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Preface

In the recent years, the mathematical–chemistry literature is flooded by countless graph–based topo-
logical indices, proposed to serve as molecular structure descriptors.

Topological indices have attracted much attention of chemical and mathematical researchers, espe-
cially those focussing on graph theory, from all over the world. Nowadays many interesting results and
lot of open problems on it have been reported in literature. In most cases, the mathematical investigation
of these indices consist of finding lower and upper bounds for them, and characterizing the graphs for
which these inequalities become equalities. Again, the number of results obtained along these lines,
and the number of respective publications, is so large that no human can satisfactorily follow them and
recognize what is significant and what is not.

In order to help colleagues to find their way through the data jungle, we decided to devote one book
in our “Mathematical Chemistry Monographs” series to bounds on topological indices and the related
extremal graphs. To this end, in the Summer of 2016 we invited a number of colleagues to contribute
chapters to our book. The scholars invited were among those who are currently active and who publish in
this field of chemical graph theory. Their response was beyond anything what we could have expected.

Thus, instead of a single “Mathematical Chemistry Monograph”, we had to produce three volumes,
that is:

• Mathematical Chemistry Monograph No. 19:
Bounds in Chemical Graph Theory – Basics
Faculty of Science & University, Kragujevac, 2017

• Mathematical Chemistry Monograph No. 20:
Bounds in Chemical Graph Theory – Mainstreams
Faculty of Science & University, Kragujevac, 2017

• Mathematical Chemistry Monograph No. 21:
Bounds in Chemical Graph Theory – Advances
Faculty of Science & University, Kragujevac, 2017

The present book is the “Mathematical Chemistry Monograph” No. 20, completed in January 2017.

Editors:

Ivan Gutman
Boris Furtula
Kinkar Ch. Das
Emina I. Milovanović
Igor Ž. Milovanović
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1. Introduction

In this paper we are concerned with simple, undirected, and unweighted graphs. Let G = (V, E) be a
graph on vertex set V = {v1, v2, . . . , vn} and edge set E = E(G), where |E(G)| = m. Also let di be
the degree of vertex vi for i = 1, 2, . . . , n. The minimum vertex degree is denoted by δ = δ(G) and
the maximum by ∆ = ∆(G). Let Ni be the neighbor set of the vertex vi ∈ V (G), i = 1, 2, . . . , n.
The complement of G, denoted by G, is a simple graph on the same set of vertices V (G) in which two
vertices vi and vj are adjacent if and only if they are not adjacent in G. If vertices vi and vj are adjacent
in G, we denote that by vivj ∈ E(G).

The adjacency matrix A(G) of G is defined by its entries aij = 1 if vivj ∈ E(G) and 0 otherwise.
Let λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn denote the eigenvalues of A(G) . When more than one graph is under
consideration, then we write λi(G) instead of λi. The energy of the graph G is defined as

E = E(G) =
n∑

i=1

|λi| , (1)

where λi, i = 1, 2, . . . , n are the eigenvalues of graph G. For its basic properties, applications including
various lower and upper bounds, see [10, 13, 15–17, 26, 28], book [30] and the references cited therein.

The L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) be, respectively, the Laplacian matrix and
the signless Laplacian matrix of the graph G, where D(G) is the diagonal matrix of vertex degrees. The

3



4

eigenvalues of L(G) and Q(G) will be denoted by µ1 ≥ µ2 ≥ · · · ≥ µn = 0 and q1 ≥ q2 ≥ · · · ≥
qn−1 ≥ qn, respectively. Then the Laplacian energy and the signless Laplacian energy of G are defined
as

LE = LE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ and LE+ = LE+(G) =
n∑

i=1

∣∣∣∣qi −
2m

n

∣∣∣∣ ,

respectively. Details on the properties of Laplacian energy, including various lower and upper bounds,
see [9,11,13,16,18,38,42]. The Laplacian energy LE found applications not only in theoretical organic
chemistry (see, [21, 36]), but also in image processing [40] and information theory [29]. The signless
Laplacian energy was until now studied only to a limited extent [1, 12, 15]. We denote by Kn, Kp, q

(p + q = n) and Sn (∼= K1, n−1), the complete graph, the complete bipartite graph and the star on n

vertices, respectively, throughout this paper.

The paper is organized as follows. In Section 2, we give several lower and upper bounds on energy of
graphs. In Section 3, we discuss lower and upper bounds on the Laplacian energy of graphs. In Section
4, we present several relations between different graph energies of graphs.

2. On energy of graphs

Recall that ν+ and ν− are the number of positive and negative eigenvalues of the adjacency matrix A(G)

of graph G, respectively. Then from the definition of the energy of a graph and the trace of the matrix
A(G), one can get the following result [14]:

Lemma 2.1. [14] Let G be a graph of order n. Then

E(G) = 2
ν+∑

i=1

λi = −2
ν−∑

i=1

λn−i+1 = 2 max
1≤k≤n

(
k∑

i=1

λi

)
= 2 max

1≤k≤n

(
k∑

i=1

−λn−i+1

)
,

where ν+ and ν− are the number of positive and negative eigenvalues of A(G), respectively.

Li et. al [30] gave the following lower bound in terms of m:

Theorem 2.2. [30] For a graph G with m edges,

E(G) ≥ 2
√
m (2)

with equality holding if and only if G consists of a complete bipartite graph Ka, b such that a · b = m

and arbitrarily many isolated vertices.

It is well known that
n∏

i=1

λi = det A,

where det A is the determinant of the adjacency matrix of graph G. McClelland [34] obtained the
following lower bound in terms of n, m and the determinant of the adjacency matrix of graph G:
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Theorem 2.3. [34] Let G be a graph of order n with m edges. Then

E(G) ≥
√
2m+ n(n− 1)| det A|2/n , (3)

where det A is the determinant of the adjacency matrix of graph G.

A graph G is said to be singular if at least one of its adjacency eigenvalues is equal to zero. For
singular graphs, evidently, det A = 0. A graph is nonsingular if all its eigenvalues are different from
zero. Then, | det A| > 0. In [17], the authors presented the following lower bound on E(G):

Theorem 2.4. [17] Let G be a connected nonsingular graph of order n with m edges. Then

E(G) ≥ 2m

n
+ n− 1 + ln |det(A)| − ln

2m

n
. (4)

Equality holds in (4) if and only if G is isomorphic to the complete graph Kn.

Remark 2.5. In [17], the authors mentioned that the lower bound in (4) is better than the lower bounds

in (2) and (3) for different class of graphs.

The following three lower bounds on E(G) of graph G is obtained in [13].

Theorem 2.6. [13] Let G be a connected graph of order n and m edges. Then

E(G) ≥ min

{
2m

n
+

√
2m− 4m2

n2
+ Z ,

√
2m− n+ 1 +

√
n− 1 + Z

}
, (5)

where

Z = (n− 1)(n− 2)

(
(det A)2

2m− n+ 1

) 1
n−1

and det A is the determinant of the adjacency matrix of graph G. Moreover, the equality holds in (5) if

and only if G ∼= Kn .

Corollary 2.1. [13] Let G be a connected graph of order n and m edges. Then

E(G) ≥ 2m

n
+

√√√√(n− 1)

[
1 + (n− 2)

(
(detA)2

2m− n+ 1

) 1
n−1

]
, (6)

where det A is the determinant of the adjacency matrix of graph G. Moreover, the equality holds in (6)

if and only if G ∼= Kn .

Corollary 2.2. [13] Let G be a connected graph of order n with m edges and maximum degree ∆. Then

E(G) ≥ 2m

n
+

√√√√(n− 1)

[
1 + (n− 2)

(
detA

∆

) 2
n−1

]
, (7)

where det A is the determinant of the adjacency matrix of graph G. Moreover, the equality holds in (7)

if and only if G ∼= Kn .
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A d-regular graph G on n vertices is strongly d-regular (denote by srg(n, d, λ, µ)) if there exist
positive integers d, λ and µ such that every vertex has d neighbors, every adjacent pair of vertices has
λ common neighbors, and every nonadjacent pair has µ common neighbors. For example, the complete
graph and Petersen graph are strongly regular graphs. Strongly regular graphs were introduced by Bose
in 1963 [5]. The complement of an srg(n, d, λ, µ)) is also strongly regular. It is an srg(n, n−d−1, n−
2−2d+µ, n−2d+λ)). The adjacency matrix of srg(n, d, λ, µ) has exactly three distinct eigenvalues:
(i) d of multiplicity 1,

(ii)
λ− µ+

√
(λ− µ)2 + 4(d− µ)

2
of multiplicity

1

2

[
n− 1− 2d+ (n− 1)(λ− µ)√

(λ− µ)2 + 4(d− µ)

]
,

(iii)
λ− µ−

√
(λ− µ)2 + 4(d− µ)

2
of multiplicity

1

2

[
n− 1 +

2d+ (n− 1)(λ− µ)√
(λ− µ)2 + 4(d− µ)

]
.

Koolen and Moulton [26] gave the following upper bound in terms on n and m:

Theorem 2.7. [26] If 2m ≥ n and G is a graph on n vertices with m edges, then the inequality

E(G) ≤ 2m

n
+

√√√√(n− 1)

(
2m−

(
2m

n

)2
)

(8)

holds. Moreover, equality holds in (8) if and only if G is either n
2
K2, Kn, or a non-complete connected

strongly regular graph with two non-trivial eigenvalues both with absolute value
√√√√
(
2m−

(
2m

n

)2
)
/(n− 1) .

The first Zagreb index M1(G) is the oldest and popular degree based topological index, both from
theoretical point of view and applications. The first Zagreb index has been introduced more than forty
years ago by Gutman and Trinajstić [23] and is defined as

M1(G) =
∑

vi∈V (G)

d2i .

Some recent results on the first Zagreb index were reported in [7] and review [4], where also references
to the previous mathematical research in this area can be found. This index reflect the extent of branching
of the molecular carbon–atom skeleton, and can thus be viewed as molecular structure-descriptors [2].
Zhou [44] obtained the following upper bound on n, m and the first Zagreb index M1(G):

Theorem 2.8. [44] If G is a graph with n vertices, m edges and degree sequence d1, d2, . . . , dn, then

E(G) ≤
√

M1(G)

n
+

√√√√√(n− 1)


2m−

(√
M1(G)

n

)2

 . (9)
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Moreover, equality in (9) holds if and only if G is either n
2
K2 (n = 2m), Kn (m = n(n − 1)/2),

a non-complete connected strongly regular graph with two non-trivial eigenvalues both with absolute

value
√(

2m−
(
2m
n

)2)
/(n− 1), or nK1 (m = 0).

In [10], the authors found the upper bound on energy E(G) of graphs G in terms of n, m and δ.

Theorem 2.9. [10] Let G be a connected graph of order n (n ≥ 6), m edges with minimum degree δ.

Then

E(G) ≤ 2(m− δ)

n− 1
+

√
(n− 1)

[
2m− 4(m− δ)2

(n− 1)2

]
. (10)

Corollary 2.3. [10] Let G be a connected graph of order n (n ≥ 6), m edges with at least a pendent

vertex. Then

E(G) ≤ 2(m− 1)

n− 1
+

√
(n− 1)

[
2m− 4(m− 1)2

(n− 1)2

]
. (11)

Remark 2.10. In [10], the authors mentioned that (10) is better than (8) for m ≥ nδ and (9) for

4n (m− δ)2 ≥ M1(G) (n− 1)2 .

The rank of a matrix is defined as the maximum number of linearly independent row (or column)
vectors in the matrix. The rank r of an undirected graph is defined as the rank of its adjacency matrix,
that is, the number of non-zero eigenvalues are called the rank of graph. Analogously, the nullity of the
graph of order n is the nullity of its adjacency matrix, which equals n−r. Let G(n, m) be a set of graphs
of order n and m edges. Now we define

Γ1 =

{
G : G ∈ G(n, m) and

k∑

i=1

µi(G) ≤ m+
k2 + k

2
, 1 ≤ k ≤ n

}

and Γ2 =

{
G : G ∈ G(n, m) and

k∑

i=1

qi(G) ≤ m+
k2 + k

2
, 1 ≤ k ≤ n

}
.

One can easily see that tree, unicyclic, bicyclic and regular graphs are belong to Γ1 ∩ Γ2. The
following upper bound on energy E(G) was obtained in [12].

Theorem 2.11. [12] Let G be a graph of order n with m > 0 edges. If G ∈ Γ1 ∩ Γ2, then

E(G) ≤ m+
r2 + r

4
− 1,

where r = rank(A).

The following four upper bounds were obtained in [13]:
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Theorem 2.12. [13] Let G be a connected graph of order n, m edges, ∆ maximum degree and the first

Zagreb index M1(G) . Then

E(G) ≤ ∆+

√
2m(n2 − 2m)

n2
+ P ,

where

P =

√√√√
(
r − 1

2

) [
8m2(n2 − 2m)2

n4
− 2M1(G)− 2 (M1(G)− 2m)2

n(n− 1)
+ 2∆4

]

and r is the rank of the adjacency matrix of graph G. Moreover, the equality holds if and only if G ∼= Kn

or G ∼= Kn/2, n/2 or G ∼= srg
(
n, d,

d(d− 1)

n− 1
,
d(d− 1)

n− 1

)
.

Corollary 2.4. [13] Let G be a d-regular connected graph of order n. Then

E(G) ≤ d+
√
(n− 1) d (n− d)

with equality holding if and only if G ∼= Kn or G ∼= srg
(
n, d,

d(d− 1)

n− 1
,
d(d− 1)

n− 1

)
.

Corollary 2.5. [34] Let G be a d-regular connected graph of order n. Then

E(G) ≤ n(
√
n+ 1)

2

with equality holding if and only if G ∼= srg
(
n,

n+
√
n

2
,
n+ 2

√
n

4
,
n+ 2

√
n

4

)
.

Corollary 2.6. [13] Let G be a connected graph of order n, m edges, maximum degree ∆ and the first

Zagreb index M1(G) . Then

E(G) ≤ ∆+

√
2m(n2 − 2m)

n2
+ P ,

where

P =

√√√√
(
n− 1

2

) [
8m2(n2 − 2m)2

n4
− 2M1(G)− 2 (M1(G)− 2m)2

n(n− 1)
+ 2∆4

]
.

Moreover, the equality holds if and only if G ∼= Kn or G ∼= srg
(
n, d,

d(d− 1)

n− 1
,
d(d− 1)

n− 1

)
.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V (that is, U
and V are each independent sets) such that every edge connects a vertex in U to one in V . Vertex sets
U and V are usually called the parts of the graph. In 1974, Gutman [20] presented the following lower
bound on energy of bipartite graph G:

Theorem 2.13. [20] Let G be a bipartite graph of order n with m edges. Then

E(G) ≥
√
4m+ n(n− 2)(det A)

2
n , (12)

where det A is the determinant of the adjacency matrix of graph G.



9

The authors in [16] characterized the extremal graphs for the above lower bound in the following theo-
rem:

Theorem 2.14. [16] Let G be a bipartite graph of order n with m edges. Then inequality (12) holds with

equality holding if and only if G ∼= nK1 or G ∼= Kp, q ∪ (n− p− q)K1, p ≤ q, p+ q ≤ n, 1 ≤ p ≤ bn
2
c.

In the same paper [20], Gutman presented the following upper bound on energy E(G):

Theorem 2.15. [20] Let G be a connected graph of order n with m edges. Then

E(G) ≤
√
2mn− 4m+ 2n (detA)

2
n , (13)

where det A is the determinant of the adjacency matrix of graph G.

This upper bound is true for bipartite graphs with even n, but in the general case, it is not true for bipartite
graphs with odd n. Simple examples for the failure of (13) are P3 and P5, the paths of order 3 and 5.
The correct upper bound for bipartite graphs with odd number of vertices is E(G) ≤

√
2mn− 2m. In

the following theorem, the authors in [16] characterized the extremal graphs for the above upper bound
(13), of course for the case of even n.

Theorem 2.16. [16] Let G be a bipartite graph of even order n with m edges. Then inequality (13)

holds with equality holding if and only if G ∼= nK1 or G ∼= n
2
K2.

3. On Laplacian energy of graphs

In 2006, Gutman and Zhou [24] defined the Laplacian energy of a graph as the sum of the absolute
deviations (i.e., distance from the mean) of the eigenvalues of its Laplacian matrix, that is,

LE = LE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ .

Let σ (1 ≤ σ ≤ n) be the largest positive integer such that

µσ ≥ 2m

n
. (14)

Then from [11], we have

LE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ = 2Sσ(G)− 4mσ

n
,

where

Sσ(G) =
σ∑

i=1

µi.

In the following, we present another equality for Laplacian energy LE(G) of graph G.
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Lemma 3.1. [11] Let G be a graph of order n with m edges. Then

LE(G) = 2Sσ(G)− 4mσ

n
= max

1≤i≤n−1

{
2Si(G)− 4mi

n

}
.

First we deal with the lower bounds on the Laplacian energy of graphs. In [46], Zhou gave the following
lower bound:

Theorem 3.2. [46] Let G be a graph of order n with m edges. Then

LE(G) ≥ 4m

n
(15)

with equality if and only if G is isomorphic to a regular complete k-partite graph (1 ≤ k ≤ n).

In [24], Gutman and Zhou obtained the following lower bound:

Theorem 3.3. [24] Let G be a graph of order n with m edges and degree sequence (d) = (d1, d2,

. . . , dn). Then

LE(G) ≥ 2

√√√√m+
1

2

n∑

i=1

(
di −

2m

n

)2

(16)

with equality if and only if G is isomorphic to a complete bipartite graph Kn
2
, n

2
.

In [11], the authors found the following lower bound in terms of n, m and ∆.

Theorem 3.4. [11] Let G be a connected graph of order n with m edges and maximum degree ∆. Then

LE(G) ≥ 2

(
∆+ 1− 2m

n

)
(17)

with equality holding in (17) if and only if G ∼= K1, n−1 .

Remark 3.5. In [11], it was mentioned that the result in (17) is better than the result in (15) for any tree

except path Pn. Moreover, the result in (17) is better than the result in (16) for any tree T of order n

with ∆(T ) ≥ n√
2
+ 1.

So et al. [39] obtained a lower bound for bipartite graph as follows:

Theorem 3.6. [39] Let G be a bipartite graph of order n with m edges and degree sequence (d) =

(d1, d2, . . . , dn). Then

LE(G) ≥
n∑

i=1

∣∣∣di −
2m

n

∣∣∣. (18)

In [13], the authors presented a lower bound on LE of connected graph G that always is better than the
lower bound in (18). Moreover, this lower bound is true for any connected graphs.

