set of trees of order n with diameter d. It is easy to see that Wp(G) = 0 if
diam(G) ≤ 2. For 3 ≤ diam(G) ≤ n− 1, we have the following theorems.
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Theorem 3.5. [20] Let T ∈ T(n, d), where 3 ≤ d ≤ n− 1. Then

Wp(T ) ≥ n− 3

with equality if and only if: T ∼= S(d− 2;n+ 2− d− t, t), where n+ 2− d− t ≥ t ≥ 1, if d > 3; and

T ∼= P (3;n− 4, 0), if d = 3.

Theorem 3.6. [20] Let T ∈ T(n, d), where 5 ≤ d ≤ n− 1. Then

Wp(T ) ≤ bn− d− 1

2
cdn− d− 1

2
e+ 2n− d− 4.

Moreover, the equality holds if and only if T ∼= T (n, d; 0, · · · , 0, xi, xi+1, xi+2, 0, · · · , 0), where 2 ≤ i ≤
d− 4, xi ≥ 0, xi+2 ≥ 0 and xi+1 = bn−d−1

2
cordn−d−1

2
e. Here T (n, d; 0, · · · , 0, xi, xi+1, xi+2, 0, · · · , 0)

is obtained from a path Pd = v0v1 · · · vd by attaching xi ,xi+1 and xi+2 pendent vertices to the vertices

vi, vi+1 and vi+2, respectively.

Note that when d = 3 or 4, Theorem 3.1 implies that Wp(T ) = bn−2
2
cdn−2

2
e if and only if T ∈

T3(n) ∪ T4(n). Tang and Deng [47] characterized the trees with the first three smallest Wiener polarity
indices in T (n, d).

Let T (n, k) be the set of trees of order n with k pendant vertices. It is easy to see that T (n, 2) = {Pn}
with Wp(Pn) = n − 3, and T (n, n − 1) = {Sn} with Wp(Sn) = 0. For 3 ≤ k ≤ n − 2, we have the
following theorems with Tn,n−2 = {S(n1, n2)|n1 + n2 = n, n1 ≥ n2 ≥ 2}. Here S(n1, n2) is the graph
obtained from joining the centers of Sn1 and Sn2 by an edge, also called a double-star.

Theorem 3.7. [18, 36] If T ∈ Tn,n−2, then

n− 3 ≤ Wp(T ) ≤ bn− 2

2
cdn− 2

2
e

where the left equality holds if and only if T ∼= S(n − 2, 2), and the right equality holds if and only if

T ∼= S(dn−2
2
e+ 1, bn−2

2
c+ 1).

Theorem 3.8. [36] Let T ∈ T (n, k), where 3 ≤ k ≤ n− 3. Then

Wp(T ) ≥ n− 3

with equality if and only if T ∼= S(n− k;n1, k − n1), where 0 ≤ n1 ≤ k − n1.

Theorem 3.9. [18] Let T ∈ T (n, k), where k + 2 ≤ n ≤ 2k and n ≥ 4. Then

Wp ≤ bn− 2

2
cdn− 2

2
e

with equality if and only if T ∼= T (k1, k2, k3, l1, · · · , ls) where k2 = k + 1 − bn−2
2
c(or dn−2

2
e), or

T ∼= S(bn−2
2
c, dn−2

2
e).
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Theorem 3.10. [18] Let T ∈ T (n, k). If n ≥ 2k + 1, then

Wp(T ) ≤ k2 − 3k + n− 1

with equality if and only if T is a starlike tree of order n in which the lengths of all pendant chains are

at least 2.

Deng et al. also identified the maximum Wiener polarity index of chemical trees with n vertices and
k pendent vertices [19].

Furthermore, in [50], Wang et al. consider the smallest and the largest Wiener polarity index among
all Hückel trees on 2n vertices and characterize the corresponding extremal graphs. Recently, in [35],
Lei et al. studied trees with a given degree sequence, and characterized the extremal graphs attaining the
maximum and minimum values of the Wiener polarity index, respectively. In [3], Ashrafi et al. presented
an ordering of chemical trees of order n with respect to the Wiener polarity index.

4. Bounds for the Wiener polarity index of unicyclic graphs

Moving our attention to the unicyclic graphs, we first present a formula of the Wiener polarity index.