Theorem 3.7. [13] Let G be a connected graph of order n with m edges. Then

LE(G) ≥ 2 +
n∑

i=1

∣∣∣di −
2m

n

∣∣∣ .
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We now deal with the upper bounds on the Laplacian energy of graphs. In [24], Gutman and Zhou
obtained the following three upper bounds:

Theorem 3.8. [24] Let G be a graph of order n with m edges and the first Zagreb index M1(G). Then

(i) LE(G) ≤ 2m+M1(G)− 4m2

n
. (19)

(ii) LE(G) ≤
√
n

(
2m+M1(G)− 4m2

n

)
. (20)

(iii) LE(G) ≤ 2m

n
+

√
(n− 1)

(
2m+M1(G)− 4m2

n
− 4m2

n2

)
. (21)

Remark 3.9. In [11], the authors mentioned that the upper bound on LE in (20) is better than the upper

bound in (19). Moreover, they showed that the upper bound on LE in (21) is better than the upper bound

in (20).

The following upper bound is obtained in [11].

Theorem 3.10. [11] Let G be a graph of order n with m ≥ n
2

edges and maximum degree ∆. Then

LE(G) ≤ 4m− 2∆− 4m

n
+ 2 (22)

with equality holding in (22) if and only if G ∼= K1, n−1 or G ∼= K1, ∆ ∪Kn−∆−1 (
n
2
≤ ∆ ≤ n− 2).

Corollary 3.1. [37] Let G be a graph of order n with m > 0 edges. Then

LE(G) ≤ 4m

(
1− 1

n

)

with equality if and only if G ∼= K2 ∪Kn−2 .

Remark 3.11. Let T be a tree of order n with maximum degree ∆ ≥ n
2
(n ≥ 37). In [11], the authors

showed that the upper bound in (22) is better than the upper bound in (21) for any tree T .

We begin by recalling that a 2-(ν, k, λ)-design is a collection of k-subsets or blocks of a set of ν
points, such that each 2-set of points lies in exactly k blocks. The design is called symmetric (or square)
in case the number of blocks b equals ν. The incidence matrix B of a 2-(ν, k, λ)-design is the ν × b

matrix defined by setting, for each x a point and S a block, Bx, s := 0 if x /∈ S and Bx, S := 1 otherwise.
The incidence graph of a design is defined to be the graph with adjacency matrix

(
0 B
Bt 0

)
.

Note that the incidence graph of a symmetric 2-(ν, k, λ)-design with v > k > λ > 0 has eigenvalues k,√
k − λ (with multiplicity ν − 1), −

√
k − λ (with multiplicity ν − 1), and −k. The following two upper

bounds have been presented in [16].
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Theorem 3.12. [16] Let G be a bipartite graph of order n with m edges. Then

LE(G) ≤ 4m

n
+

√
(n− 2)

(
2M − 8m2

n2

)
,

where

M = m+
M1(G)

2
− 2m2

n
.

Moreover, the equality holds if and only if G ∼= K1 ∪ K2 or G ∼= nK1 or G ∼= m K2 (n = 2m) or

G ∼= Kν, ν (n = 2ν), or G is the incidence graph of a symmetric 2-(ν, k, λ)-design with k = 2m
n

and

λ = k (k−1)
ν−1

.

Theorem 3.13. [16] Let G be a bipartite graph of order n with m edges and p connected components.

Then

LE(G) ≤ max




4m

n
p,

2m

n
(p+ 1) +

√√√√(n− p− 1)

[
2M −

(
2m

n

)2

(p+ 1)

]
 .

Moreover,

LE(G) =
2m

n
(p+ 1) +

√√√√(n− p− 1)

[
2M −

(
2m

n

)2

(p+ 1)

]

if and only if G ∼= K1 ∪K2 or G ∼= nK1 or G ∼= m K2 (n = 2m) or G ∼= Kp, p (n = 2p) or n = 2ν,

and G is the incidence graph of a symmetric 2-(ν, k, λ)-design with k = 2m
n

and λ = k(k−1)
ν−1

.

Remark 3.14. In [24], the following result was obtained for a graph G with p connected components:

LE(G) ≤ 2m

n
p+

√√√√(n− p)

[
2M − p

(
2m

n

)2
]
,

where

M = m+
M1(G)

2
− 2m2

n
.

In [16], the authors mentioned that the result in Theorem 3.13 is always better than the above result for

bipartite graphs.

Nordhaus and Gaddum [35] gave bounds for the sum of the chromatic numbers of a graph and
its complement. Eventually, numerous Nordhaus-Gaddum-type results for other graph invariants were
obtained in the literature. With regard to Laplacian energy, Zhou and Gutman [47] gave the following
result:

Theorem 3.15. [47] Let G be a graph of order n. Then

2(n− 1) ≤ LE(G) + LE(G) < n
√
n2 − 1 (23)

with left equality holding if and only if G ∼= Kn or G ∼= Kn .
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In [11], the authors obtained the following bounds on LE(G) + LE(G):

Theorem 3.16. [11] Let G be a connected graph of order n > 1 with m edges and maximum degree ∆.

Then

2(n− 1 + ∆− δ) ≤ LE(G) + LE(G) ≤ 8m− 4∆ + 2n− 12m

n
(24)

with left equality holding if and only if G ∼= Kn or G ∼= Kn or G ∼= K1, 2 or G ∼= (K2 ∪K1) ∨ K1.

Moreover, the right equality holding if and only if G ∼= K1, n−1.

Remark 3.17. Let Γ be the class of graphs of order n with m edges such that m ≤ n(n−2)
8

. The authors

in [11] mentioned that the upper bound in (24) is better that the upper bound in (23) for any graph in Γ.

4. Relation between different graph energies

Gutman et al. [21] to believe that energy of a graph G is always less than or equal to the corresponding
Laplacian energy and so, they made the following conjecture.

Conjecture 4.1. For any graph G,

E(G) ≤ LE(G). (25)

Let KKn be the graph obtained from two copies of the complete graph Kn by joining a vertex from one
copy of Kn to two vertices from the other copy of Kn. Stevanović et al. [41] disproved the conjecture by
giving an infinite family of graphs G, namely G ∼= KKn, for which the reverse inequality holds for all
n ≥ 8. By direct calculation, it can be seen that the inequality (25) is true for all graphs of order n ≤ 6.
For n = 7, there is only one graph (see graph H1 in Fig. 1) for which the reverse inequality holds. Using
this graph, Liu and Liu [33] constructed an infinite family of disconnected graphs for which the reverse
inequality holds. Although from [33,41], it was clear that conjecture is not true in general, it is of interest
to characterize the graphs for which the conjecture holds. Clearly characterizing all the graphs for which
(25) holds or does not hold is not an easy task and is still an open problem [19].

Figure 1. Graph H1 .

Using Ky Fan Theorem, So et al. [39] presented the following relation between energy and Laplacian
energy of graph.
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Theorem 4.1. [39] Let G be a graph of order n with m edges and vertex degrees d1, d2, . . . , dn. Then

LE(G) ≤ E(G) +
n∑

i=1

∣∣∣di −
2m

n

∣∣∣. (26)

In [13], the authors obtained the following relation between energy and Laplacian energy of graphs.

Theorem 4.2. [13] Let G be a graph of order n with m edges and vertex degrees d1, d2, . . . , dn. Then

LE(G) ≤ E(G) + 2
σ∑

i=1

(
di −

2m

n

)
, (27)

where σ is the largest positive integer satisfying (14).

Remark 4.3. In the paper [13], it was mentioned that the result in (27) is always better than the result

in (26).

We denote a graph H obtained from an isolated vertex joining by two edges to the centers of two stars
S3 and S4, respectively. For n ≥ 3, let S+

n be an unicyclic graph of order n obtained by adding an edge
to Sn. Recently, Abreu et al. [1] obtained the following relation between E(G), LE(G) and LE+(G) of
graph G:

Theorem 4.4. [1] Let G be a connected graph of order n with m edges. Then

LE+(G) + LE(G) ≥ max

{
2E(G), 2

n∑

i=1

∣∣∣di −
2m

n

∣∣∣
}

. (28)

The following result is the relation between LE+(G), LE(G) and E(G).

Theorem 4.5. [12] Let G be a graph of order n with m edges and rank r. Then

LE+(G) + LE(G) ≥ 4 E(G)− 4mr

n
(29)

with equality holding if and only if G ∼= nK1 or G ∼= K2 ∪ (n− 2)K1 or G ∼= Kn/2, n/2 .

Remark 4.6. In [12], the authors mentioned that two results (28) and (29) are incomparable. Sometimes

the result in (29) is better than the result in (28), but not always. The result in (29) is better than the

result in (28) for graphs H and K3, 5, on the other hand the result in (28) is better than the result in (29)

for graphs S8 and S+
8 .

In 2008, Liu and Liu [32] considered a new Laplacian–spectrum–based graph invariant

LEL = LEL(G) =
n−1∑

k=1

√
µk
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and named it Laplacian–energy–like invariant. The motivation for introducing LEL was in its analogy
to the earlier much studied graph energy [30] and Laplacian energy [24]. For details on LEL see the
review [31], the recent papers [8], and the references cited therein. Since both LE and LEL are depend
on the Laplacian eigenvalues of graph G, recently, a nice relation between LE and LEL has been
obtained in [11]:

Theorem 4.7. [11] Let G be a connected graph of order n with m edges and maximum degree ∆. Then

n2
(
LE(G)− n

)2
+ 8mn

(
LEL(G)−√

n
)2

≤
(
4mn− 4m− n(∆ + 1)

)2

with equality holding if and only if G ∼= Kn or G ∼= K1, n−1 .

A line graph LG of a simple graph G is obtained by associating a vertex with each edge of the graph G

and connecting two vertices with an edge if and only if the corresponding edges of G have a vertex in
common. For example, the line graph of star K1, n−1 is the complete graph Kn−1. The line graph LG of
graph G has m vertices and 1

2
M1(G)−m edges. The relation between E(LG) and LE+(G) of graph G

in the following result:

Theorem 4.8. [14] Let G be a graph of order n with m ≥ 1 edges.

(a) For m < n,

E(LG) ≤ LE+(G) +
4m

n
− 4

with equality holding if and only if G ∼= K2 ∪ (n− 2)K1 (n ≥ 2) or G ∼= K3 ∪ (n− 3)K1 (4 ≤ n ≤ 6)

or G ∼= K1, i−1 ∪ (n− i)K1

(⌈
n
2

⌉
+ 1 ≤ i ≤ n

)
.

(b) For m > n,

E(LG) ≥ LE+(G) +
4m

n
− 4

with equality holding if and only if G ∼= K4 or G ∼= K4\{e} or G ∼= K4 ∪K1 or G ∼= K4 ∪K2 .

(c) Moreover, LE+(G) = E(LG) if and only if m = n.

From Theorem 4.8, the following three results have been obtained in [14]:

Corollary 4.1. [14] Let G be a graph of order n with m ≥ 1 edges. Then

E(LG) = LE+(G) +
4m

n
− 4

if and only if m = n or G ∼= K2 ∪ (n − 2)K1 (n ≥ 2) or G ∼= K3 ∪ (n − 3)K1 (4 ≤ n ≤ 6) or

G ∼= K1, i−1 ∪ (n − i)K1

(⌈
n
2

⌉
+ 1 ≤ i ≤ n

)
or G ∼= K4 or G ∼= K4\{e} or G ∼= K4 ∪ K1 or

G ∼= K4 ∪K2.

Corollary 4.2. [22] Let G be a graph of order n with m ≥ 1 edges.

(a) If m < n, then E(LG) < LE+(G).

(b) If m > n, then E(LG) > LE+(G).

(c) If m = n, then E(LG) = LE+(G).
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Corollary 4.3. [14] Let T be a tree of order n with p pendant vertices. Then

E(LT ) ≤ LE+(T )− 2
(
1− p

n

)
.

In [14], the authors obtained the lower and upper bounds on E(LG) in the following three results:

Theorem 4.9. [14] Let G be a graph of order n with m ≥ 1 edges. Then

E(G)− 2p− 4s ≤ E(LG) ≤ E(G) + 4m− 4n+ 2p+ 4s,

where p and s are the number of pendant and isolated vertices in G, respectively.

Corollary 4.4. [14] Let G be a graph of order n with m edges and minimum degree δ ≥ 1. Then

E(G)− 2p ≤ E(LG) ≤ E(G) + 4m− 4n+ 2p,

where p is the number of pendant vertices in G.

Corollary 4.5. [14] Let G be a graph of order n with minimum degree δ ≥ 2. Then

E(G) ≤ E(LG) ≤ E(G) + 4m− 4n.

From Theorems 4.8 (a) and 4.9, the relation between signless Laplacian energy and energy of graphs has
been obtained in [14].

Theorem 4.10. [14] Let G be a graph of order n with m edges (m < n) and p pendant vertices. Then

LE+(G) > E(G)− 4m

n
− 2p− 4s+ 4.

We now give two upper bounds on E(LG) in terms of n, m and M1(G).

Theorem 4.11. [1] Let G be a connected graph of order n with m ≥ 1 edges and the first Zagreb index

M1(G). Then

E(LG) ≤
M1(G)

m
− 2 +

√
(m− 1)

((
1 +

4

m

)
M1(G)− M1(G)2

m2
− 2m− 4

)
. (30)

Theorem 4.12. [14] Let G be a connected graph of order n with m ≥ 1 edges and the first Zagreb index

M1(G). Then

E(LG) ≤ 2m− 2n− 2+
M1(G)

m
+

√
(n− 1)

((
1 +

4

m

)
M1(G)− M1(G)2

m2
− 6m+ 4n− 4

)
(31)

with equality holding in (31) if and only if G ∼= Kn or G ∼= K4, 4.

Remark 4.13. For connected graph G with m ≥ n, the upper bound in (31) is always better than the

upper bound in (30).
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The positive (resp. negative) inertia of the graph G, denoted by ν+ (resp. ν−), is the number of the
positive (resp. negative) eigenvalues of A(G). The rank of a graph G is the rank of its adjacency matrix
A(G), equal to ν+ + ν−. Recall that ν+ ≥ 1 holds if and only if the underlying graph has at least one
edge. The relation between E(LG) and E(G) is the following:

Theorem 4.14. [15] Let G be a connected graph of order n with positive inertia ν+ ≥ 1. Then

E(LG) ≥ 2
(
E(G)− 2ν+

)
(32)

with equality holding if and only if G ∼= C4 or G ∼= Ki , i = 2, 3, 4.

The same result (32) holds for any graph:

Theorem 4.15. [15] Let G be a graph of order n with positive inertia ν+ ≥ 1. Then inequality (32)

holds with equality if and only if G ∼= aK2∪bK3∪cK4∪fC4∪(n−2a−3b−4c−4f)K1 , a, b, c, f ≥ 0.

The size of a maximal matching of G, that is, the maximum number of independent edges in G, is called
the matching number of G, and will be denoted by β(G). It is well known that ν+(T ) = β(T ) for any
tree T . The independence number of a graph G, denoted by α = α(G), is the largest number of pairwise
non-adjacent vertices in G. A forest is an acyclic graph, that is, a graph without any graph cycles. In [15],
the authors mentioned the following three results:

Corollary 4.6. [15] Let F be a forest of order n with matching number β ≥ 1. Then

E(LF ) ≥ 2
(
E(F )− 2 β

)

with equality holding if and only if G ∼= aK2 ∪ (n− 2a)K1, a ≥ 1.

Corollary 4.7. [15] Let G be a graph of order n with at least one edge and independence number α.

Then

E(LG) ≥ 2
(
E(G)− 2n+ 2α

)

with equality holding if and only if G ∼= aK2 ∪ (n− 2a)K1.

Corollary 4.8. [15] Let G be a bipartite graph of order n with m ≥ 1 edges and rank r. Then

E(LG) ≥ 2
(
E(G)− r

)

with equality holding if and only if G ∼= aK2 ∪ fC4 ∪ (n− 2a− 4f)K1 , a, f ≥ 0.

Remark 4.16. In [15], it was mentioned that

E(LG) ≥ max

{
E(G) +

4m

n
− 4 , 2(E(G)− r)

}

for bipartite graph G.

In [15], the authors obtained some bounds on E(LG) in terms of n, m, p, s, and E(G).
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Theorem 4.17. [15] Let G be a graph of order n with m > 1 edges. Then E(LG) ≤ 4m− 2n.

Theorem 4.18. [15] Let G be a graph of order n with m ≥ n edges. Then

E(LG) ≥ 4m− 4n+ 2p+ 4s,

where p and s are the number of pendent and isolated vertices.

The energy of the n-vertex complete graph Kn is equal to 2(n − 1). A graph G on n vertices is said
to be hyperenergetic if E(G) > 2n − 2. The first systematic construction of hyperenergetic graphs was
proposed by Walikar et al. [43], who showed that the line graphs of Kn (n ≥ 5) and of Kn/2, n/2 (n ≥ 8)

are hyperenergetic. Hou et al. [25] showed that the line graph of any (n, m)-graph (n ≥ 5, m ≥ 2n) is
hyperenergetic. Here we mention another necessary condition for hyperenergetic graph.

Corollary 4.9. [15] Let G be a graph of order n with m edges and p pendent vertices. If m > 2n−p−1,

then LG is hyperenergetic.

Remark 4.19. The result in Corollary 4.9 was more stronger than the previous result (for m ≥ 2n, LG

is hyperenergetic).

Two nonisomorphic graphs are said to be equienergetic if they have the same energy. There exist nu-
merous pairs of graphs with identical spectra, so-called cospectral graphs. In a trivial manner, such
graphs are equienergetic. So it is interesting only in noncospectral equienergetic graphs. The concept
of equienergetic graphs was put forward independently and almost simultaneously by Brankov et al. [6]
and Balakrishnan [3]. Characterize a large class of equienergetic graphs in the following result:

Theorem 4.20. [15] Let G be a graph of order n > 2 with m edges and minimum degree δ. If δ ≥ n
2
+1,

then the energy of LG is 4(m − n). Thus, the line graphs of all (n,m)-graphs with property δ ≥ n
2
+ 1

are mutually equienergetic.

Corollary 4.10. [15] Let G be a graph of order n and minimum degree δ. If δ ≥ n
2
+ 1, then

E(LG) ≥
{

n2 − 2n, if n is even;

n2 − n, if n is odd.

In both cases, equality holds if and only if LG is an
(
dn
2
e+ 1

)
-regular graph.

In Corollary 4.9, the result related to a class of graphs are hyperenergetic. We now mention another
result of this kind.

Theorem 4.21. [15] Let T be a tree. Then LT is non-hyperenergetic, i.e.,

E(LT ) ≤ 2
(
|V (LT )| − 1

)
.
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1. Introduction

Given an n-vertex graph G = ({v1, v2, . . . , vn}, E(G)), the n× n matrix A = A(G), whose entry in the
i-th row and j-th column is

Ai,j =

{
1 if {vi, vj} ∈ E(G),

0 otherwise

23
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for any i, j ∈ {1, 2, . . . , n}, is known as the adjacency matrix of G. The eigenvalues of A(G) are also
called eigenvalues of G. Throughout this chapter, unless otherwise mentioned, G will be considered to
have n vertices, m edges and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. We will use popular notation such as Sn,
Pn and Kn for the n-vertex star, path and complete graph, respectively.

The k-th spectral moment of G is defined by

Mk(G) = λk
1 + λk

2 + · · ·+ λk
n,

which coincides with the trace of Ak, and thus it is equal to the number of closed walks of length k in G.

In 2000, Estrada considered [1–3] the adjacency matrices of iterated line graphs of molecular graphs,
he replaced the diagonal entries with the cosine of the dihedral angles in the corresponding molecules,
then he studied the sum of the k-th spectral moment normalized by k! of the resulting matrices. The
parameter is then used to measure the 3D folding of molecules. If B is the matrix with eigenvalues
β1, β2, . . . , βn, Estrada define the parameter

I(B) =
1

n

∑

k≥0

Mk(B)

k!
=

1

n

∑

k≥0

βk
1 + βk

2 · · ·+ βk
n

k!
=

1

n

n∑

i=1

eβi .

Later the Estrada index EE(G) of any graph G with eigenvalues λ1, λ2, . . . , λn, is defined to be

EE(G) = eλ1 + eλ2 + · · ·+ eλn .

Still in the 2000s, more applications of EE has been attempted. It has been used to measure bipartivity [4]
and subgraph centrality [5] of complex structures such as communication, social and metabolic networks.
Estrada, Rodrı́guez-Velázquez and Randić also used [6] EE to measure atomic branching in molecules.
See also [7] for more structure-dependence of EE.

It is well known [8] that the k-th spectral moment of A coincides with the number closed walks of
length k in G. This immediately implies that the Estrada index increases if a new edge is added to a
graph. Therefore, for any n-vertex graph G which is not the edgeless graph En nor the complete graph
Kn,

0 = Mk(En) < Mk(G) < Mk(Kn) = (n− 1)k + (n− 1)(−1)k

for any k ≥ 2, and thus

EE(En) < EE(G) < EE(Kn).

Given a class of graph G, determining a lower and/or an upper of EE(G) for G ∈ G, and finding
extremal graphs who achieve the bounds is a common problem that has been treated in the study of EE.
This chapter aims at bringing together reported results on such problems. An effort was made to include
key lemmas or descriptions of the techniques used that lead to the main results.

The next six sections are devoted to discussing bounds of the Estrada index in various classes of
graphs. In the last section, after a list of definitions of other types of the Estrada index, details on the
known bounds of the Laplacian Estrada index are provided.
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2. (n,m)-type bounds

We call an (n,m)-graph, a graph with n vertices and m edges.
If G is a bipartite (n,m)-graphs, and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, then λ1 ≥ λ2 ≥ · · · ≥

λbn/2c ≥ 0 and 0 ≥ λdn/2e = −λbn/2c ≥ λdn/2e+1 = −λbn/2c−1 ≥ · · · ≥ λn = −λ1. Since cosh(x) =

(ex + e−x)/2, we can write [4]

EE(G) = n0(G) + 2
∑

+

coshλi, (1)

where n0(G) is the nullity of G and
∑

+ is a summation over all positive eigenvalues of G. In view of
the analogy between (1) and the formula of the energy E(G) = 2

∑
+ λi, Gutman and Radenković used

the Lagrange multiplier technique and deduced a McClelland-type bound [9]

EE(G) ≥ n0(G) + (n− n0(G)) cosh

√
2m

n− n0(G)
. (2)

for any bipartite graphs G.
Introducing auxiliary quantities

EE−(G) =
n∑

i=1

e−λi and ee(G) =
n∑

i=1

coshλi,

which satisfy

EE(G)− EE−(G) = 2
∑

k≥0

M2k+1

(2k + 1)!
≥ 0

(with equality if and only if G is bipartite), and thus

EE(G) ≥ EE(G) + EE−(G)

2
= ee(G),

Gutman used again the Lagrange-multiplier technique and study

ee(G)− α

2

(
m∑

i=1

λ2
i − 2m

)

to obtain the following theorem:

Theorem 1 ( [10]).

EE(G) ≥ q + (n− q) cosh

√
2m

n− q

for any (n,m)-graph G with exactly q (< n) isolated vertices, where the equality holds if and only if

each of the connected components of G is a Ki for some i ∈ {1, 2}.

Theorem 2 (cf. [11, 12]). Let G be an (n,m)-graph G with m 6= 0, then
√
n2 + 2nm+ 2nt ≤ EE(G) < n− 1 + e

√
2m−1, (3)

where t is the number of triangles in G. The lower bound is reached if and only if G has no edge.
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The first inequality is obtained using the first four terms of the Maclaurin series of ex. The second
inequality improves the upper bounds [13]

√
n2 + 4m+ 8t ≤ EE(G) =

n∑

n=1

∑

k≥0

λk
i

k!
≤ n+

n∑

n=1

∑

k≥1

|λi|k
k!

(4)

≤ n+
∑

k≥1

1

k!

(
n∑

n=1

λ2
i

) 1
2

= n− 1 +
∑

k≥0

(
√
2m)k

k!
= n− 1 + e

√
2m.

See [14] for a more general version of the upper bound in (3), provided for weighted graphs.
If furthermore G is bipartite, then λ2k+1

1 + λ2k+1
2 + · · · + λ2k+1

n = 0 for any non-negative integer k
and one can use (1) to obtain

EE(G) = n0(G) + 2
∑

+

∑

k≥0

λ2k
i

(2k)!
= n+ 2

∑

k≥1

1

(2k)!

∑

+

(λ2
i )

k ≤ n+ 2
∑

k≥1

1

(2k)!

(∑

+

λ2
i

)k

= n+ 2
∑

k≥1

mk

(2k)!
= n− 2 + 2

∑

k≥0

(
√
m)2k

(2k)!
= n− 2 + 2 cosh(

√
m). (5)

Combined with (2), this leads to the following:

Theorem 3 (cf. [13,15]). If G is a bipartite (n,m)-graph whose zero eigenvalue has multiplicity n0(G),

then

n0(G) + (n− n0(G)) cosh

√
2m

n− n0(G)
≤ EE(G) ≤ n− 2 + 2 cosh(

√
m).

Equality on the upper bound holds for graphs obtained by adding c isolated vertex to the complete

bipartite graph Ka,b, where a+ b+ c = n and ab = m

In Theorem 2 of [13] the upper bound reads n − 2 + 2 cosh(
√
2m), but in the proof it is actually

n− 2 + 2 cosh(
√
m).

Zhao and Jia [16] used similar argument to obtain upper and lower bounds in terms of n,m and λ1:

n0(G) + cosh
√
m− λ2

1 + (n− n0(G)− 2) cosh

√
2m

n− n0(G)− 2

≤ EE(G) ≤ n− 4 + coshλ1 + cosh
√
m− λ2

1. (6)

for any bipartite (n,m)-graph G.
Arithmetic-Geometric Mean Inequality gives [17]

EE(G) ≥ eλ1 + (n− 1)

(
n∏

i=2

eλi

) 1
n−1

= eλ1 + (n− 1)e−
λ1
n−1 (7)

for any (n,m) -graph G. Let χ be the chromatic number of G. From the observation that [18] λ1 ≥ χ−1

and that f(x) = ex + (n− 1)e−
x

n−1 is an increasing function of x, Das and Lee deduce that [17]

EE(G) ≥ eχ−1 + (n− 1)e−
χ−1
n−1 ,
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with equality if and only if G is a complete graph or it has no edge.
Using [8] λ1 ≥ 2m

n
, essentially similar idea as above but slightly more technical leads to [17]

EE(G) ≥ e
2m
n + e−

2m
n + n− 2 ≥ n+

(
2m

n

)2

+
1

12

(
2m

n

)4

.

It is worth to be pointed out that since (see Theorem 3)

EE(Kn1,n2) = n1 + n2 − 2 + 2 cosh
√
n1n2,

it follows that [19]
EE(K1,n−1) < EE(K2,n−2) < · · · < EE(Kbn

2
c,dn

2
e).

Kp,n−p is the unique bipartite graph with n vertices p matching number and have maximum Estrada
index, for any given 1 ≤ p ≤ bn

2
c; it is also the unique bipartite n-vertex graph with connectivity or edge

connectivity p and maximum EE if n−2
2

≤ p ≤ bn
2
c. See [19] for detailed proofs.

The next few bounds establish some relations between EE and other well studies graph invariants.
Let n− (resp. n+) be the numbers of positive (resp. negative) eigenvalues of G, then [12]

EE(G) ≤ n− n+ +

n+∑

i=1

eλi = n− n+ +

n+∑

i=1

∑

k≥1

λk
i

k!
= n− n+ +

∑

k≥1

1

k!

n+∑

i=1

λk
i

≤ n− n+ +
∑

k≥1

1

k!

(
n+∑

i=1

λi

)k

= n− 1 + e
E(G)

2 . (8)

One can also get the lower bound [20]

EE(G) = n0(G) +
∑

1≤i≤n
λi>0

eλi +
∑

1≤i≤n
λi<0

eλi ≥ n0(G) + n+



∏

1≤i≤n
λi>0

eλi




1/n+

+ n−



∏

1≤i≤n
λi<0

eλi




1/n−

= n0(G) + n+

(
eE(G)/2

)1/n+
+ n−

(
e− E(G)/2

)1/n−
= n0(G) + n+e

E(G)
2n+ + n−e

−E(G)
2n− (9)

and [12]
EE(G) ≥ 1

2
E(G)(e− 1) + n− n+. (10)

The bound in (9) is proven [21] sharp, it can be improved involving λ1 as follows [11]

EE(G) ≥ eλ1 + n0(G) + (n+ − 1)e
E(G)/2−λ1

n+−1 + n−e
−E(G)

2n− .

Improved version of the bounds in (8) and (10) for strongly quotient graphs can be found in [22].

Theorem 4 ( [12]). For any r-regular n-vertex graph G with r 6= 0,

er + (n− 1)e
−r
n−1 ≤ EE(G) < n− 2 + er + e

√
r(n−r)−1.

If, additionally, G is bipartite then

2 cosh(r) + n− 2 ≤ EE(G) ≤ n− 3 + 2 cosh(r) + 2 cosh
√
nr/2− r2. (11)

Equalities in both sides of (11) hold if r = n
2
.
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Using the Arithmetic-Geometric Means Inequality and well known formulas such as λ1+λ2+ · · ·+
λn = 0 and λ2

1 + λ2
2 + · · · + λ2

n = 2m, Zhou [23] derived bounds of EE in terms of weighted sums of
spectral moments:

Theorem 5 ( [23]). For any (n,m)-graph G and k0 ≥ 2,
√√√√n2 +

k0∑

k=2

2k Mk(G)

k!
≤ EE(G) ≤ n− 1−

√
2m+

k0∑

k=2

Mk(G)− (
√
2m)k

k!
+ e

√
2m

where equality holds (in both sides) if and only if m = 0.

Given the fact that

λ1 ≥

√∑
v∈V (G)(deg(v))

2

n
and λ1 ≥

2m

n
,

the bound in (7) can be improved by replacing λ1 by
√∑

v∈V (G)(deg(v))
2

n
or 2m/n. The first case also pro-

vides a relation between EE(G) and the first Zagreb index Zg(G) =
∑

v∈V (G)(deg(v))
2. For a bipartite

(n,m)-graph G, the upper bound

EE(G) ≤ 24n+ 22m+ Zg(G) + 8q

24
+

8m3

90(n− n0(G))2
e

√
2m

n−n0(G)

was determined recently [24], where q is the number of quadrangles in G. An upper bound depending
on λ1 is also known:

EE(G) ≤ n− 2− λ1 −
√
2m− λ2

1 + eλ1 + e

√
2m−λ2

1 ,

see [23] for more variations of this bound.
Applied to G and its complement G, (7) leads to the Nordhaus-Gaddum type bound [23]

EE(G) + EE(G) ≥ eλ1 + eλ1 + (n− 1)

(
e−

λ1
n−1 + e−

λ1
n−1

)
≥ 2e

λ1+λ1
2 + 2(n− 1)e

λ1+λ1
2(n−1)

≥ e
n−1
2 + 2(n− 1)e−

1
2 sinceλ1 + λ1 ≥ n− 1.

3. Trees

We denote by Tn the set of all trees with n vertices. Many characterisations of extremal trees with respect
to EE corresponding to various subsets of Tn are obtained by first determining if a pertinently chosen
graph transformation increases or decreases EE. Then apply the transformation iteratively.

v wPv,w

Gv Gw
v wPv,w

G′G

Gv

Gw

Figure 1. Transformation from G to G′ of Lemma 1.
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Lemma 1 ( [25]). Let v and w be vertices of a graph G that consists of two connected graphs Gv and

Gw and a path Pv,w joining two vertices v and w in Gv and Gw respectively. Let w1, w2, . . . , wl be the

neighbours of w that are not on the path Pv,w, and define

G′ = G− ww1 − ww2 − · · · − wwl + vw1 + vw2 + · · ·+ vwl,

as in Figure 1. Then

M2k(G) ≤ M2k(G
′)

for every integer k ≥ 0. The inequality is strict if k ≥ 2 and both Gv and Gw consist of more than one

vertex.

Iterative application of the transformation in Figure 1, by always choosing Pu,v to be a P2, one obtains
a star. Repetitive application of the reverse transformation leads to a path. This observation was pointed
out in [26], confirming a conjecture [13] that the path Pn and the star Sn are respectively the n-vertex
tree with minimum and maximum Estrada index. Furthermore, Deng also proved in the same paper [26]
that Pn has the minimum Estrada index among all connected graph with order n.

3.1 Trees with degree sequence conditions

We start with the case of trees with prescribed degree sequence.

Definition 1. With given vertex degrees, the greedy tree is achieved through the following “greedy algo-

rithm”:

i) Label the vertex with the largest degree as v (the root);

ii) Label the neighbours of v as v1, v2, . . . , assign the largest degrees available to them such that

deg(v1) ≥ deg(v2) ≥ . . . ;

iii) Label the neighbours of v1 (except v) as v11, v12, . . . such that they take all the largest degrees

available and that deg(v11) ≥ deg(v12) ≥ . . . , then do the same for v2, v3, . . . ;

iv) Repeat (iii) for all the newly labelled vertices, always start with the neighbours of the labelled

vertex with largest degree whose neighbours are not labelled yet.

Figure 2. An example of a greedy tree.
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We denote by TD the set of all trees with degree sequence D, and GD the greedy tree with degree
sequence D.

Theorem 6 ( [27]). Let D be a degree sequence of a tree. For any non-negative integer k and all T ∈ TD,

we have

Mk(T ) ≤ Mk(GD).

For sufficiently large even k, the inequality is strict unless T and GD are isomorphic. Hence, we also

have

EE(T ) ≤ EE(GD)

with equality if and only if T = GD.

A sequence S = (s1, s2, . . . , sn) majorizes R = (r1, r2, . . . , rn), and we write S 4 R, if s1 + s2 +

· · ·+ sk ≤ r1 + r2 + · · ·+ rk for any k ∈ {1, 2, . . . , n}.

Theorem 7 ( [27]). Let D = (d1, . . . , dn) and B = (b1, . . . , bn) be degree sequences of trees of the same

order such that B 4 D. Then for any integer k ≥ 0 we have

Mk(GB) ≤ Mk(GD).

If B 6= D and k is even and ≥ 4, then the inequality is strict. Consequently, we also have

EE(GB) < EE(GD)

if B 6= D.

Let S ⊆ Tn such that there exists a degree sequence D of an n-vertex tree which majorizes any
degree sequence of an element in S. Then for any T ∈ S, we obtain

Mk(T ) ≤ Mk(GD) for all k ≥ 0, and thus EE(T ) ≤ EE(GD).

For example, if we take S = Tn, then we can choose D = (n− 1, 1, . . . , 1) so that GD = K1,n−1 = Sn

is the n-vertex star, and one can obtain [26]:

Corollary 1. For any n-vertex tree T 6= Sn, we have Mk(T ) ≤ Mk(Sn) for all k ≥ 0 and EE(T ) <

EE(Sn).

Note that Corollary 1 can also be deduced easily from Theorem 3, since all trees are bipartite. The
six trees with n ≥ 6 vertices and largest Estrada index are known [16,28], five of which are greedy trees:
They are

EE(G(n−1,1,...,1)) > EE(G(n−2,2,1,...,1)) > EE(G(n−3,3,1,...,1)) > EE(G(n−4,2,2,1,...,1))

> EE




n
−

4
tim

es


 > EE(G(n−4,4,1,...,1)).
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Corollary 2. Among trees T of order n with s leaves, Mk(T ) is maximized by the greedy tree G(s, 2, 2,

. . . , 2, 1, 1, . . . , 1) (the number of 2s is n− s− 1, the number of 1s is s) for any k ≥ 0.

Corollary 3. Among trees T of order n with independence number α ≥ n/2 and among all trees T with

matching number n−α ≤ n/2, Mk(T ) is maximized by the greedy tree G(α, 2, 2, . . . , 2, 1, 1, . . . , 1) (the

number of 2s is n− α− 1, the number of 1s is α) for any k ≥ 0.

The tree G(α, 2, 2, . . . , 2, 1, 1, . . . , 1) in Corollary 3 also has the maximum Estrada index among all
trees with domination number n− α, see [29].

Corollary 4. Among trees T of order n and maximum degree ∆, Mk(T ) is maximized by the the Volk-

mann tree GD for D = (∆, . . . ,∆, r, 1, . . . , 1) for some 1 ≤ r < ∆ for any k ≥ 0.

In each of the Corollaries 2, 3, 4, Mk can be replaced by EE. They are obtained in [30] using
different approach. Corollary 4 was conjectured [31] by Ilić and Stevanović in 2009. In [32], Gutman
et al. approximated the Estrada index of chemical trees (with maximum degree 4) by an expression that
increases with the Zagreb index and the spectral radius. This finding is in favour of the conjecture of
Ilić and Stevanović, because the Volkmann tree with maximum degree 4 clearly have maximum Zagreb
index among fixed order chemical trees.

For a given vertex v of a graph G, we denote by Mk(G, v) the number of closed walks of length k

starting from v in G. The following lemma appears to help to find trees with minimum Estrada index.