Lemma 4.1. [38] Let U = (V,E) be a unicyclic graph and let C denote the unique cycle of U . If

g(U) = 3 with V (C) = {v1, v2, v3}, then

Wp(U) =
∑

uv∈E
(dU(u)− 1)(dU(v)− 1) + 9− 2dU(v1)− 2dU(v2)− 2dU(v3).

If g(U) = 4 and V (C) = {v1, v2, v3, v4}, then

Wp(U) =
∑

uv∈E
(dU(u)− 1)(dU(v)− 1) + 4− dU(v1)− dU(v2)− dU(v3)− dU(v4).

If g(U) ≥ 5, then

Wp(U) =





∑
uv∈E

(dU(u)− 1)(dU(v)− 1)− 5, if g(U) = 5;
∑

uv∈E
(dU(u)− 1)(dU(v)− 1)− 3, if g(U) = 6;

∑
uv∈E

(dU(u)− 1)(dU(v)− 1), if g(U) ≥ 7.

First we have the following bounds.

Theorem 4.1. [30] Let U be a unicyclic chemical graph with n(≥ 5) vertices. Then

n− 3 ≤ Wp(U) ≤ 3(n+ 4).

Theorem 4.2. [30] Let U be a unicyclic graph of order n ≥ 11. Then

Wp(U) ≤ Wp(U3)

with equality if and only if U ∼= U3. Here U3 denotes the “caterpillar cycle” C3(k1, k2, k3) with |ki −
kj| ≤ 1 (i, j = 1, 2, 3) of order n.
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Now for unicyclic graphs with a given girth:

• Let U1 be the unicyclic graph obtained from K1,n−1 by adding one edge between two pendant
vertices of K1,n−1.

• Let U2 be the unicyclic graph obtained form a C3 = v0v1v2 by attaching n − 4 pendent vertices
and one pendent vertex to the vertices v0 and v2, respectively.

• Let Cj
g,l1,l2

be a unicyclic graph obtained from Cg by attaching l1 and l2 pendant vertices to ui and
ui+j respectively, where i, j ∈ {1, · · · , g (mod g)}.

• Let U(n, g) be the set of unicyclic graphs of order n with girth g.

• Let Cg(Pn−g) be the unicyclic graph on n vertices formed by attaching a path Pn−g to one vertex
of Cg.

• Let C1
n,g be the unicyclic graph obtained from a cycle Cg by attaching a path Pn−g−1 to a vertex u0

of Cg, and one pendent vertex to another vertex v0 of Cg.

Theorem 4.3. [29] For n ≥ 9 we have

(1) U(n, n) = {Cn}, and Wp(Cn) = n;

(2) U(n, n− 1) = {Cn,n−1}, and Wp(Cn,n−1) = n+ 1;

(3) U(n, n− 2) = {Cn−2(P2), Cn,n−2, C
j
n−2,1,1, and Wp(C

1
n−2,1,1) = n+ 3 > n+ 2 =

Wp(Cn−2(P2)) = WP (Cn,n−2) = Wp(C
j
n−2,1,1), where 1 ≤ j ≤ bn−2

2
c.

For smaller values of g we define the following special graph in U(n, g).

• Let C(v0, · · · , vt; p) denote a comet, which is a tree obtained from a path v0v1 · · · vt by attaching
p vertices to the vertex vt, where t, p ≥ 1.

• Let Cg

⊙
C(v0, · · · , vt;n−t−g) be a unicyclic graph obtained from a cycle Cg and C(v0, · · · , vt;

n− t− g) by identifying a vertex of Cg and v0.

Theorem 4.4. [29] Let U ∈ U(n, g), where 5 ≤ g ≤ n− 3. Then

Wp(U) ≥ n+ 2 (resp. n− 1, n− 3)

if g ≥ 7 (resp. g= 6,5), with equalities if and only if U ∼= Cg

⊙
C(v0, · · · , vt;n − t − g) with t ≥

2, n− t− g ≥ 1.

Theorem 4.5. [38] Suppose n ≥ 7. If U ∈ U(n, 3)\{U1}, then

Wp(U) ≥ n− 4

with equality if and only if U ∼= U2. If U ∈ U(n, 4), then

Wp(U) ≥ n− 4

with equality if and only if U ∼= Cn,4 or C2
4,l,n−4−l, where 1 ≤ l ≤ n− 5.
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As for maximizing the Wiener polarity index, we have the following.