Lemma 2 ( [31]). Let v1, v2, . . . , vn be the vertices from one end to the other end of a path P . Let v be

a vertex of a connected graph G with |V (G)| ≥ 2, and Gn
i is obtained by merging v with the vertex vi of

P . Then

M2k(P, v1) ≤ M2k(P, v2) ≤ · · · ≤ M2k(P, vbn/2c)

and

M2k(G
n
1 ) ≤ M2k(G

n
2 ) ≤ · · · ≤ M2k(G

n
bn/2c),

for any integer k ≥ 0. The inequalities are strict for large enough k.

See [33] for a slightly stronger version of Lemma 2, considering the case where the graph G is
allowed to be in contact with two consecutive vertices in the path P . Let Gu,v(a, b) be the graph obtained
by attaching pendent path Pa and Pb at the two vertices u and v of a graph G, respectively. Zhibin Du
established the following edge grafting theorem.

Theorem 8 ( [34]). Suppose that x is a pendent vertex in Gu,v(1, 0) attached at u,

Mk(Gu,v(1, 0), x) ≤ Mk(Gu,v(1, 0), v) for all integers k ≥ 0,

and there exists k for which the inequality is strict. Then for any integers s ≥ t+ 2 ≥ 2,

EE(Gu,v(s, t)) < EE(Gu,v(t+ 1, s− 1)).
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Let 3 ≤ d ∈ N. A d-starlike (or simply starlike) tree is a tree which has only one vertex of degree
greater than 2, and it has degree d. A starlike tree with branching vertex v is called a balanced starlike
tree if the difference between the lengths of any two branches of v is at most 1.

Theorem 9 ( [31]). The balanced ∆-starlike tree has maximum even spectral moments and maximum

EE among ∆-starlike trees of order n.

The fact that the path has minimum Estrada index among trees of given order follows immediately
from Lemma 2. Ilić and Stevanović used it for more classes of trees. Let T be a tree and v is one of its
vertex with largest degree. By moving a part of T along a path one step toward the closest leaf without
modifying the degree of v, as long as this is possible, one will end with a starlike graph with branches
of length 1 except possibly one. Let B(n, i) be the tree which has exactly i leaves, one branching vertex
v, such that each branch of v has length 1 except possibly one. Such trees are usually called a broom or
a comet. For n ≥ i + 2, define B′(n, i) to be the graph obtained from B(n, i) by moving the branching
vertex one step closer to the center of the longest path.

Theorem 10 ( [31]). For any tree T 6= B(n,∆), B′(n,∆) with maximum degree ∆ ≥ 3 and n ≥ ∆+ 3

vertices,

EE(B(n,∆)) < EE(B′(n,∆)) < EE(T ).

Theorem 11 ( [31]). Among all trees T with n ≥ 2∆ vertices, which have a perfect matching and a

maximum degree ∆, the minimum Estrada index is reached by the ∆-starlike tree obtained by merging

one end vertex from each of Pn−2∆+3, P2 and ∆− 2 P3.

Li et al. continued this line of research. They studied the trees which have exactly two vertices with
maximum degree. The following lemma describes the key graph transformation used.

Lemma 3. [35] Let u0, u1, . . . , us+1 be the vertices of a path P = Ps+2, from one end to the other. Let v

and w be vertices from two connected graphs A and B, respectively. Define G1 to be the graph obtained

by merging v and u0, w and us+1, and ui with an end vertex of a path P`i for any i ∈ {1, 2, . . . , s}; and

G2 is obtained by merging v and w, respectively to the ends of a path Ps+2+
∑s

i=1 `i . If G1 and G2 are not

isomorphic, then

EE(G2) < EE(G1).

The two Lemmas 2 and 3 imply that if we replace a branch or a part between two vertices of a tree by
a path, then we obtain a tree with Estrada index smaller or equal to that of the original tree. By iteratively
performing such a transformation, while avoiding to change the two largest degrees, we necessarily end
with one of the following three types of trees:

...
...

...
... . . .

...
... . . .. . .



33

Furthers comparison of the EE of these trees leads to Theorem 12.
For any n, d, d′ ∈ N with n ≥ d + d′, we denote by BB(n, d, d′) the tree obtained by merging the

centres of the stars Sd+1 and Sd′+1 with the ends of Pn−d−d′+2, respectively. See Figure 3.

...
...

. . .

d′ − 1 timesd − 1 times
n − d − d′ times

Figure 3. B(n, d, d′).

Theorem 12 ( [35]). If T is an n-vertex tree, u, v ∈ V (T ) and deg(u) = d ≥ d′ = deg(v) > deg(w) for

all w ∈ V (T )r {u, v}, then

EE(T ) ≥ EE(BB(n, d, d′)).

BB(d+d′, d, d′) is also proven [36] to have maximum k-th spectral moment for any k ∈ N, and thus
maximum EE, among all trees with (d, d′)-bipartition.

Let SB(n,∆) be the tree obtained by merging a leaf of BB(2∆,∆,∆) and an end of a Pn−2∆+1

path. Left as a conjecture in [35], the following result was soon confirmed:

Theorem 13 ( [29]). Let n ≥ 2∆ + 1 ≥ 7 be integers, and T a tree which has two adjacent vertices

with maximum degree ∆, then EE(T ) ≥ EE(SB(n,∆)), with equality only if G and SB(n,∆) are

isomorphic.

3.2 Trees with perfect matching

Let P2n be the set of all 2n-vertex tree with perfect matching. Since for any n ∈ N the path P2n has
a perfect matching, it is the element of P2n which has minimum Estrada index. Using the notation of
Lemma 2, for any vertex v in a connected graph G and integer n ≥ 2, if Gn

i has a perfect matching
for some i then so is Gn

1 . Therefore, the element of P2n r {P2n} with minimum Estrada index has to
be a 3-starlike tree. After further comparison, Zhai and Wang obtained the appropriate lengths of the
branches:

Theorem 14 ( [37]). Let n ∈ N and T ∈ P2n r {P2n,
2 T 2n−4

1 }, where 2T 2n−4
1 is the tree obtained by

merging one end vertex from each of P2, P3 and P2n−3. Then

EE(T ) > EE(2T 2n−4
1 ).

In addition to other popular lemmas, the following lemma plays key role to obtain characterisation
of trees with perfect matching and large Estrada index.

Lemma 4 ( [38]). Let G and H be two vertex-disjoint connected graphs with |V (G)| ≥ 4 and |V (H)| ≥
2. Let z ∈ V (H) and v, v1, v2 ∈ V (G), where degG(v) = 1, degG(v1) = 2, and degG(v2) ≥ 2, and v1 is

adjacent to v and v2. We have Mk(G; v2) ≥ Mk(G; v1) for all positive k. Furthermore, if there exists at

least one k such that Mk(G; v2) > Mk(G; v1), then EE(G1) > EE(G2), where Gi is obtained from G

and H by identifying vi to z, for any given i ∈ {1, 2}.
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Define F2n to be the tree obtained by attaching a pendent vertex to each vertex of the star Sn, and
B2n is the tree obtained by merging one end vertex of a P3 path with a vertex of degree 2 in F2n−2.

Theorem 15 ( [38]). Let T ∈ P2n r {F2n, B2n} with n ≥ 5, then

EE(F2n) > EE(B2n) > EE(T ).

For n ≥ 4 and n = 2 the unicyclic graph which has 2n vertices, a perfect matching and maximum
Estrada index is [39] obtained by merging a vertex of C3 with the branching vertex of F2(n−1).

3.3 Trees with fixed diameter

Let P = Pd+1 be a path with maximum length in a tree T with diameter d. It is clear from Lemma 1 that
if we replace each branch attached to a vertex in P , by a start of the same number of vertices, to get T ′,
then we have

Mk(T ) ≤ Mk(T
′) for all k ∈ N and EE(T ) < EE(T ′) unless T = T ′.

Zhang et al. [30] further observed that, in the caterpillar T ′, if the star branch furthest from the center of
P and has no edges from P is moved to the next branching vertex closer to the center, then each spectral
moment will not decrease and the Estrada index increases. After finite steps of such transformation, one
will obtain a tree T ′′ with only one branching vertex. Combined with Lemma 5 in Section 4, this leads
to the following theorem:

Theorem 16. [30] Let T be a n-vertex tree with diameter d. Define D(n, d) to be the tree obtained by

attaching n− d− 1 pendent leaves to a center vertex of a path with length d. Then

Mk(T ) ≤ Mk(D(n, d)) for all k ∈ N and EE(T ) < EE(D(n, d))

unless T is isomorphic to D(n, d).

3.4 Trees with segment sequence conditions

A segment of a tree T is a path whose end vertices have degree 1 or at least 3, and all its internal vertices
have degree 2. In analogy to the degree sequence, the segment sequence of T is the non-increasing
sequence of the lengths of its segments. We denote by S(l1, l2, . . . , lm) the m-starlike graph where the
lengths of the m branches are l1, l2, . . . , lm, respectively. The balanced m-starlike with n vertices is
denoted by ST (n,m).

The characterisation of the tree with given segment sequence and has maximum EE, can be obtained
easily from Lemma 1.

Theorem 17. [25] If T is a tree with segment sequence (l1, . . . , lm), then

M2k(S(l1, . . . , lm)) ≥ M2k(T )
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for any integer k ≥ 0.

Furthermore, the inequality is strict if T 6= S(l1, . . . , lm) and k ≥ 2. Thus, in this case

EE(S(l1, . . . , lm)) > EE(T ) .

The following majorisation theorem follows from Lemma 2.

Theorem 18. [25] Given two segment sequences τ and τ ′ such that τ ′ 4 τ , we have

M2k(S(τ)) ≤ M2k(S(τ
′))

for every integer k ≥ 0.

Combining Theorem 17 and Theorem 18, it follows that the balanced starlike ST (n,m) maximizes
all even spectral moments and thus the Estrada index among tree with at most m segments.

Corollary 5 (cf. [25, 29]). If T is a tree with at most m segments and n vertices or at most m leaves,

then

M2k(T ) ≤ M2k(ST (n,m))

for every integer k ≥ 0, and hence

EE(T ) ≤ EE(ST (n,m)).

The broom is again maximal among trees with bounded length of segments.

Corollary 6 ( [25]). If T is a tree of order n whose longest segment consists of L edges, then

M2k(T ) ≤ M2k(B(n, n− L))

for every integer k ≥ 0, and hence

EE(T ) ≤ EE(B(n, n− L)).

3.5 k-trees

For a given k ∈ N, a graph is called a k-tree if it is the complete graph Kk or it can be obtained from a
smaller k-tree G by adding a new vertex and k edges to join it to a k-clique in G. A k-tree is only a tree
if k = 1. A vertex v of degree k in a k-tree G, whose neighbours form a k-cliques is called a simplicial
vertex G. The k-tree Kk has no simplicial vertex. The k-tree of order k+1 is usually considered to have
one simplicial vertex, although each of its k + 1 vertices satisfies the condition to be a simplicial vertex.
Let Tk

n be the set of all k-tree of order n. The (k;n)-star Sk,n−k is the only one element of Tk
n which has

n− k simplicial vertices. Let u1, u2, . . . , un−k be the simplicial vertices of Sk,n−k, and v1, v2, . . . , vk the
other remaining vertices. Define

S ′
k,n−k = Sk,n−k − u1v1 + u1u2.

It easy to check that S ′
k,n−k ∈ Tk

n. Huang and Wang observed [40] that whenever T ∈ Tk
n has fewer than

n − k simplicial vertices, there exists T ′ ∈ Tk
n with more simplicial vertices and larger Estrada index.

This helped to find the two elements of Tk
n with largest EE.
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Theorem 19 ( [40]). For any integers n > k ≥ 1 and T ∈ Tk
n r {Sk,n−k, S

′
k,n−k}, one has

EE(T ) < EE(S ′
k,n−k) < EE(Sk,n−k).

4. Unicyclic, bicyclic and tricyclic graphs

A connected graph G is a c-cyclic if |E(G)| = |V (G)| − 1+ c. For c = 1, 2, 3, G is a unicyclic, bicyclic
and tricyclic respectively. This section contains bounds of the Estrada index in those classes of graphs,
and related results.

In Lemma 1, the graphs Gv and Gw do not have to be a tree. We can use the lemma for unicyclic
graph. Hence, an n-vertex unicyclic graph with maximum Estrada index must be a graph obtained by
attaching pendent vertices to vertices of a cycle. Let Un,m be the set of such unicyclic graphs which have
n vertices and a cycle of length m.

The following exchange lemma by Wang and Xu is useful to the study of graphs which have cycles.
In particular, it suggests that there is always a way to transform a graph which has more than one cut
vertices to a graph with fewer cut vertices and larger Estrada index.

Lemma 5 ( [41]). Let G, G′ and G′′ be three disjoint connected graphs, u, v ∈ V (G), u′ ∈ V (G′), and

u′′ ∈ V (G′′). Let G1, G2 and G3 be three graphs constructed from G, G′ and G′′, where G1 is obtained

by identifying u with u′ and v with u′′, G2 by identifying u, u′ with u′′, and G3 by identifying v, u′ with u′′

. Then EE(G2) ≥ EE(G1) or EE(G3) ≥ EE(G1). Furthermore, suppose that min{|V (G′)|, |V (G′)|} ≥
2, then EE(G2) > EE(G1) if degG(u) ≥ degG(v) or EE(G3) > EE(G1) if degG(v) ≥ degG(u).

It is clear from Lemma 5 that an element of Un,m with maximum EE must have all its pendent
vertices attached to one vertex.

A special case of the following theorem appears in [42], it compares unicyclic graphs with different
cycle length.

Lemma 6 ( [41]). Let l ≥ 5 be an integer, u1, u2, . . . , ul be the consecutive vertices of a cycle Cl in a

graph G. If there exists one vertex (denoted by ul) in Cl of degree 2 and ul−2 is not adjacent to u1, then

there exists another graph G = G− u1ul + u1ul−2 with a cycle Cl−2 such that EE(G) > EE(G).

The lemma implies that the n-vertex unicyclic graph with maximum EE has to be an element of Un,3.
Bipartite unicyclic graph must have even girth, the corresponding maximal graph must have a cycle of
length 4. Theorem 20 is obtained after comparison of the elements of Un,3 ∪ Un,4.

Let Cm(k) be the graph obtained by attaching k pendent vertices to one vertex of Cm.

Theorem 20 (cf. [42, 43]). i) Let G be a bipartite unicyclic graph on n ≥ 6 vertices which is not

C4(n − 4) and C4(n − 5, 1), where C4(n − 5, 1) is obtained by attaching a pendent vertex to a

degree 2 neighbour of the branching vertex of C4(n − 5). Then EE(G) < EE(C4(n − 5, 1)) <

EE(C4(n− 4)).
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ii) Let G be an unicyclic graph on n ≥ 3 vertices. Then

min{EE(Cn),EE(Cn−1(1))} ≤ EE(G) ≤ EE(C3(n− 3)),

where the first inequality is strict if G /∈ {EE(Cn),EE(Cn−1(1))} and equality in the second

inequality only occurs if G = C3(n− 3).

The first four n-vertex bipartite unicyclic with largest EE, for n ≥ 28, have girth 4, although some
are not in Un,4, see [44]. The maximality of C4(n − 4) and C3(n − 3) are also proven in [41], where
bicyclic graphs with maximum Estrada index are described. In [43], it is shown that the complements of
the two bipartite unicyclic graphs of order n ≥ 6 with maximum Estrada index have maximum Kirchhoff
index among all complements of n-vertex bipartite unicyclic graphs. Similar work has been done in [45]
for bipartite bicyclic graph of fixed order n; for this case the two graphs with maximum EE are

EE




...
n

−
5

tim
es


 > EE




...

n
−

6
tim

es




for n ≥ 23.

Let B4 be the only bicyclic graph of order 4, it is obtained by adding one more edge to C4. E3,3
n is

defined as the graph obtained by attaching n− 4 pendent vertices to one vertex of degree 3 in B4.

Theorem 21 ( [41, 46]). Let B be an n-vertex bicyclic graphs. Then

EE(B) ≤ EE(E3,3
n ),

where the equality only occurs if the two graphs compared are isomorphic.

The authors of [41] noted that in a graph which does not have an even cycle, no two odd cycles share
an edge. This leads to the finding that, for n ≤ m ≤ 3(n − 1)/2, a connected graph of such type, with
n vertices, m edges and maximum EE is obtained by merging one vertex from m− n+ 1 triangles and
3n− 3− 2m 2-vertex paths.

A cactus is a connected graph where no two cycles have a common edge, i.e any two of its cycles
have at most one vertex in common. Shan et al. proved weaker versions of Lemmas 5 and 6 and used
them to show [47] that the graph obtained by merging one vertex from each of k disjoint triangles and
then attaching n − 2k − 1 pendent vertices to the resulting vertex has maximum Estrada index among
all cacti with n vertices and k cycles. The case of cacti graphs with fixed number of cut edges is also
discussed in the paper. See also [48] for further use of Lemma 5 to obtain that the 3-uniform linear star
S3
m with m hyperedges has maximum EE among all 3-uniform linear hypergraphs with m edges, and

EE(S3
m) =

m

e
+ (m− 1)e+ e(1+

√
8m+1)/2 + e(1−

√
8m+1)/2.

Define Tn, for 4 ≤ n ∈ N, to be the graph obtained by attaching n− 4 pendent vertices to one vertex
of the complete graph K4, and for 5 ≤ n ∈ N T ′

n is the graph obtained from the star Sn by adding three
more edges to join one leaf to three other leaves.
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Theorem 22 ( [49]). Let G be a tricyclic graph with n vertices.

i) If 4 ≤ n ≤ 9, then EE(G) ≤ EE(Tn), with equality only if G and Tn are isomorphic.

ii) If n ≥ 10, then EE(G) ≤ EE(T ′
n), with equality only if G and T ′

n are isomorphic.

Studies of the case of 3-cactus graphs, where all cycles are triangles and there is no cut edges, are
reported in [50]. Let Ht be the set of all 3-cactus graphs which have exactly t triangles. P 3

t is the only
element of Ht where no vertex has degree greater than 4, it is just a string of t triangles. S3

t is the only
element of Ht where there is a central vertex shared by all t triangles. For t ≥ 3, F 3

t is the element of Ht

obtained by attaching a triangle to a vertex of degree 2 in S3
t−1.

Theorem 23 ( [50]). For any G ∈ Ht r {P 3
t , S

3
t , F

3
t }, one has

4.28757879466(2t+ 1)− 4.80813993325 ≈ EE(P 3
t ) < EE(G) ≤ EE(F 3

t ) < EE(S3
t ).

Moreover, theorems on 3-cactus graphs with similar type as edge grafting can be found in [50], where
the branches exchange a triangle instead of just an edge. As an application, the 3-cactus graph with t

triangles, maximum degree ∆ and minimum EE is characterised in the same paper.