Theorem 4.6. [29] Let U ∈ U(n, g), where 5 ≤ g ≤ n− 3. Then

Wp(U) ≤ bn− g

2
cdn− g

2
e+





2n− 10, if g(U) = 5;
2n− 9, if g(U) = 6;
2n− g, if g(U) ≥ 7.

with equality if and only if U ∼= Cg(k1, k2, k3, 0, · · · , 0), where k1, k2, k3 ≥ 0,
∑3

i=1 ki = n − g, and

k2 = bn−g
2
c(ordn−g

2
e).

Let C4(k1, k2, k3, 0)
⊗

(t) denote the unicyclic graph obtained from attaching t pendant edges to any
pendant vertices of NC4(k1,k2,k3,0)(v2), where k1, k2, k3 ≥ 0 and t ≥ 1.

Theorem 4.7. [29] Let U ∈ U(n, 4). Then

Wp(U) ≤ bn− 4

2
cdn− 4

2
e+ n− 4

with equality if and only if U ∼= C4(k1, k2, k3, k4), where k1, k2, k3, k4 ≥ 0 and n−4−k1−k3 = k2+k4 =

bn−4
2
cordn−4

2
e, or U ∼= C4(k1, k2, k3, 0)

⊗
(t), where k1, k2, k3, k4 ≥ 0, t ≥ 1 and n − 4 − k1 − k3 =

k2 + k4 = bn−4
2
cordn−4

2
e.

Theorem 4.8. [29] Let U ∈ U(n, 3), where n ≥ 11. Then

Wp(U) ≤
{

1
3
(n− 3)2, if n = 0 (mod 3);

1
3
(n− 2)(n− 4), if n 6= 0 (mod 3).

where equality if and only if U ∼= U3.

Let Un,k be the set of unicyclic graphs on n vertices with k pendent vertices. The next result deter-
mines the minimum Wiener polarity index in Un,k for any k.

Theorem 4.9. [29] For n ≥ 9 we have

(1) Un,0 = {Cn}, and Wp(U) = n;

(2) Un,1 = {Cg(Pn−g} (n ≥ g ≥ 3), where Wp(Cn−1(P1)) = n+ 1, and Wp(Cg(Pn−g)) = n+ 2 for

g ≤ n− 2;

(3) Let U ∈ Un,n−3. Then Wp(U) ≥ 0 with equality if and only if U ∼= U1.

(4) Let U ∈ Un,n−4. Then WP (U) ≥ n− 4 with equality if and only if U ∼= Cn,4 or C2
4,l,n−4−l, where

1 ≤ l ≤ n− 5.

(5) If 2 ≤ k ≤ n− 5 and U ∈ Un,k, then Wp(U) ≥ n− 3.

It is worth noting that, for 2 ≤ k ≤ n − 5, the extremal unicyclic graphs of Theorem 4.9 were also
characterized in [29]. Now let U∆

n be the set of unicyclic graphs on n vertices with maximum degree ∆.
Clearly, 2 ≤ ∆ ≤ n − 1. It is easy to see that U2

n = {Cn} and Un−1
n = {U1}. For 3 ≤ ∆ ≤ n − 2, we

have the following theorem.
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Theorem 4.10. [29] Let U ∈ U∆
n and n ≥ 7.

(1) If 3 ≤ ∆ < dn
2
e, then Wp(U) ≥ n− 3.

(2) If dn
2
e ≤ ∆ ≤ n − 2, then Wp(U) ≥ n − 4 with equality if and only if U ∼= C1

3,n−4,1 or Cn,4 if

∆ = n− 2, and U ∼= C2
4,∆−2,n−2−∆ if dn

2
e ≤ ∆ ≤ n− 3.

Since Wp(Cn) = n and Wp(U1) = 0 for n ≥ 7, Theorem 4.10 determines the minimum Wiener
polarity index in U∆

n for arbitrary ∆. The extremal unicyclic graphs for 3 ≤ ∆ < dn
2
e of Theorem 4.10

were also characterized in [29]. Next let U(n, d) be the set of unicyclic graphs with order n and diameter
d. For d ≥ 3, we first introduce the following graphs:

• Let U3(s, t) (s + t = n − d − 3) be a unicyclic graph, obtained from a path P = v0v1 · · · vd of
length d by adding s pendant vertices to v1, t pendant vertices to vd−1, and identifying a vertex of
a triangle with v1 or vd−1.

• Denote the unicyclic graph U3(a1, a2, a3) with |ai − aj| ≤ 1 (i, j ∈ {1, 2, 3}) of order n and
diameter d by U∗

3 , and the unicyclic graph U ′
3(a

′
1, a

′
2, a

′
3) with |a′i − a′j| ≤ 1 (i, j ∈ {1, 2, 3}) of

order n and diameter d by U∗∗
3 .

• In general let U∗ denote the unicyclic graph (among the graphs under consideration) with maxi-
mum Wiener polarity index.

Theorem 4.11. [41] Let U be unicyclic graph in U(n, d) (d ≥ 3), then

(1) If d = 3, then Wp(U) ≥ n− 3 with equality if and only if U ∼= U3(0, t) (t = n− 6).

(2) If d = 4, then Wp(U) ≥ n− 3 with equality if and only if U ∼= U3(s, t) (s+ t = n− 7).

(3) If d ≥ 5, then Wp(U) ≥ n−3 with equality if and only if U ∼= U3(s, t) (s+t = n−d−3), U4(n−
d− 2, 0), U5(n− d− 3, 0).

Theorem 4.12. [41] Let U be a unicyclic graph in U(n, d) (d ≥ 4, n ≥ d + 8), and U∗denote the

unicyclic graph with the maximum Wiener polarity index.

(1) If d = 4, then U∗ ∼= U
′
3(a1, a2, a3) with |a1 + 1− ai| ≤ 1 (i = 2, 3), |a2 − a3| ≤ 1, and

Wp(U
∗) =





(n−6)(n−1)
3

+ 3, if a1 + a2 + a3 = 0 (mod 3);
n(n−7)

3
+ 5, if a1 + a2 + a3 = 1 (mod 3);

(n−8)(n+1)
3

+ 8, if a1 + a2 + a3 = 2 (mod 3).

(2) If d ≥ 5, then U∗ ∼= U∗∗
3 , and

Wp(U
∗) =





(n−d−2)(n−d+4)
3

+ d, if a1 + a2 + a3 = 0 (mod 3);
(n−d−3)(n−d+5)

3
+ d+ 2, if a1 + a2 + a3 = 1 (mod 3);

(n−d−4)(n−d+6)
3

+ d+ 5, if a1 + a2 + a3 = 2 (mod 3).

In [45], the authors also determined the minimum Wiener polarity index of unicyclic graphs and
characterized the extremal graphs. In [50], the following theorem was shown by Wang el al..
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Theorem 4.13. [50] Let U be a unicyclic Hückel graph of 2n vertices, where n ≥ 4. Then

2n− 7 ≤ Wp(U) ≤ 4n+ 4.

For further results on the Wiener polarity index of other classes of graph, one may see [43] (bicyclic
graphs), [13] (cactus graphs), [10] (fullerenes and hexagonal systems), [11] (various lattices), and [28,31]
(some chemical structures).

5. Graph products and the Nordhaus-Gaddum-type inequalities

Various products of graphs often appear in the study of chemical graphs. Examining the Wiener polarity
index of graph products is an important step towards bounding it for these graphs. First we introduce
several different products of graphs.

The Cartesian product of two graphs G and H , denoted by G�H , is defined on the Cartesian product
V (G)×V (H) of the vertex sets of G and H . The edge set E(G�H) is the set of all pairs ((u, x), (v, y))
of vertices for which either u = v and xy ∈ E(H) or uv ∈ E(G) and x = y, where u, v ∈ V (G) and
x, y ∈ V (H).

The strong product G � H of G and H is defined on the Cartesian product of the vertex sets of G
and H . Two distinct vertices (u, x) and (v, y) of G�H are adjacent with respect to the strong product if

u = v and xy ∈ E(H), or uv ∈ E(G) and x = y, or uv ∈ E(G) and xy ∈ E(H).

The vertex set of the direct product G×H (G and H are called the factors of G×H) of two graphs
is V (G)× V (H). Two vertices (u, x), (v, y) are adjacent if both uv ∈ E(G) and xy ∈ E(H).

The lexicographic product G ◦H of two graphs G and H is defined on V (G ◦H) = V (G)× V (H).
Two vertices (u, x), (v, y) of G ◦H are adjacent whenever uv ∈ E(G), or u = v and xy ∈ E(H). Note
that the lexicographic product G ◦H can be obtained from G by substituting a copy Hv of H for every
vertex v of G and joining all vertices of Hv with all vertices of Hu if uv ∈ E(G).