5. Graphs with bounded degree

It is not difficult to deduce

EE(G) = M0(G) + M1(G) +
M2(G)

2
+

M3(G)

3!
+
∑

k≥4

M2(G)

k!
= n+m+ t+

∑

k≥4

M2(G)

k!

where t is the number of triangles in G, and [51]

Mk(G) ≤ n∆k−1,

Mk(G) ≤ 2m∆k−2,

Mk(G) ≤ ∆k−3
∑

v∈V (G)

deg2(v),

Mk(G) ≤ ∆k−42
∑

uv∈E(G)

deg(u) deg(v),

Mk(G) ≤
∑

v∈V (G)

degk−1(v)

for any integer k ≥ 3, where ∆ = max{deg(v) : v ∈ V (G)}. These in turn imply bounds for Estrada
index:
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Theorem 24. [51] If G is an (n,m)-graph, with exactly t triangles and ∆ maximum degree, then

EE(G) <
n

∆
(e∆ − 1),

EE(G) < n+
2m

∆2
(e∆ − 1−∆),

EE(G) < n+m+

∑
v∈V (G) deg

2(v)

∆3

(
e∆ − 1−∆− ∆2

2

)
,

EE(G) < n+m+ t+
2
∑

uv∈E(G) deg(u) deg(v)

∆4

(
e∆ − 1−∆− ∆2

2
− ∆3

6

)
,

EE(G) <
∑

v∈V (G)

edeg(v) − 1

deg(v)
.

If G is bipartite, then

EE(G) < n+
n

∆
(cosh(∆)− 1),

EE(G) < n+
2m

∆2
(cosh(∆)− 1),

EE(G) < n+m+

∑
v∈V (G) deg

2(v)

∆3

(
cosh(∆)− 1− ∆2

2

)
,

EE(G) < n+m+
2
∑

uv∈E(G) deg(u) deg(v)

∆4

(
cosh(∆)− 1− ∆2

2

)
,

EE(G) < n+
∑

v∈V (G)

cosh(deg(v))− 1

deg(v)
.

Bounds for directed graph are also provided in the same paper.

6. Random graphs

Let Gn(p) denote a random graph obtained from the Erdös-Reényi model, that is to start from n vertices
and independently add an edge at probability p ∈ (0, 1) between each pair of vertices. The asymptotic
estimate [52]

EE(Gn(p)) = enp
(
eO(

√
n)+o(1)

)
a.s. (12)

is better than the (n,m)-type lower bound
√
n2 + 4m and the upper bound n − 1 + eE(G)/2 in (8). (12)

can be deduced from the asymptotic bounds [53]

e−(2+o(1))
√
np
(
e(n−1)p + (n− 1)e−p

)
≤ EE(Gn(p))

≤ e(2+o(1))
√
np
(
e(n−1)p + (n− 1)e−p

)
a.s., (13)

later found by Shan. (13) is in turn a special case of the bounds [53]

e−2(2+o(1))
√
∆

n∑

k=1

eνk ≤ EE(Gn(P (n))) ≤ e−2(2+o(1))
√
∆

n∑

k=1

eνk a.s.,
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which holds for ∆ � ln4 n; where ∆ is the maximum degree in Gn(P (n)), P (n) is an n×n matrix with
entries in [0, 1] and Gn(P (n)) is the edge-independent random graph with vertices v1, v2, . . . , vn such
that the probability to have an edge between vi and vj is (P (n))i,j for any 1 ≤ i, j ≤ n.

Define the n-vertex random m-partite graph G = Gn,ν1,ν2,...,νm(p) to be such that V (G) = V1 ∪ V2 ∪
· · · ∪ Vm is a partition of its set of vertices, |Vi| = nνi for all i, and the probability to have an edge
between any u ∈ Vi and v ∈ Vj for any i 6= j is p. Applications of the Weyl inequality [8] to adjacency
matrices of random graphs leads to asymptotic lower and upper of the Estrada index of Gn,ν1,ν2,...,νm(p).

Theorem 25 ( [52]).

enp(1−max{ν1,ν2,...,νm})
(
eO(

√
n) + o(1)

)
≤ EE(Gn,ν1,ν2,...,νm(p)) ≤ enp

(
eO(

√
n) + o(1)

)
a.s.

A better upper bound than what is in Theorem 25 is known for the case of bipartite graphs.

Theorem 26 ( [54]).

enν2p(eO(
√
n) + o(1)) ≤ EE(Gn,ν1,ν2) ≤ enν1p(eO(

√
n) +O(1)) a.s.

provided that limn→∞ ν2/ν1 ∈ (0, 1].

Theorem 26 is a considerable step toward the proof of the conjecture [52]

EE(Gn,ν1,ν2) = e
n
2
p(eO(

√
n) +O(1)) a.s.

Let T∆
n be the set of all tree with n vertices each of which has degree at most equal to ∆. We say that

almost every tree in T∆
n satisfies some given property Q if, assuming that every element of T∆

n has the
same probability to be picked up, the probability to get an element of T∆

n with the property Q tends to 1

as n tend to infinity.

Theorem 27. [55] There exists a constant µ∆ such that for any given ε > 0 almost every element T of

T∆
n satisfies

(µ∆ − ε)n < EE(T ) < (µ∆ + ε)n.

7. Graphs with given number of cut vertices or number of cut
edges

Say we have a graph M with n vertices r cut edges and maximum EE. Then M must be edge saturated,
in the sense that after removing the cut edges from M one obtain a graph whose components are complete
graphs. By Lemma 1, all the cut edges have to be pendent. In view of Lemma 5, we know that one can
group the pendent vertices to one vertex without reducing the Estrada index.

Theorem 28 ( [56]). Let G be a graph with n vertices and r cut edges. Let Gn,r be the graph obtained

by attaching r pendent vertices to a vertex of the complete graph Kn−r. Then EE(G) ≤ EE(Gn,r), with

equality only if G and Gn,r are isomorphic.
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Du, Zhou and Xing continued this research by studying the case of graphs with given number of cut
vertices. Let G be an n-vertex graph, which has exactly r cut vertices, and maximum Estrada index. Then
G has to be edge saturated, in the sense that no more edge can be added to G without reducing its number
of cut vertices. Thus G has to be connected, otherwise one can add an edge between two cut vertices
from different components or join a cut vertex in one component to all vertices of a component which
has no cut vertex; this would increase the Estrada index and keep the number of cut vertices unchanged.
Each cut vertex in G is contained in exactly two blocks. Further investigation of the structure of G leads
to Theorem 29.

For 0 ≤ r ≤ n−2, denote by Gn,r the graph which contain a complete graph K = Kn−r, such that if
all the edges of K are removed from G then one obtain n−r path Pt1 , Pt2 , . . . , Ptn−r , where |ti− tj| ≤ 1

for any i, j.

Theorem 29 ( [57]). Among n-vertex graphs with r cut vertices with 0 ≤ r ≤ n− 2, Gn,r is the unique

graph with maximum Estrada index.

Let Hn1,n2,n3 be the graph obtained by adding all possible edges between Kn1 ∪ Kn2 and Kn3 . By
similar reason as above, the graph with n vertex and connectivity κ (resp. edge connectivity κ′) has to
be of the form Hn1,n2,κ (resp. Hn1,n2,κ′) for some n1 and n2.

Theorem 30 ( [57]). Among n-vertex graphs with connectivity κ ≤ n − 2 (resp. edge connectivity

κ′ ≤ n− 2), Hn−κ−1,1,κ (resp. Hn−κ′−1,1,κ′) is the unique tree with maximum Estrada index.

8. Generalisations and variations of the Estrada index

As part of the growing literature on the Estrada index, generalisations and variations were attempted.

Recall that if A = A(G) is the adjacency matrix of an n-vertex graph

G = ({v1, v2, . . . , vn}, E(G)),

and D = D(G) the n × n diagonal matrix with Di,i = deg(vi) for all i, then the Laplacian matrix of
G is L = L(G) = D − A, its signless Laplacian matrix is L+ = L+(G) = D + A, and its normalized
Laplacian matrix N = N(G) is defined by

Ni,j =





1 if i = j and deg(vi) 6= 0,
−1√

deg(vi) deg(vj)
if {vi, vj} ∈ E(G),

0 otherwise.

For any pair vi, vj ∈ V (G), dG(vi, vj) is the length of the shortest path in G which joins vi to vj , it is set to
be ∞ if there is no such path. dG(vi, vj) is called the distance between vi and vj in G. The distance matrix
M = M(G) of G and its Harary matrix H = H(G) are the n× n matrices defined by Mi,j = dG(vi, vj)

and Hi,j = 1/dG(vi, vj) for any 1 ≤ i, j ≤ n. A,L, L+, N and M are all real symmetric matrices,
thus their eigenvalues are all real numbers. Throughout this section, µ1 ≥ µ2 ≥ · · · ≥ µn denote
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the eigenvalues of L, ν1 ≥ ν2 ≥ · · · ≥ νn those of L+, δ1 ≥ δ2 ≥ · · · ≥ δn are those of M and
τ1 ≥ τ2 ≥ . . . τ ≥ τn those of N .

The Laplacian Estrada index of G is defined as [58] LEE(G) = eµ1+eµ2+· · ·+eµn . Analogously, the
signless Laplacian Estrada index is [59] SLEE(G) = eν1 +eν2 + · · ·+eνn and the distance Estrada index
is [60] LEE(G) = eδ1+eδ2+ · · ·+eδn . The Seidel-Estrada index [61], Harary Estrada index [62] and the
Randić Estrada index [63] are defined in a similar manner, using the Seidel matrix S(G) = Jn−2A−In,
Harary matrix and the Randić matrix respectively, where Jn is the n × n matrix with (Jn)i,j = 1 for all
i and j. The resolvent Estrada index is defined [64–66] in terms of the eigenvalues of the resolvent(
In −

1

n− 1
A

)−1

and is given by

EEr(G) = tr

(
In −

1

n− 1
A

)−1

=
n∑

i=1

(
1− λi

n− 1

)−1

=
∞∑

k=0

Mk(G)

(n− 1)k
.

This is one special case of the generalisation of the Estrada index [66] as

EE(G, c) =
∞∑

k=0

ck Mk(G).

The normalized Laplacian Estrada index is [67] NLEE(G) = eτ1−1 + eτ2−1 + · · ·+ eτn−1. See also [68]
for the Laplacian Estrada index like, and [69] for a generalisation of the Estrada index to be defined for
Hermite matrices.

This section focuses in the Laplacian Estrada index. SLEE and NLEE are treated in another chapter
of this book. The reader is referred to [60, 70–73] for the distance Estrada index, [63, 74] for the Randić
Estrada index, [65,75] for the resolvent Estrada index, [61] for the Seidel-Estrada index, and [62,76] for
the Harary Estrada index.

8.1 (n, m)-graphs

Arithmetic-Geometric Mean Inequality, estimates of
∑n

i=1 µ
k
i /(k!) and the relation µ1 ≥ 1 +

max{deg(v) : v ∈ V (G)} lead to the following (n,m)-type bounds:

Theorem 31 (cf. [21, 58, 77–79]). For any (n,m)-graph G one has

i) LEE(G) ≥ ne2m/n with equality if and only if G has no edge,

ii) LEE(G) ≥ 1 + (n− 1)e2m/(n−1) with equality if and only if m = 0,

iii)
√
n(n− 1)e4m/n + n+ 8m+ 2Zg(G) ≤ LEE(G) ≤ n− 1 + e2m +m− 2m2 +

Zg(G)

2
with

equality on both sides if and only if G has no edge,

iv) If G has no isolated vertex, then

LEE(G) ≤
⌊
2m

n

⌋
en + n−

⌊
2m

n

⌋
− 1 + e2m−nb2m/nc

with equality if and only if m ∈ {(n2 − n)/2, (n2 − n)/2− 1}.
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v) if G is r-regular then

max
{
1 +

√
n− 2 + 2nr + 4r − 4r2 + e−2r + (n− 1)(n− 2)e2r/(n−1),

1 + (n− 1)enr/(n−1)
}
≤ e−r LEE(G) ≤ n− 1− r2 +

nr

2
+ er

vi) If ∆ is the maximum degree in G, then

LEE(G) ≥ e∆+1−2m/n + (n− 2)
(
e4m/n−∆−1

)1/(n−2)
+ e−2m/n

and

LEE(G) ≥ e−2m/n
(
e∆+1 + e4m/(n−1)−∆−1 + (n− 3)e2m/(n−1) + 1

)
.

The two lower bounds are sharp, they are reached when G = Kn for example.

Note that for an r-regular bipartite graph G, the relation e−r LEE(G) = EE(G) holds. In this case,
bounds for LEE can be derived easily from known bounds of EE.

The Nordhaus-Gaddum inequality

LEE(G) + LEE(G) ≥ 2 + 2(n− 1)en/2

follows directly from Theorem 31 ii). If the number of connected components of G is c, then G has c

zero eigenvalues, and in the same way as how to obtain Theorem 31 ii) one also get [21] LEE(G) ≥
c + (n − c)e2m/(n−c). If furthermore the maximum degree ∆ of G is known, then the bound can be
improved [80] to have

LEE(G) ≥ c+ e∆+1 + (n− c− 1)e
2m−∆−1
n−c−1 .

Further useful inequalities are µ1 ≥ 2m/(n− 1), and [81]

(
1

p

p∑

i=1

a`i

)1/`

≤
(
1

p

p∑

i=1

ahi

)1/h

for non-negative numbers a1, a2, . . . , ap and ` ≤ h with `, h 6= 0. For example, they were used to obtain
the next theorem.

Theorem 32 ( [79]). For any (n,m)-graph G with n ≥ 2,

max

{
2 +

√
n(n− 1)e4m/n + 4− 3n− 4m,

1 + 2m−
√
(n− 1)(Zg(G) + 2m) + (n− 1)e

√
(Zg(G)+2m)/(n−1)

}

≤ LEE(G) ≤ e
2m
n

(
n− 1− LE(G)− LE2(G)

2
+

Zg(G)

2
+m− 2m2

n
+ eLE(G)

)
,

where LE(G) =
∑

i=1 n|µi − 2m/n| is the Laplacian energy. Both upper and lower bounds are sharp,

they are reached when m = 0.
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Another straightforward lower bound in terms of LE [82]

LEE(G) ≥
(
`+ `+e

LE(G)/(2`+) + `−e
− LE(G)/(2`−)

)
e2m/n,

where `+ (resp. `−) is the number of positive (resp. negative) eigenvalues of L(G) and ` its nullity.
Zhou studied [83] the Laplacian spectral moment tk =

∑n
k=1 µ

k, and observed that for a graph G

with degree sequence (d1, d2, . . . , dn),

tk(G) ≥ (d1 + 1)k + (dn − 1)k +
n−1∑

i=2

dki

for any integer k ≥ 0, with equality for k = 0, 1 (in which cases t1(G) = n, t2(G) = d1+d2+ · · ·+dn),
and the equality occurs for k ≥ 2 if and only if G is the start Sn. This leads to the sharp upper bound [83]

LEE(G) =
∑

k≥0

tk(G)

k!
≥
∑

k≥0

(d1 + 1)k + (dn − 1)k +
∑n−1

i=2 dki
k!

= ed1+1 + edn−1 +
n−1∑

i=2

edi

for a graph G with at least two vertices. Below are more lower bounds deduced from previously known
lower bounds of the Laplacian spectral moments: If G has n ≥ 2 vertices then [83]

LEE(G) ≥ n+
n∑

i=1

di
1 + di

(e1+di − 1)

with equality if and only if G is a vertex-disjoint union of complete graphs, and

LEE(G) ≥ 1 + e1+d1 + (n− 2)e
2m−1−d1

n−2

LEE(G) ≥ 1 + e1+d1 + (n− 2)e

(
s(G)n
1+d1

) 1
n−2

,

with equality if and only if G is Sn or Kn, where s(G) is the number of spanning trees of G.

8.2 Trees and unicyclic graphs

Recall that the line graph of a graph G is defined by

L(G) =
(
E(G),

{
{e, e′} ⊆ E(G) : e 6= e′and e ∩ e′ 6= ∅

})
.

For any bipartite graph (and thus for any tree) G, the following relation holds

LEE(G) = n−m+ e2 · EE(L(G)). (14)

Since L(Pn) = pn−1 and L(Sn) = Kn−1, and for any n-vertex tree T the line graph L(T ) is some graph
with n − 1 vertices, the following theorem follows from the fact that Pn (resp. Kn) is the connected
graph with n vertices and minimum (resp. maximum) EE.
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Theorem 33 ( [84]). For any tree T ∈ Tn r {Pn, Sn} we have

LEE(Pn) < LEE(T ) < LEE(Sn).

Lemma 7 ( [84]). Let v be a vertex of degree d ≥ 2 in a graph G. Let u, v1, v2, . . . , vd−1 be the

neighbours of v in G. Assume that deg(vi) = 1 for all i ∈ {1, 2, . . . , d− 1}. Then

LEE(G− vv1 − vv2 − · · · − vvd−1 + uv1 + uv2 + · · ·+ uvd−1) ≥ LEE(G),

where the equality only occurs if G is a star, in which case the two graphs are isomorphic.

It is clear from Lemma 7 that the n-vertex tree with second maximum LEE should be a double
S(a, n − a) where the only two vertices of degree greater than 1 have degree a and n − a, respectively.
Further investigation of the Laplacian Estrada index of S(a, n − a) leads to the conclusion [84] that
S(2, n−2) is the element of Tn with second maximum Laplacian Estrada index for n ≥ 4. Du continued
the work and obtained Theorem 34. Let v0, v1, v2, v3, v4 be the vertices of P5 from one end to the other.
Define P (n1, n2, n3) the tree obtained P5 by attaching ni pendent vertices to vi for i = 1, 2, 3.

Theorem 34 ( [82]). For any

T ∈ Tn r
(
{S(i, n− i) : 2 ≤ i ≤ 4} ∪ {Sn, P (0, n− 5, 0), P (n− 5, 0, 0)}

)

with n ≥ 8

LEE(Sn) > LEE(S(2, n− 2)) > LEE(S(3, n− 3)) > LEE(P (0, n− 5, 0))

> LEE(P (n− 5, 0, 0)) > LEE(S(4, n− 4)) > LEE(T ).

The double star S(a, n−a) is also proven [82] to be the tree with (a, n−a)-bipartition with maximum
LEE.

LEE obeys an edge grafting theorem (see Theorem 5.1 in [33]), hence the following natural conse-
quences:

Theorem 35 ( [33]). i) For any tree T ∈ Tn with maximum degree ∆, if T is not isomorphic to the

broom B(n,∆) then LEE(T ) > LEE(B(n,∆)).

ii) Let T ∈ Tn r {Pn, B(n, 3)}, then LEE(T ) > LEE(B(n, 3)).