For a given connected graph G, we define W2(G) := |{{u, v} | d(u, v) = 2, u, v ∈ V (G)}|, which
is the number of unordered pairs of vertices {u, v} of G such that dG(u, v) = 2. For a given graph
W2(G) can be computed in polynomial time. In the following theorems we denote by m(G) and n(G)

the number of edges and vertices of G.

Theorem 5.1. [42] Let G and H be two non-trivial connected graphs, then

Wp(G�H) = Wp(G)V (H) +Wp(H)V (G) + 2W2(G)m(H) + 2W2(H)m(G).

Theorem 5.2. [42] Let G and H be two non-trivial connected graphs, then

Wp(G�H) =Wp(G)[2Wp(H) + 2W2(H) + 2m(H) + n(H)]

+Wp(H)[2W2(G) + 2m(G) + n(G)].
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Theorem 5.3. [42] Let G and H be two non-trivial connected graphs and at least one of them is non-

bipartite, then

Wp(G×H) = 2Wp(G)Wp(H) + 2Wp(H)m(G) + 2Wp(G)m(H).

Theorem 5.4. [42] Let G and H be two non-trivial connected graphs, then

Wp(G ◦H) = Wp(G)(n(H))2.

The Cartesian product G�H and strong product G � H were also considered in [23], along with
some other graph operations.

Let G and H be simple connected graphs. The join G+H , symmetric difference G4H , disjunction
G ∨H , composition G[H] are defined as follows:

(1) V (G+H) = V (G) ∪ V (H), E(G+H) = E(G) + E(H) + {uv|u ∈ V (G), v ∈ V (H)};

(2) V (G4H) = V (G)�V (H), E(G4H) = {(a, b)(c, d)|ac ∈ E(G) or bd ∈ E(H) not both};

(3) E(G ∨H) = {(a, b)(c, d)|ac ∈ E(G)orbd ∈ E(H)};

(4) E(G[H]) = {(a, b)(c, d)|ac ∈ E(G) or a = c and bd ∈ E(H)}.

Theorem 5.5. [23] Let G1, G2, · · · , Gk be connected graphs, then

Wp(G1[G2[· · · [Gk] · · · ]]) = Wp(G1)
k∏

i=2

|V (Gi)|.

Note that the Wiener polarity index of join G+H , symmetric difference G4H and the disjunction
G ∨H are zero.

When bounding a graph invariant another important direction of study is to consider the Nordhaus-
Gaddum-type results. Denote by G∗ the graph of order n ≥ 5 obtained from joining n − 4 vertices to
each internal vertex of the path P4 such that V (G∗) \ V (P4) is a clique. Let S∗

p,q be a graph containing a
double star Sp,q, such that any two vertices both in V (Sp) or both in V (Sq) may be adjacent. From the
definition of the Wiener polarity index, we easily obtain that

WP (G
∗) = 1, WP (G∗) = 1

and

WP (S
∗
p,q) = (p− 1)(q − 1), Wp(S∗

p,q) = 1.

Theorem 5.6. [51] Let G be a graph of order n ≥ 4, and G be its complement. If diam(G) = 3 and

diam(G) = 3, then

2 ≤ Wp(G) +Wp(G) ≤ bn
2
cdn

2
e − n+ 2.

Moreover, the lower bound is achieved if and only if G ∼= P4 or G is isomorphic to some G∗; the upper

bound is achieved if and only if G is isomorphic to S∗
bn
2
c,dn

2
e or G is isomorphic to S∗

bn
2
c,dn

2
e.

A better lower bound was given by Hua et al. [27].
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Theorem 5.7. [27] Let G be a connected graph with a connected complement G. Then d + d − 4 ≤
Wp(G) +Wp(G) ≤ n(n−1)(n−2)2

2
+ 2m2 + (n− 3

2
)[2(m−∆)2

n−2
−∆(n−∆)]−

m
2
(4n2 − 19n+ 17)− 2[∆2 +

(2m−∆)2+
2(n−2)(∆2−δ)2

(n−1)2

n−1
],

where d and d are the diameter of G and G, ∆, ∆2 and δ are the maximum degree, the second maximum

degree and the minimum degree in G, respectively. Moreover, the low bound holds if and only if G ∼= Pn

or G ∼= G∗.

In addition, Zhang and Hu provided the Nordhaus-Gaddum-type inequality of the Wiener polarity
index for trees in [51].

6. Bounds in terms of other indices

First we recall some of the best known chemical indices. The Wiener index W (G) is defined as [26]

W (G) =
∑

(u,v)⊆E(G)

d(u, v)

and the hyper-Wiener index WW (G) is defined as [44]

WW (G) =
1

2
W (G) +

1

2

∑

(u,v)⊆E(G)

d2(u, v).

The first Zagreb index M1(G) and the second Zagreb index M2(G) are defined as [25]

M1(G) =
∑

v∈V (G)

d2(V ) and M2(G) =
∑

uv∈E(G)

d(u)d(v).

In terms of representing or bounding the Wiener polarity index with these graph invariants, we have
the following.

Theorem 6.1. [38] Let G be a graph with order n and size m, then

Wp(G) = M2(G)−M1(G) +m

with equality if and only if G is a tree or g(G) ≥ 7.

Theorem 6.2. [38] If G is a triangle- and quadrangle-free connected graph, whose order is n and size

is m, then

Wp(G) ≥ 2n(n− 1)−m−M1(G)−W (G)

with equality if and only if diam(G) ≤ 4.

Theorem 6.3. [38] If G is a triangle- and quadrangle-free connected graph, whose order is n and size

is m, then

Wp(G) ≥ 5

4
n(n− 1)− 1

2
m− 7

8
M1(G)− 1

4
WW (G)

with equality if and only if diam(G) ≤ 4.
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In [27], Hua also presented a result on the Wiener polarity index and the first Zagreb index, involving
the independence number.

Theorem 6.4. [27] Let G be a connected triangle-free graph of order n and size m with independence

number α(G). Then

WP (G) <
1

3
[
n(n− 1)

2
α(G) +m−M1(G)].

The Hosoya index of a graph, denoted by Z(G), is defined to be the total number of matchings, that
is,

Z(G) =
∑

k≥0

m(G; k),

where m(G; k) is the number of k-matchings in G for k ≥ 1, and m(G; 0) = 1.

Theorem 6.5. [27] Let G be a connected graph of order n and size m. Then

Wp(G) ≤ Z(G)− 1−m

with equality if and only if G ∼= C3 or Sn or a double-star.

Theorem 6.6. [27] Let G be a connected graph of size m. Then Wp(G) = Z(G)−m− 2 if and only if

G ∼= P5 or G1, where G1 is constructed from attaching a pendant edge to C3.

There are also some studies on the relation between the Wiener polarity index and the Wiener index
of specific classes of graphs [9].

Theorem 6.7. [9] If G is a connected graph, then Wp(G) ≤ n(n−1)
2

− 1
2
M1(G) with equality if and only

if d(G) = 3.

Theorem 6.8. [9] W (G) ≤ 2n(n−1)−Wp(G)−M1(G)−m with equality if and only if diam(G) ≤ 4.

In the following theorem we let L(T ) be the line graph of a tree T and denote by d(T, k) the number
of unordered pairs of vertices u and v of T such that dT (u, v) = k.

Theorem 6.9. [9] For a tree T :

(1) Wp(L(T )) = d(T, 4);

(2) Wp(T ) +Wp(L(T )) ≤ n(n−1)
2

with equality if and only if diam(T ) ≤ 4;

(3) W (T ) ≤ 4Wp(L(T )) + 3Wp(T ) +M1(T )−m with equality if and only if diam(T ) ≤ 4.

Theorem 6.10. [9] If T is a tree, then W (T ) ≤ 1
2
(5n− 2)(n− 1)− 2Wp(T )− 3Wp(L(T ))− 3

2
M1 with

equality if and only if diam(T ) ≤ 5.

In [9,35], the relations between the Wiener polarity index and M1, M2 are also considered for various
graphs.
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7. Generalizations of the Wiener polarity index

For k ≥ 1, the generalized Wiener polarity index is defined as the number of unordered pairs of vertices
{u, v} of G such that the shortest distance d(u, v) between u and v is k [46]. This is denoted by

WPk
(G) =

1

2

∑

v∈V (G)

dk(v) = |{(u, v)|d(u, v) = k, u, v ∈ V }|

where dk(u) is the number of vertices at distance k from the vertex u. Along the same line, a generaliza-
tion of the Zagreb indices can be defined as

Mk(T ) =
∑

d(u,v)=k−1

d(u)d(v)

for k ≥ 3. First we have the following representation of the generalized Wiener polarity index.