In analogy to Theorem 16 and Corollary 5 respectively, D(n, d) is also proven the unique element of
Tn with diameter d and maximum LEE, and the balanced starlike tree ST (n,m) is the unique n-vertex
tree with m leaves and maximum EE. See [33, 85] for more Corollaries related to these, such as the
maximal trees with given matching number, independence number or domination number.

The maximal unicyclic graphs with n ≥ 9 vertices with respect to EE and LEE also coincide:

Theorem 36 ( [86]). For any n ≥ 9, and any n-vertex unicyclic graph G 6= C3(n− 3)

LEE(G) < LEE(C3(n− 3)) = en + e3 + (n− 3)e+ 1.

See Theorem 2 in [78] and Theorem 2 in [87] for a natural continuation of Theorem36, considering
the case of graphs G with n+ 1 ≤ |E(G)| ≤ 2n− 4.
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8.3 Miscellaneous

The connected n-vertex (not necessary a tree) with matching number β and maximum LEE is determined
in [88]: it is the complete graph Kn if β = bn/2c, and the (β;n)-star Sβ,n−β if 1 ≤ β < bn/2c, where
LEE(Kn) = (n − 1)en + 1 and LEE(Sβ,n−β) = 1 + βen + (n − β − 1)eβ . Sβ,n−β is also the unique
n-vertex graph with independence number n− β and maximum LEE, see [85].

If G is not a complete graph, and G+ e is obtained by adding one more edge e to G, then [89]

µ1(G+ e) ≥ µ1 ≥ µ(G+ e) ≥ µ2 ≥ · · · ≥ µn(G+ e) ≥ µn = 0,

where the µi(G+ e) are the Laplacian eigenvalues of G+ e, and

n∑

i=1

µi(G+ e)−
n∑

i=1

µi = 2.

These imply the following useful inequality [88]

LEE(G+ e) > LEE(G).

It for instance imply that a graph with given order and connectivity κ (or edge connectivity κ′) must be
edge saturated. Using the notation of Theorem 30, we have [88]

LEE(G) < LEE(Hn−κ−1,1,κ) = ken + (n− k − 2)en−1 + ek + 1

for any n-vertex graph G 6= Hn−κ−1,1,κ with connectivity κ or edge connectivity κ.

For graphs with fixed chromatic numbers, the maximal graphs are complete multipartite. Recall that
the Turan graph Tn,χ is the complete multipartite graph Kn1,n2,...,nχ , where |ni − nj| ≤ 1 for any i and j.

Theorem 37 ( [78]). Suppose that G is a graph with n ≥ 8 vertices and chromatic number χ ≥ 2. Then

LEE(G) ≤ (χ− 1)en + (n− χ)en−2 + (2χ− 2)en−1 + 1 if χ ≤ n < 2χ, (15)

LEE(G) ≤ (χ− 1)en + 2(n− 2χ)en−3 + (3χ− n)en−2 + 1 if 2χ ≤ n < 2χ+ 3, (16)

and

LEE(G) ≤ (χ− 1)(en + en−2) + (n− 2χ+ 1)e2χ−2 + 1 if n ≥ 2χ+ 4. (17)

Bounds in all three cases are sharp: Equalities in (15) and (16) hold if and only if G = Tn,χ, and the

equality in (17) holds if and only if G = Kn−2χ+2,2,2,...,2.

Further results for the case of 2 ≤ χ ≤ n are reported in [85], where the series of lower bounds
below are also obtained. Recall that G1 ∨G2 is the graph obtained by adding all possible edges between
G1 and G2.

Theorem 38. [85] Let G be a connected graph with n ≥ 3 vertices and m edges.
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i) If G 6= Kn then

LEE(G) ≥ 1 + e∆+1 + eδ + (n− 3)e
2m−∆−δ−1

n−3 ,

where ∆ and δ are respectively the maximum and minimum degree in G. The equality holds if and

only if G = 2K1 ∨Kn−2 or G = Sn or G = (K1 ∪Kn−2) ∨K1.

If, furthermore, the complement G of G is also connected, then the following Nordhaus-Gaddum

inequality holds

LEE(G) + LEE(G) > e∆+1 + en−1−∆ + eδ + en−δ + 2(n− 3)en/2 + 2

ii) If ω ≥ 2 is the clique number of G and ∆ is the maximum degree, then

LEE(G) ≥ 1 + e∆+1 + (ω − 2)eω + (∆− ω + 1)e,

where the equality holds if G is the graph Kn−ω
ω obtained by attaching n − ω pendent vertices to

one vertex of Kω.

Kn−ω
ω is also proven [87] to be the n-vertex graph with exactly n−ω pendent vertices and maximum

LEE.

Theorem 39 ( [90]). Let Gn,ν1,ν2,...,νk(p) be the random multipartite graph as defined in Theorem 25,

such that limn→∞ βi/βj = 1, 1 ≤ i, j ≤ k. Then almost surely
(
2
√
2p(1− p)

3
−
√

2p− p2

k
+ o(1)

)
n3/2 ≤ EE(Gn,ν1,ν2,...,νm(p))

≤
(√

2p− p2
(
1 +

1√
k

)
+ o(1)

)
n3/2.
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Abstract

One of the most current and demanding problems in chemical graph theory is the problem of
characterizing trees with minimal atom-bond connectivity index (minimal-ABC trees). Although
this problem is still open, there was significant progress in the last several years heading towards its
final solution. Here, we give an overview of the related theoretical results as well as an overview of
some computational approaches that help us to better understand the structure of the minimal-ABC
trees.
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1. Introduction

Let G = (V,E) be a simple undirected graph of order n = |V | and size m = |E|. For v ∈ V (G), the
degree of v, denoted by d(v), is the number of edges incident to v. The atom-bond connectivity (ABC)

index of G is defined as

ABC(G) =
∑

uv∈E(G)

√
(d(u) + d(v)− 2)

d(u)d(v)
.
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The ABC index was introduced in 1998 by Estrada, Torres, Rodrı́guez and Gutman [23], who showed
that it can be a valuable predictive tool in the study of the heat of formation in alikeness. Ten years later
Estrada [22] elaborated a novel quantum-theory-like justification for this topological index. After that
revelation, the interest of ABC-index has grown rapidly. Accordingly, the physico-chemical applicability
of the ABC index was confirmed and extended in several studies [4, 10, 15, 32, 36, 42, 55].

As a new and well-motivated graph invariant, the ABC index has attracted a lot of interest in the
last several years both in the mathematical and chemical research communities. Due to this interest,
numerous results, structural properties and few variants of ABC index were established [6–9, 11–14, 17,
21, 24–26, 28–31, 33, 35, 37, 44, 45, 47, 50, 52–54, 56].

In the sequel, we present some additional results and notation that will be used in the rest of the
chapter. A vertex of degree one is a pendant vertex. A vertex is big, if its degree is at least 3 and it is not
adjacent to a vertex of degree 2. As in [35], a sequence of vertices of a graph G, Sk = v0 v1 . . . vk, will
be called a pendant path if each two consecutive vertices in Sk are adjacent in G, d(v0) > 2, d(vi) = 2,
for i = 1, . . . k − 1, and d(vk) = 1. The length of the pendant path Sk is k. If d(vk) > 2, then Sk is an
internal path of length k − 1.

A B1-branch is a path of length 2. A Bk-branch, k ≥ 2 is a (sub)graph comprised of vertex v of
degree k + 1 and of k pendant paths of length 2 that all have v as a common vertex. Illustrations of
Bk-branches, k ≥ 1, as well as of B∗

2 , B∗
3 , B∗∗

3 −branches are given in Figure 1.

B1 B2 B3 B4

k

Bk B∗
3 B∗∗

3B∗
2

Figure 1. Bk and B∗
k-branches, k ≥ 1.

A k-terminal vertex of a rooted tree is a vertex that has at least two children and all its (direct
and indirect) children induce B≥1-branches and maybe one B∗

1-branch. The (sub)tree induced by a k-
terminal vertex and all its (direct and indirect) children vertices, we denote as a k-terminal branch. If
the k-terminal vertex has at least one child with degree at least 3, then we say that the k-terminal branch
is proper. Notice that Bk-branches are Tk-branches, but not proper Tk-branches, and the only proper
Tk-branch in Figure 1 is the B∗∗

3 -branch.

A sequence D = (d1, d2, . . . , dn) is graphical if there is a graph whose vertex degrees are di, i =
1, . . . , n. If in addition d1 ≥ d2 ≥ · · · ≥ dn, then D is a degree sequence.

In [51] Wang defined a greedy tree as follows.

Definition 1.1 ( [51]). Suppose the degrees of the non-leaf vertices are given, the greedy tree is achieved

by the following ‘greedy algorithm’:

1. Label the vertex with the largest degree as v (the root).
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2. Label the neighbors of v as v1, v2, . . . , assign the largest degree available to them such that

d(v1) ≥ d(v2) ≥ . . .

3. Label the neighbors of v1 (except v) as v11, v12, . . . such that they take all the largest degrees

available and that d(v11) ≥ d(v12) ≥ ... then do the same for v2, v3, . . .

4. Repeat 3. for all newly labeled vertices, always starting with the neighbors of the labeled vertex

with largest whose neighbors are not labeled yet.

The rest of the chapter is structured as follows. In Section 2 we give an overview of the theoretical
and in Section 3 an overview of the computational results related to the minimal-ABC trees. Concluding
remarks are presented in Section 4.

2. Known structural properties of the minimal–ABC trees

The fact that adding an edge in a graph strictly increases its ABC index [12] (or equivalently that deleting
an edge in a graph strictly decreases its ABC index [7]) has the following two immediate consequences.

Corollary 2.1. Among all connected graphs with n vertices, the complete graph Kn has maximal value

of ABC index.

Corollary 2.2. Among all connected graphs with n vertices, the graph with minimal ABC index is a tree.

Although it is fairly easy to show that the star graph Sn is a tree with maximal ABC index [26], the
characterization of trees with minimal ABC index (also refereed as minimal-ABC trees) still remains
an open problem, despite the numerous attempts in the last years to come to a conclusion. A thorough
overview of some initial known structural properties of the minimal-ABC trees was given in [34].

To determine the minimal-ABC tress of order less than 10 is a trivial task, and those trees are depicted
in Figure 2. To simplify the exposition in the rest of the paper, we assume that the trees of interest are of
order at least 10.

n = 4 n = 9n = 8n = 7n = 6n = 5

Figure 2. Minimal-ABC trees of order n, 4 ≤ n ≤ 9.

In [35], Gutman, Furtula and Ivanović obtained the following results.
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Theorem 2.1. The n-vertex tree with minimal ABC-index does not contain internal paths of any length

k ≥ 1.

Theorem 2.2. The n-vertex tree with minimal ABC-index does not contain pendant paths of length

k ≥ 4.

An immediate, but important, consequence of Theorem 2.1 is the next corollary.

Corollary 2.3. Let T be a tree with minimal ABC index. Then the subgraph induced by the vertices of

T whose degrees are greater than two is also a tree.

The following result by Gan, Liu and You [29] characterizes the trees with minimal ABC index with pre-
scribed degree sequences. The same result, using slightly different notation and approach, was obtained
by Xing and Zhou [52].

Theorem 2.3. Given the degree sequence, the greedy tree minimizes the ABC index.

The next result was obtained in [34]. Alternatively, it can be obtained as a corollary of Theorem 2.3.

Theorem 2.4. If a minimal-ABC tree possesses three mutually adjacent vertices v1, v2, v3, such that

d(v1) ≥ d(v2) ≥ d(v3),

then v3 must not be adjacent to both v1 and v2.

The following four results give us more precise description of the structure of minimal-ABC trees by
excluding some configuration as well as giving us some bounds on the number of Tk- and B4-branches.

Theorem 2.5 ( [17]). A minimal-ABC tree does not contain a Bk-branch, k ≥ 5.

Lemma 2.1 ( [17]). A minimal-ABC tree does not contain

(a) a B1-branch and a B4-branch,

(b) a B2-branch and a B4-branch,

that have a common parent vertex.

Theorem 2.6 ( [17]). A minimal-ABC tree does not contain more than four B4-branches.

Proposition 2.1 ( [18]). A minimal-ABC tree can contain at most one proper Tk-branch, k ≥ 2.

Next result is an improvement of Theorem 2.5.

Lemma 2.2 ( [20]). A minimal-ABC tree does not contain Bk or B∗
k-branches, k ≥ 4.

An improvement of Theorem 2.2 is the following result by Lin, Lin, Gao and Wu [45].
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Theorem 2.7. Each pendant vertex of an n-vertex tree with minimal ABC index belongs to a pendant

path of length k, 2 ≤ k ≤ 3.

A further improvement was obtained by the next theorem.

Theorem 2.8 ( [35]). The n-vertex tree with minimal ABC-index contains at most one pendant path of

length 3.

The following five results consider the configurations of the minimal-ABC trees that contain a pendent
path of length 3.

Theorem 2.9 ( [20]). Suppose that T is a minimal-ABC tree of order n > 18. If T contains a pendent

path of length 3, then two B2-branches cannot be attached to the same vertex in T .

Corollary 2.4 ( [20]). Suppose that T is a minimal-ABC tree of order n > 18. If T contains a pendent

path of length 3, then there are at most two B2-branches in T .

Theorem 2.8 says that there is at most one pendent path of length 3 in the tree with minimal ABC-index.
It was already observed in [40] that the position of the path of length k ≥ 3 does not have an influence
on the value of the ABC index. The following result was strengthened with Theorem 2.12.

Theorem 2.10 ( [20]). A minimal-ABC tree of order n > 18 with a pendent path of length 3 does not

contain more than one B2-branch.

Theorem 2.11 ( [19]). A minimal-ABC tree of order n > 18 with a pendent path of length 3 does not

contain B1-branch (B∗
1-branch).

Theorem 2.12 ( [19]). A minimal-ABC tree of order n > 18 with a pendent path of length 3 may contain

a B2-branch if and only if it is of order 161 or 168. Moreover, in this case a minimal-ABC tree is

comprised of a single central vertex, B3-branches and one B2, including a pendent path of length 3 that

may belong to a B∗
3-branch or B∗

2-branch.

To the best of our knowledge, the above-mentioned results seem to be the only proven and published
properties of the minimal-ABC trees. For complete characterization of the minimal-ABC trees, besides
the theoretically proven properties, computer supported search can be of enormous help. Therefore, in
the next section we present the existing computational approaches.

3. Computation of the minimal–ABC trees

3.1 Brute–force approach

A first significant example of using computer search was done by Furtula, Gutman, Ivanović and Vukiče-
vić [27], where the trees with minimal ABC index of up to the size of 31 were computed, and an initial
conjecture of the general structure of the minimal-ABC trees was set. There, a brute-force approach of
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generating all trees of a given order, accelerated by using a distributed computing platform, was applied.
The plausible structural computational model and its refined version presented there was based on the
main assumption that the minimal ABC tree posseses a single central vertex, or said with other words,
it is based on the assumption that the vertices of a minimal ABC tree of degree ≥ 3 induce a star graph.
This assumption was shattered by counterexamples presented in [1–3, 16]. In this context, it is worth
to mention that for a special class of trees, so-called Kragujevac trees, that are comprised of a central
vertex and Bk-branches, k ≥ 1, the minimal-ABC tress were fully characterized by Hosseini, Ahmadi
and Gutman [40].

3.2 Approach by enumerating degree sequences of trees

There exist several algorithms for enumerating degree sequences of graphs. A comprehensive source
of references of such algorithms can be found in [41]. Clearly, each of those algorithms can be used
for enumerating degree sequences of trees just by considering only the degree sequences with sum of
degrees equals to 2n− 2, where n is the length of the degree sequences. However, this is not an efficient
approach, because most of the generated degree sequences are not degree sequences of trees. For an
illustration, the number of all degree sequences of length 29 is 2 022 337 118 015 338 [49], while the
number of degree sequences that correspond to trees of order 29 is 3010. Thus, it is not a surprise that
the largest reported enumerated degree sequences of graphs was only of length 29, with running time of
6733 days, distributed to 200 PCs containing about 700 cores [41].

3.2.1 Enumerating degree sequences of trees based on the Havel–Hakim
recursive characterization

In [16] by considering only the degree sequences of trees and some known structural properties of the
trees with minimal ABC index all trees with minimal ABC index of up to size of 300, within 15 days,
were computed. The enumeration of the degree sequences of trees in [16] is related to the enumeration
of the degree sequences of graphs by Ruskey et al. [48]. It is based on the Havel-Hakimi’s recursive
characterization of the degree sequences of grpahs [38, 39], and exploits the so called “reverse search”,
a term originated by Avis and Fukuda [5]. The main result, on which our algorithm is based, is the
following characterization of a degree sequence of a tree.

Theorem 3.1. A sequence of integers D = (d1, d2, · · · , dn), with n − 1 ≥ d1 ≥ d2 ≥ · · · ≥ dn−m >

dn−m+1 = · · · = dn = 1, is the degree sequence of a tree if and only if C = (c1, c2, · · · , cn−dn−m+1) is

the degree sequence of a tree, where

ci =

{
di i ≤ n−m− 1;
1 otherwise.

(1)

Proof. Let TC be a tree with degree sequence C = (c1, c2, · · · , cn−dn−m+1), with c1 ≥ c2 ≥ · · · ≥
cn−m−1 > cn−m = · · · = cn−dn−m+1 = 1 and cn−m−1 ≥ dn−m ≥ 2, satisfying (1).
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To prove the easier direction of the equivalence, just add dn−m − 1 pendant vertices to a pendant
vertex of TC , obtaining a tree TD. The degree sequence that corresponds to TD is D = (d1, d2, · · · , dn),
with n− 1 ≥ d1 ≥ d2 ≥ · · · ≥ dn−m > dn−m+1 = · · · = dn = 1.

The other direction of the equivalence, we prove as follows. Let D = (d1, d2, · · · , dn), with n− 1 ≥
d1 ≥ d2 ≥ · · · ≥ dn−m > dn−m+1 = · · · = dn = 1, be a degree sequence of a tree TD. Let vn−m

be the vertex with degree dn−m. If vn−m has dn−m − 1 pendant vertices, then delete them obtaining the
tree TC . If this is not a case, i.e., vn−m has d > 1 adjacent vertices of a degree bigger than one that
comprised a set U = {u1, u2, . . . , ud}. Let U1 be a set of adjacent vertices to u1. First, delete all edges
between u1 and vertices in U1 \ {vn−m} and add edges between vertices in U1 \ {vn−m} and a pendant
vertex whose distance to u1 is bigger than its distance to any other vertex in U . Notice that TD has more
than dn−m pendant vertices, therefore such pendant vertex must exists. Repeat the same as for u1, for
the rest of the vertices u2, u3, . . . , ud, considering one vertex per step until vn−m has dn−m − 1 pendant
vertices, obtaining a tree T ′

D. Observe that T ′
D has the same degree sequence as TD. Finally, in T ′

D delete
all dn−m − 1 pendant vertices adjacent to vn−m, obtaining the tree TC .