Theorem 7.1. For a tree T and integer k ≥ 3, we have

Wk(T ) = (−1)k

(
k − 1

2
M1(T ) +

k−1∑

i=2

(−1)i+1(k − i)Mi(T )− (n− 1)

)
.

In [48], Tyomkyn and Uzzell independently introduced the same concept, where they considered it
as a new Turán-type problem on distances of graphs. It is a generalization of the problem studied by
Bollobás and Tyomkyn in [8]: determining the maximum number of paths with length k in a tree T on
n vertices. More generally, the problem of computing the number of subgraphs is still a high-profile
problem in the field of extremal graph theory [1, 2, 21]. Bollobás et al. studied the case of path with a
given length [5–8]. In [6], it is shown that if 10 ≤

(
k
2

)
≤ m <

(
k+1
2

)
, then the number of paths of length

three in graph G of size m is at most 2m(m − k)(k − 2)/k. In [7], the maximum number of paths of
length four of graph G of size m, denoted by p4(m), is determined.

Theorem 7.2. [7] If m is sufficiently large then

p4(m) = p4(Gm) =

{
m3

8
− 3m2

4
+m, if m is even;

m3

8
− 7m2

8
+ 15m

8
− 9

8
, if m is odd.

and Gm is the unique extremal graph. Here Gm is the complete bipartite graph K(m
2
, 2) if m is even; or

the complete bipartite graph K(m−1
2

, 2) if m is odd.

Furthermore, in [8], Bollobás and Tyomkyn determined the maximum number of paths of length k

in a tree T on n vertices. Inspired by this work, similar natural question can be asked for the generalized
Wiener polarity index:

Question. For a graph G on n vertices, what is the maximum possible number of pairs of vertices at
distance k?

For k = 2, the following is known.
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Theorem 7.3. [40] Let G be a graph on n vertices with no three vertices pairwise at distance 2. If

there exists a vertex v ∈ V (G) whose neighbors are covered by at most two cliques, then G has at most

(n− 1)2/4 + 1 pairs of vertices at distance 2.

Corollary 7.1. [40] Let G be a quasi-line graph on n vertices, which has no three vertices pairwise at

distance 2. Then G has at most (n− 1)2/4 + 1 pairs of vertices at distance 2.

For a graph G, let Gk be the graph with vertex set V (G) and {x, y} ∈ E(Gk) if and only if x and
y are at distance k in G. We call Gk the distance-k graph. Adjacent vertices x and y in Gk are called
k-neighbors. We call dGk

(x) the k-degree of x and say that a graph G is k-isomorphic to a graph H if
Gk is isomorphic to H . Our question naturally turns into finding the maximum size of Gk, denoted by
e(Gk) in the following theorems.

Theorem 7.4. [8, 46] If G is a tree on n vertices, then e(Gk) is maximized when G is a t-broom. If k is

odd, then t = 2. If k is even, then t is within 1 of

1

4
+

√
1

16
+

n− 1

k − 2
.

Theorem 7.5. [48] There is a constant k0 and a function n0 : N → N such that for all k ≥ k0, all

n ≥ n0(k) and all graphs G of order n with no three vertices pairwise at distance k, we have

e(Gk) ≤ (n− k + 1)2/4

with equality if and only if G is k-isomorphic to the double broom.

In the end we list some problems posted in [48]:

Conjecture 7.1. [48] Let k ≥ 3 and t ≥ 2, there is a function h2 : N × N → N such that: if

n ≥ h2(k, t), then e(Gk) is maximized over all G with |G| = n and ω(Gk) ≤ t when G is k-isomorphic

to a t-broom for some t.

Conjecture 7.2. [48] Let k ≥ 3, there exists h = h(k) such that: if n ≥ h(k), then e(Gk) is maximized

over all G with |G| = n when G is k-isomorphic to a t-broom for some t.

Conjecture 7.3. [48] Let k ≥ 3 and t ≥ 2, there is a function h2 : N × N → N such that: if

n ≥ h2(k, t), then e(Gk) is maximized over all G with |G| = n and ω(Gk) ≤ t when G is k-isomorphic

to a t-broom for some t.
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