Let Si be the set of all sequences Di = (d1, d2, · · · , di), with fixed length i , where 1 < i ≤ n and
n − 1 ≥ d1 ≥ d2 ≥ · · · ≥ dhi

> dhi+1 = · · · = di = 1. Notice that, dhi
denotes the smallest degree in

Di larger than one. Define a function fi : Si × dhi
→ Si−dhi

+1 × dhi−1 such that for a given Di ∈ Si,
and C = (c1, c2, · · · , ci−chi+1), it holds that (C, chi−1) = fi(Di, dhi

) if

ck =

{
dk k ≤ hi − 1;
1 otherwise.

By Theorem 3.1 and definition od the function fi, we have the following two corollaries.

Corollary 3.1. For i > 0 and Di ∈ Si, the sequence Di ∈ Di if and only if fi(Di, dhi
) =

(Di−dhi+1, dhi−1) ∈ Di−dhi
+1.

Corollary 3.2. Let C = (c1, c2, . . . , chi
. . . , ci−z, ci−z+1) ∈ Di−z+1, with chi

the smallest degree bigger

than 1, and 2 ≤ z ≤ chi
. The sequence Di = (d1, d2, . . . , di) ∈ f−1

i (C, chi
) if and only if

dk =





ck k ≤ hi;
z k = hi + 1;
1 otherwise.

The following example illustrates Corollary 3.2:

f−1(65111111111) ⊇ {655111111111111, 65411111111111, 6531111111111, 652111111111}.

One may straightforwardly implement Corollary 3.2 using recursion to enumerate degree sequences of
trees.

Having all degree sequences of a particular length, it is easy to determine the trees with minimal
ABC index. An algorithm of identifying trees with minimal ABC index of order n, comprised of three
consecutive steps is presented below.
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Algorithm 1 MINABCTREES(n). Algorithm based on the degree sequences that identifies the minimal-ABC
trees.

Input: An order n of a tree
Output: A tree with the minimal ABC index

1. Enumerate the degree sequences based on the Havel-Hakim recursive
characterization, satisfying in addition some known properties of
the minimal-ABC trees.

2. Find corresponding ‘greedy trees’ for each generated degree sequence
applying Theorem 2.3.

3. Calculate the ABC index of each ‘greedy tree’ and select the tree
with minimal value.

3.2.2 Enumerating degree sequences of trees based on integer partitioning

Due to the nature of the recursive relation used in the first step of Algorithm 1, the same degree sequences
were generated several times. That disadvantage was improved in [43], where the appropriate degree
sequences were enumerated by applying an integer partitioning argument. Together with combing the
known properties of the minimal-ABC, the number and the length of the candidate degree sequences
was reduced. Thus, in [43], using a similar single computer platform as in [16], all minimal-ABC tree
of up to size of 350 within 8 days were identified.

Another advantage of applying integer partitioning for enumeration of the degree sequences is that
such enumeration can be easily parallelized. In [46], the above variant of the degree sequences’ based
algorithm, was implemented with MPI + OpenMP, and minimal-ABC trees of up to size of 400 within
23 hours, on a workstation group with 36 CPU cores, were identified.

Trees of order n, 7 ≤ n ≤ 400, with minimal ABC index obtained by computer search are presented
in Figures 3 and 4.
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Case n ≡ 0 (mod 7)

n = 7 n = 21 n = 28

n = 161, 168

n

7
− 1

35 ≤ n ≤ 154

n

7
− 3

Case n ≡ 1 (mod 7)

n = 8 n = 15 n = 22 n = 36n = 29

n

7
− 2

Case n ≡ 2 (mod 7)

n = 9 n = 16 n = 23

n = 37

n = 30

⌈
n

7

⌉
− 6

n = 43, 50, 57

n = 14

for 175 ≤ n ≤ 399

see the configuration T0 in Figure 3

for 64 ≤ n ≤ 400

see the configuration T1 in Figure 3

⌈
n

7

⌉
− 3

44 ≤ n ≤ 163

⌈
n

7

⌉
− 2

170 ≤ n ≤ 394

Figure 3. Trees of order n, 7 ≤ n ≤ 400, with minimal ABC index obtained by computer search -
cases n ≡ 0, 1, 2 (mod 7).
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Case n ≡ 3 (mod 7)

for 80 ≤ n ≤ 395 see the configuration T3 in Figure 3

Case n ≡ 4 (mod 7)

n = 10 n = 17 n = 24 n = 31

n = 11 n = 18, 25, 32, 39

⌈
n

7

⌉
− 3

n = 46

Case n ≡ 5 (mod 7)

for 117 ≤ n ≤ 397 see the configuration T5 in Figure 3

n = 12 n = 26

53 ≤ n ≤ 396

⌈
n

7

⌉
− 2

n = 19

Case n ≡ 6 (mod 7)

for 62 ≤ n ≤ 398 see the configuration T6 in Figure 3

n = 13 n = 20 n = 27, 34

⌈
n

7

⌉
− 2

8 8

n = 41 n = 48

8

n = 55

38 ≤ n ≤ 73

⌈
n

7

⌉
− 5

33 ≤ n ≤ 110

⌈
n

7

⌉
− 4

Figure 4. Trees of order n, 7 ≤ n ≤ 400, with minimal ABC index obtained by computer search -
cases n ≡ 3, 4, 5, 6 (mod 7).
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⌊
n

7

⌋

T6

n

7
− 4

T0

⌊
n

7

⌋
− 5

T2

⌊
n

7

⌋
− 1

T4

⌊
n

7

⌋

T1

⌊
n

7

⌋
− 1

T3

⌊
n

7

⌋
− 2

T5

Figure 5. Types of trees with minimal ABC index based on the existing theoretical and computational
results.

4. Concluding comments

As a consequence of the theoretically proven and computational results, one could modify the conjecture
by Gutman and Furtula [33] about the trees with minimal ABC index, with hope that it is a correct one.
The newly conjectured structure is depicted in Figure 5. However, note that this structure is computa-
tionally supported in the cases when the order of a tree is up to 400 and indeed, it was shown that it does
not hold for a larger n. In [1] several counterexamples were shown and one of them is given in Figure 6.
So, the exciting journey of complete characterization of the minimal-ABC trees continues and we hope
that the newly emerging theoretical and computational results will help us to reach the final destination.
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Hi

xi xi

xi

k

Figure 6. Graph Hi, i = 0, 1, . . . , 6 that for enough large n has smaller ABC-index than its corre-
sponding graph Ti from Figure 5, for i = 0, 2, 3, 4, 5, 6, k = (i + 6) mod 7, and k = 7,
for i = 1.
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Abstract

For a graph G = (V,E), the first Zagreb index M1 and the second Zagreb index M2 are defined
as: M1(G) =

∑
u∈V (G)(dG(u))

2 and M2(G) =
∑

uv∈E(G) dG(u)dG(v), where dG(u) is the degree
of vertex u in G. In 2007, it was conjectured that for each simple graph G with n vertices and
m edges, the inequality M2(G)/m ≥ M1(G)/n holds. Although this conjecture does not hold in
general, it was the beginning of a long series of studies in which the validity or non-validity of this
inequality for various classes of graphs. This chapter concentrates on the above inequality and its
generalization. Moreover, the difference between Zagreb indices is discussed.
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1. Introduction

Let G = (V,E) be a connected graph with vertex set |V (G)| = n and edge set |E(G)| = m. Denote
by dG(u), the degree of the vertex u of G. A pendant vertex is a vertex of degree one. An edge of a
graph is said to be pendant if one of its end vertices is a pendant vertex. For v ∈ V (G), NG(v) denotes
the neighbors of v. The maximum and minimum degree of G are denoted by ∆ and δ. The average of
the degrees of the vertices adjacent to a vertex u is denoted by µG(u). The path, star, cycle, complete
graph of order n are denoted by Pn , Sn , Cn and Kn , respectively. A regular graph is a graph where
each vertex has the same degree. A regular graph with vertices of degree k is called a k-regular graph.
A cut edge in a graph G is an edge whose removal increases the number of connected components of G.
The cyclomatic number of a connected graph is equal to ν = m−n+1, i. e., its number of independent
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cycles. If ν > 1 for a graph G then it is called cyclic graph. If a graph G has ν = 0, ν = 1 and ν = 2,
then it is called tree, unicyclic and bicyclic, respectively.

The classical first Zagreb index M1 and second Zagreb index M2 of graph G are among the oldest
and the most famous topological indices and they are defined as

M1(G) =
∑

u∈V (G)

(dG(u))
2 and M2(G) =

∑

uv∈E(G)

dG(u)dG(v) .

In 1972, the quantities the Zagreb indices were found to occur within certain approximate expressions
for the total π-electron energy [26]. In 1975, these graph invariants were proposed to be measures
of branching of the carbonatom skeleton [25]. For details of the mathematical theory and chemical
applications of the Zagreb indices, see [9, 16, 18, 19, 23, 24, 37, 39, 43, 46, 55] and the references cited
therein. The Zagreb indices were independently studied in the mathematical literature under other names
[7, 8, 10, 14, 21, 22, 44, 45]. Zagreb indices have been generalized to variable first and second Zagreb
indices in [41], where they defined as

λM1(G) =
∑

u∈V (G)

(dG(u))
2λ and λM2(G) =

∑

uv∈E(G)

(dG(u))
λ (dG(v))

λ .

A natural issue is to compare the values of the Zagreb indices on the same graph. Observe that, for
general graphs, the order of magnitude of M1 is O(n3) while the order of magnitude of M2 is O(mn2).
This suggests comparing M1(G)/n and M2(G)/m instead of M1(G) and M2(G). Using the Auto-
GraphiX system, Caporossi and Hansen [11, 12] proposed the following conjecture:

Conjecture 1.1. For all simple connected graphs G,

M2(G)

m
≥ M1(G)

n
(1)

and the bound is tight for complete graphs.

Although this conjecture is disproved for general graphs [27], it was just the beginning of a long
series of studies in which the validity or non-validity of (1) was considered for various classes of graphs.
This chapter outlines previously established results on the inequality (1) and generalization of Conjecture
1.1 for the variable Zagreb indices.

2. Zagreb indices inequality

In 2007, Hansen and Vukičević [27] showed that the Conjecture 1 does not hold in general and it is true
for chemical graphs, i.e. for graphs with maximum degree at most four.

Theorem 2.1. [27] Inequality (1) holds for all chemical graphs. Moreover, the bound is tight if and only
if all edges uv have the same pair (d(u), d(v)) of degrees or if the graph is composed of disjoint stars S5

and cycles Cp, Cq, . . . of any length.
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Although Conjecture 1 is disproved for general graphs, Vukičević and Graovac showed that it is true
for all trees.

Theorem 2.2. [52] Let T be a tree with n vertices and m edges. Inequality (1) holds with equality if
and only if T is isomorphic to K1, n−1.

In [38], Liu proved that Inequality (1) holds for all unicyclic graphs.

Theorem 2.3. [38] Let G be a unicyclic graph with n vertices and m edges. Then Inequality (1) holds
with equality if and only if G is isomorphic to Cn.

Sun and Wei [49] showed that Inequality (1) holds for bicyclic graphs except one class and character-
ized the extremal graph. Moreover, counter-examples of connected bicyclic graphs are constructed from
the excluded class. A hook is the unique neighbor of a pendant vertex. Denote the set of hooks of G by
H(G). For any vertex u ∈ H(G), NG(u) = v1, . . . , vk (k ≥ 2). Let A = {G : dG(v1) = 2, dG(vi) =

1, i = 2, 3, . . . , k}.

Theorem 2.4. [49] If G /∈ A is a connected bicyclic graph with n vertices and m edges, then Inequality
(1) is obtained with equality holding if and only if G is isomorphic to K2,3.

Denote by Gν , the class of connected graphs with cyclomatic number ν. If ν ≤ 1, then Conjecture
1 is true all graphs G in Gν by Theorem 2.2 and Theorem 2.3. Horoldagva and Lee gave the following
result when ν ≥ 2.

Theorem 2.5. [34] If ν ≥ 2 then there exists a graph G in Gν for which Conjecture 1 does not hold.

Alternative and simple proofs of Theorem 2.2-2.4 were given in [4] and [34]. See [2, 3, 13, 27, 34,
49, 52] for various examples of graphs dissatisfying Conjecture 1. Of course, it is a very natural aim
to characterizing the class of graphs for satisfying or dissatisfying inequality (1). Many researchers are
still working on this problem and we introduce known results. In the current mathematico-chemical
literature, the relation (1) is usually referred to as the Zagreb indices inequality. The subdivision graph
of a graph G is obtained by inserting new vertices of degree two on each edge of G. If a graph G has n
vertices and m edges then clearly the subdivision of G has n+m vertices and 2m edges.

Theorem 2.6. [35] Let S(G) be the subdivision graph of G. Then Zagreb indices inequality holds for
S(G) with equality if and only if G is a regular graph.

The join, G1 ∨ G2, of G1 and G2 is the graph obtained from G1 + G2 by adding new edges from
each vertex of G1 to every vertex of G2 . Then we have |V (G1 ∨ G2)| = |V (G1)| + |V (G2)| and
|E(G1 ∨G2)| = |E(G1)|+ |E(G2)|+ |V (G1||V (G2)|.

Theorem 2.7. [15] Let G be a graph of n vertices with m edges. If the Zagreb indices inequality holds
for G, then it also holds for G ∨G.
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Theorem 2.8. [15] Let G be a graph of n vertices with m edges. If the Zagreb indices inequality does
not hold for G, then it holds for G.

Let G = (V,E) be a simple graph of order n with m edges. If we put two similar graphs G side by
side, and any vertex of the first graph G is connected by edges with the corresponding vertices of the
second graph G and the resultant graph is Ĝ. Then |V (Ĝ)| = 2n and |E(Ĝ)| = 2m+ n.

Theorem 2.9. [15] If the Zagreb indices inequality holds for G, then it also holds for Ĝ.

Let G = (V,E) be a graph of order n with m edges. If we take two copies of G, and any vertex of
the first copy is connected by edges to the vertices that are adjacent to the corresponding vertex of the
second copy, the resultant graph is G̃ . Then we have |V (G̃)| = 2n and |E(G̃)| = 4m

Theorem 2.10. [15] If the Zagreb indices inequality holds for G, then it also holds for G̃.

The cartesian product G1×G2 of graphs G1 and G2 has the vertex set V (G1×G2) = V (G1)×V (G2)

and (u, x)(v, y) is an edge of G1 ×G2 if u = v and xy ∈ E(G2), or uv ∈ E(G1) and x = y.

Theorem 2.11. [31] Let G1 and G2 be two graphs with ni = |V (Gi)| and mi = |E(Gi)|, i = 1, 2. If
the Zagreb indices inequality holds for G1 and G2, then it also holds for G1 ×G2.

Let G be a graph with vertex set V and edge set E. Let V be a copy of V , V = {x : x ∈ V }. Then
denoted by G′, is the graph with vertex set V ∪ V and edge set E ′ = E ∪ {xy : xy /∈ E}.

Theorem 2.12. [31] Let G be a simple graph of n vertices with m edges. Then the Zagreb indices
inequality must hold for G′.

Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs with ni = |V (Gi)| and mi = |E(Gi)|,
i = 1, 2. Then the tensor product G1 ⊗ G2 of graphs G1 and G2 is a graph such that the vertex set
of G1 ⊗ G2 is the Cartesian product V (G1) × V (G2), and any two vertices (v′i, v

′′
j ) and (v′p, v

′′
q ) are

adjacent in G1 ⊗ G2 if and only if v′′j is adjacent with v′′q and v′i is adjacent with v′p. Then we have
|V (G1 ⊗ G2)| = n1n2. Denote by di,j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, is the degree of the (v′i, v

′′
j ) vertex of

G1 ⊗G2. Then di,j = d′i · d′′j , where d′i is the degree of the v′i vertex of G1 and d′′j is the degree of the v′′j
vertex of G2. Then we have

2|E(G1 ⊗G2)| =
∑

1≤i≤n1,1≤j≤n2

di,j =

n1∑

i=1

d′i

n2∑

j=1

d′′j = 4m1m2 ,

that is,
|E(G1 ⊗G2)| = 2m1m2 .

Theorem 2.13. [31] If the Zagreb indices inequality holds for G1 and G2, then it also holds for G1⊗G2.

Threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications
of the following two operations: (i) Addition of a single isolated vertex to the graph. (ii) Addition of a
single dominating vertex to the graph, i.e., a single vertex that is connected to all other vertices.
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Theorem 2.14. [31] The Zagreb indices inequlaity holds for all threshold graphs.

It was proved in [28] that, if T is not a star, then nM2(T ) −mM1(T ) ≥ 2(n − 3). Stevanović and
Milanič [48] improved this inequality. A Broom is a graph of order n, which have a path Pd and n − d

pendant vertices, all of these being adjacent to either the origin or the terminus of the path Pd

Theorem 2.15. [48] Let T be a tree with n vertices, m = n− 1 edges and maximum degree ∆. If T is
not a star, then

nM2(T )−mM1(T ) ≥ 2(n− 3) + (∆− 1)(∆− 2)

with equality if and only if T is a broom.

Sun and Chen [50] showed that any graph G with ∆(G)−δ(G) ≤ 2 satisfies Zagreb indices inequal-
ity.

Theorem 2.16. [50] If G is a graph with n vertices, m edges and ∆(G) − δ(G) ≤ 2, then the Zagreb
indices inequality holds with the equality if and only if all edges uv have the same pair (du, dv) of
degrees.

Let D(G) be the set of the vertex degrees of G. A set S of integers is good if for every graph G with
D(G) ⊆ S , the Zagreb indices inequality holds. Otherwise, S is a bad set. Thus, any interval of length
three is good by Theorem 2.16. One can generalize this result in the following.

Theorem 2.17. [3] Let s, x ∈ N . For every graph G with n vertices, m edges, and D(G) ⊆ {x −
s, x, x+ s}, the Zagreb indices inequality holds. i.e., D ⊆ {x− s, x, x+ s} is good.

Andova at. al. [3] show that there are arbitrarily long intervals [a, b] such that a graph with minimal
degree at least a and maximum degree at most b satisfies the Zagreb indices inequality.

Theorem 2.18. [3] For every integer c, the interval [c, c+ d√c e] is good.

Andova at. al. [2] determined when a graph with vertices degrees in the interval [a, a + n], satisfies
the Zagreb indices inequality. On the other hand there are graphs that do not satisfy the inequality, even
more, there is an infinite family of graphs of maximum degree at least 5 such that the inequality does not
hold.

Theorem 2.19. [2] For every positive integer n, the interval [a, a + n] is good if and only if a ≥
n(n− 1)/2 or [a, a+ n] = [1, 4].

Consider the function

f(i, j, k, l) = (ij − kl)

(
1

k
+

1

l
− 1

i
− 1

j

)
.

Theorem 2.20. [2] If f(i, j, k, l) < 0 for some positive integers i, j, k, l ∈ [a, b], then [a, b] is a bad
interval.
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Easy verification shows that the Zagreb indices equality holds for regular graphs and stars. In [54]
it was shown that the Zagreb indices equality holds for the subdivision graph S(G) of r-regular graph,
union of complete graphs that have same cardinality, union of p-complete graph and q-cycle graph for
p = 3, q ≥ 3, union of p-path graph and q-path graph for p = q = 2, and p = q = 3, union of p-cycle
graph and complete bipartite graph Ka,b, a ≤ b only for p ≥ 3, a = b = 2 and p ≥ 3, a = 1, b = 4. The
graph G is biregular if its vertex degrees assume exactly two distinct values. Distinguish between two
types of biregular graphs: biregular graphs of class 1 have the property that no two vertices of the same
degree are adjacent. In biregular graphs of class 2 at least one edge connects vertices of equal degree.
Abdo, Dimitrov and Gutman [1] studied some class of graphs satisfying the Zagreb indices equality.

Theorem 2.21. [1] There exist infinitely many connected graphs G of maximum degree ∆ ≥ 5 that are
neither regular nor biregular of class 1 that satisfy the Zagreb indices equality.

Theorem 2.22. [1] Let G be a graph with D(G) ⊆ [a, a+ p], a ≥ p(p− 1)/2 or D(G) ⊆ [1, 4]. Then,
G satisfies the Zagreb indices equality if

(a) G is regular graph,

(b) G is biregular graph of class 1,

(c) G is disjoint union of (p− 1)(p+ 1)/2-regular graphs and biregular graph of class

1 with degree of vertices (p− 1)p/2 and p(p+ 1)/2, where p is odd, or

(d) G is disjoint union of stars S5 and cycles of arbitrary length.

Conjecture 2.1. [1] Let I be an interval such that I = [a, a + p], a ≥ p(p − 1)/2, or I = [1, 4]. Then,
for any other interval In * I there exist infinitely many graphs G with D(G) ⊆ In such that G satisfies
the Zagreb indices equality.

3. Difference of Zagreb indices

In the previous section we discussed the Zagreb indices inequality, but direct comparisons have been
studied only to a limited extent, namely for trees [17, 48] and cyclic graphs [13]. Furtula, Gutman
and Ediz [20] studied the difference of the classical first and second Zagreb indices of a graph G and
determined a few basic properties of it. In [20], the authors mentioned that an obvious reason why the
difference of the two Zagreb indices was not considered is that for structurally similar graphs it may
assume negative, zero, or positive values and they gave a characteristic example. For a star Sn, we have
M2(Sn)−M1(Sn) = 1−n. The following lower bounds on the difference of Zagreb indices were given
in [42].

Proposition 3.1. [42] If a connected graph G is not a star, then M2(G)−M1(G) ≥ −2.

Proposition 3.2. [42] If G is a connected graph that is neither a tree nor a cycle, then M2(G)−M1(G) ≥
1.
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Furtula et al. [20] showed that the difference of the Zagreb indices is closely related to the vertex-
degree-based graph invariant

MR2(G) =
∑

uv∈E(G)

(dG(u)− 1)(dG(v)− 1)

and determined a few basic properties of MR2. They proposed that RM2 be called the reduced second
Zagreb index. Let D be a positive integer, D ≥ 2. Let SD+1 be the star on D + 1 vertices, and let
v1, v2, . . . , vD be its pendant vertices. For i = 1, 2, . . . , D, let ri be non-negative integers, labeled so that
r1 ≥ r2 ≥ · · · ≥ rD. Construct the tree T (r1, r2, . . . , rD) by attaching ri pendant vertices to the vertex vi

of SD+1, and by doing this for i = 1, 2, . . . , D. The tree T (r1, r2, . . . , rD) has thus n = 1+D+
∑D

i=1 ri

vertices. For given values of D ≥ 2 and n ≥ D + 1, the set of all trees T (r1, r2, . . . , rD) constructed in
the above described manner is denoted by T (n,D). Furtula et al. [20] characterized the n-vertex trees
with maximal RM2-values.

Theorem 3.3. [20] Let T be a tree of order n.
(i) If n is even, then RM2(T ) ≤ 1

4
(n− 2)2 with equality if and only if T ∈ T (n, n/2).

(ii) If n is odd, then RM2(T ) ≤ 1
4
(n − 1)(n − 3) with equality if and only if T ∈ T (n, dn/2e) ∪

T (n, bn/2c).

Wang and Yuan [56] studied the maximum M2 −M1 for trees of given order and also considered the
maximum M1 −M2. From Proposition 3.1 and Theorem 3.3, the following result follows.

Theorem 3.4. [20, 28, 56] If T is a tree of order n, then

1− n ≤ M2(T )−M1(T ) ≤
⌊
n− 2

2

⌋⌈
n− 2

2

⌉
+ 1− n .

Equality on the left-hand side holds if and only if T ∼= Sn. Equality on the right-hand side holds if and
only if T ∈ T (n, n/2) for even n and T ∈ T (n, dn/2e) ∪ T (n, bn/2c) for odd n.

Theorem 3.5. [56] Among all trees with diameter at least 3, the path achieves the maximum M1−M2 =

2.

Theorem 3.6. [56] If there is an edge uv with dT (u), dT (v) ≥ 3 in a tree T , and neither u or v is
adjacent to a pendant vertex, then M1(T )−M2(T ) < 0.

If G is a unicyclic graph different from Cn then M2(G) − M1(G) ≥ 1 by Proposition 3.1. Lower
bounds on M2−M1 for unicyclic graphs in terms of cycle length and maximum degree were established
in [32]. Denote S = {S(m1,m2, . . . ,mk)| mi−1 = mi+1 = 0 for mi 6= 0 , 2 ≤ i ≤ k, where mk+1 =

m1}.

Theorem 3.7. [32] Let G be a unicyclic graph with cycle length k. Then

M2(G)−M1(G) ≥
∑

u∈V (C(G))

dG(u)− 2k (2)

with equality if and only if G ∈ S .
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Let Bk
n (k ≤ n) be the unicyclic graph with n − k pendant vertices and its each pendant vertex is

adjacent to one vertex of Ck. In particular, Bn
n = Cn, a cycle of order n. Denote by Ck

n, ∆ (∆ ≥ 4) ,
a unicyclic graph obtained by identifying two pendant vertices of the path Pn−∆−k+2 with the center of
star K1,∆−1 and one vertex of cycle Ck, respectively. Denote C∆ = {C k

n, ∆ | 3 ≤ k ≤ n−∆− 1}.

Theorem 3.8. [32] Let G be a unicyclic graph of order n with maximum degree ∆. Then

M2(G)−M1(G) ≥





∆− 2 if d = 0

∆ if d = 1

2 if d > 1 ,

(3)

where d is the length of the shortest path from the maximum degree vertex u to the cycle C(G). The
equalities hold in (3) if and only if G ∼= Bk

n, G ∼= Ck
n,∆, ∆+ k = n, and G ∈ C∆, respectively.

Let N be positive integer, N ≥ 2. KN be a complete graph of order N , and let v1, v2, . . . , vN be
its vertices. For i = 1, 2, . . . , N , let ri be non-negative integers, labeled so that r1 ≥ r2 ≥ · · · ≥ rN .
Construct the graph G(r1, r2, . . . , rN) by attaching ri pendant vertices to the vertex vi of KN . The
graph G(r1, r2, . . . , rN) has thus n = N +

∑N
i=1 ri vertices. For nonnegative integers n and k with

0 ≤ k < n− 1, denote by Gk
n the set of connected cyclic graphs of order n with k cut edges. The graphs

having maximum and minimum reduced second Zagreb index in Gk
n were studied in [29].

Theorem 3.9. [29] Let G be a graph in Gk
n. If M2(G) − M1(G) or RM2(G) is maximum then G ∼=

G(r1, r2, . . . , rn−k), where | rp − rq |≤ 1 for 1 ≤ p, q ≤ n− k.

We denote by A 2
n , a class of unicyclic graphs of order n obtained by attaching two pendant edges to

the two non-adjacent vertices of the cycle Cn−2.

Theorem 3.10. [29] Let G be a graph in Gk
n . Also let M2(G)−M1(G) or RM2(G) be minimum.

(i) If k = 0, then G ∼= Cn.
(ii) If k = 1, then G ∼= Bn−1

n .
(iii) If k = 2, then G ∼= Cn−1

n,2 , G ∼= Bn−2
n , or G ∈ A2

n

(iv) If k ≥ 3, then G ∈ Un−k
n .

Corollary 3.1. [29] Let G be a cyclic graph. Then
(i) M2(G)−M1(G) = 0 if and only if G ∼= Cn.
(ii) M2(G)−M1(G) = 1 if and only if G ∼= Bn−1

n .
(iii) M2(G)−M1(G) = 2 if and only if G ∼= Cn−1

n,2 , G ∼= Bn−2
n , G ∈ A2

n or G ∈ Un−k
n .

Theorem 3.11. [13] Let G be a simple connected graph with ν independent cycles, n ≥ 5(ν − 1)

vertices, m = n+ ν − 1 edges, Zagreb indices M1 and M2. Then,

M2 −M1 ≥ 6(ν − 1) = 6(m− n) .

Moreover, the bound is tight and is attained if and only if G is a graph with vertices of degree 2 and 3
only and the vertices of degree 3 form an independent set.
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Theorem 3.12. [13] Let G be a simple and connected graph with n vertices, m(≥ n) edges and Zagreb
indices M1 and M2. Then,

M2 −M1 ≥ 11(ν − 1)− n = 11m− 12n .

Moreover, the bound is tight and is attained if G is a graph with vertices of degree 2 and 3 only and,
when n ≤ 5(ν − 1), no pair of vertices of degree 2 are adjacent.

Given n and n1, n2, . . . , nd (d ≥ 2) are positive integers such that 1 +
∑d

i=1 ni ≤ n and 1 ≤
n1 ≤ n2 ≤ · · · ≤ nd. Denote by Tn(n1, n2, . . . , nd), the set of trees T of order n with a vertex v and
adjacent vertices of v have degrees n1, n2, . . . , nd, and each connected component of T − v is star or
broom with origin w, vw ∈ E(T ). Let Γ be a class of graphs H = (V, E) of order n such that H �
{Cn , Pn , K1, n−1 , T (1, 1, 3), T (1, 1, 1, 3)} and H /∈

{
Bn , Tn(1, 2, 2), Tn(2, 2, 2), Tn(1, 2, 3),

Tn(1, 1, 2, 2), T∗
n

}
. Furtula, Gutman and Ediz [20] mentioned a problem to characterize the graphs for

which M1(G) > M2(G) or M1(G) < M2(G) or M1(G) = M2(G). Horoldagva, Das and Selenge [33]
completely solved this problem.

Theorem 3.13. [33] Let G be a connected graph of order n ≥ 3. Then
(i) M1(G) = M2(G) if and only if G ∼= Cn or G ∼= T (1, 1, 1, 3) or G ∈

{
Tn(2, 2, 2), Tn(1, 2, 3),

Tn(1, 1, 2, 2), T∗
n

}
.

(ii) M1(G) > M2(G) if and only if G ∼= K1, n−1 or G ∼= Pn or G ∼= T (1, 1, 3) or G ∈ Bn or
G ∈ Tn(1, 2, 2).
(iii)M1(G) < M2(G) if and only if G ∈ Γ.

4. Comparing variable Zagreb indices

Vukičević and Graovac pointed out that inequality (1) can be generalized to the variable Zagreb indices,
namely for which λ it holds that

λM1(G)

n
≤

λM2(G)

m
, (4)

where λ is any real number. Inequality (4) is known as generalized Zagreb indices inequality.

Vukičević [51] proved that inequality (4) holds for all graphs G and λ ∈ [0, 1
2
]. Later, Andova and

Petruevski [5] gave a complete proof using Karamata’s inequality.

Theorem 4.1. [5, 51] Inequality (4) holds for all graphs and for all λ ∈ [0, 1
2
].

We know from the previous section that the Zagreb indices inequality holds for chemical graphs,
trees, unicyclic graphs and graphs with small difference between the maximum and minimum vertex
degrees. The generalized Zagreb indices inequality also holds for these mentioned class of graphs when
λ ∈ [0, 1].

Theorem 4.2. [51] Inequality (4) holds for all chemical graphs and all λ ∈ [0, 1].
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Theorem 4.3. [53] Inequality (4) holds for all trees and all λ ∈ [0, 1].

Theorem 4.4. [30] Inequality (4) holds for all unicyclic graphs and for all λ ∈ [0, 1].

Theorem 4.5. [40] Inequality (4) holds for all graphs with ∆− δ ≤ 2 and for all λ ∈ [0, 1].

Theorem 4.6. [40] Inequality (4) holds for all graphs with ∆− δ ≤ 3 (δ 6= 2) and for all λ ∈ [0, 1].

If λ > 1, then two examples where given in [57] for unicyclic graphs such that λM1(G)/n >λ

M2(G)/m and λM1(G)/n <λ M2(G)/m. Huang at. al. [36] proved that opposite inequality of (4) holds
for all λ ∈ (−∞, 0) and all graphs G.

Theorem 4.7. [36] Let G be a graph with n vertices and m edges. Then λM1(G)/n ≥λ M2(G)/m

holds for all λ ∈ (−∞, 0). Moreover, equality holds if and only if G is a regular graph.

Vukičević [51] characterized some class of graphs and intervals in which inequality (4) does not hold
and proposed an open problem: Identify λ ∈ (1/2,

√
2/2] such that λM1(G)/n >λ M2(G)/m for all

graphs G.

Theorem 4.8. [51] If λ ∈ R \ [0, 1) then inequality (4) does not hold for all complete unbalanced
bipartite graphs.

Theorem 4.9. [51] Let λ ∈ (
√
2/2, 1). Then there is a graph such that inequality (4) does not hold.

Bogoev [6] gave a complete answer to Vukičević’s open problem.

Theorem 4.10. [6] For all graphs G and λ ∈ (1/2,
√
2/2], inequality (4) holds.

The difference of the variable Zagreb indices for cyclic graphs were studied in [47]. Let Γ be a class
of graphs H = (V, E) in Gν such that 2 ≤ di ≤ 3 (there exists a vertex vk in H such that dk = 3) for all
vi ∈ V (H) and the set of vertices of degree three is an independent set in H .

Theorem 4.11. [47] Let G be a graph in Gν and λ ∈ (0, 1]. Then

λM2(G)− λM1(G) ≥ (ν − 1)
(
3λ+1 2λ+1 − 2 · 32λ − 3 · 22λ

)
(5)

with equality holding if and only if G ∼= Cn or G ∈ Γ.
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1. Introduction

Let G be a simple graph with n vertices and m edges. The cyclomatic number of G is c = m − n + 1.
For example, if c = 0 then a connected graph G is called a tree. If c = 1, 2, 3, 4, then G is said to be
a unicyclic, bicyclic, tricyclic, and tetracyclic graph, respectively. Let di be the degree of a vertex vi in
G. The maximum and minimum vertex degrees in G are denoted by ∆ and δ, respectively. A chemical
graph is a connected graph with the maximum vertex degree at most 4. The Laplacian matrix of G is
defined as L = D − A, where A is the adjacency matrix of G and D = diag(d1, d2, . . . , dn) is the
diagonal matrix of vertex degrees. The Laplacian spectrum of G is the spectrum of its Laplacian matrix,
and consists of the values µ1 ≥ µ2 ≥ · · · ≥ µn.

In 1993, Klein and Randić [7] introduced the resistance distance, based on the electrical network
theory. The Kirchhoff index [3] is defined as Kf(G) =

∑
i<j

rij , where rij is the resistance distance

between vertices vi and vj . For a connected graph G with n ≥ 2 vertices, it has been proven [5, 14] that

Kf(G) = n

n−1∑

i=1

1

µi

.
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For results on the Kirchhoff index, we only cite recent works [2, 8, 11, 13].
The Laplacian–energy–like invariant [10] of G, denoted by LEL(G), has recently been defined as

LEL(G) =
n−1∑

i=1

√
µi .

There are several works about this graph invariant (see [9] and the references therein).
Motivated by [4], in which two sufficient conditions are established for Kf(G) < LEL(G) and nine

graphs with Kf(G) < LEL(G) are detected, there are some works on this topic.
This survey outlines results on the comparison between Kirchhoff index and Laplacian–energy–like

invariant of graphs. This chapter consists of five sections, followed by detailed list of references on the
comparison of Kirchhoff index and Laplacian–energy–like invariant. Section 2 is devoted to some graphs
with Kf larger than LEL. The results on Kf smaller than LEL are presented in Section 3. In Section
4, we consider some graph operations on Kf and LEL. In the last section, comparisons between the
two invariants of some special graphs are given.

2. Graphs with Kf larger than LEL

Theorem 2.1 [4]. Let G be a connected graph of order n with m edges and minimum degree δ. If

2m ≤ (n− 1)n2/3 + δ, then Kf(G) > LEL(G).

Corollary 2.2 [4]. Let T be a tree of order n. Then Kf(T ) > LEL(T ) for n > 2.

Corollary 2.3 [4]. Let U be a unicyclic graph of order n. Then Kf(U) > LEL(U) for n ≥ 4.

Corollary 2.4 [4]. Let B be a bicyclic graph of order n. Then Kf(B) > LEL(B) for n ≥ 5.

Theorem 2.5 [4]. Let G be a connected graph of order n with m edges. If 2m ≤ (n − 1)n2/3, then

Kf(G) > LEL(G).

The kite Kin,ω is the graph of order n, obtained by attaching a pendent path on n − ω vertices to a
vertex of the complete graph of order ω. Let Γn,k be the class of graphs of order n obtained by attaching
a pendent path on n− k vertices to a vertex of a connected graph of order k. Obviously, Kin,k ∈ Γn,k.
Theorem 2.6 [4]. Let G ∈ Γn,k with k ≥ 4 and n − k ≥ 1. If k3 < (3n

8
− 2)2(n − k)2, then

Kf(G) > LEL(G).

Corollary 2.7 [4]. Let G ∈ Γn,k with k ≥ 4 and n − k ≥ 2. If k < n
2

and n ≥ 12, then Kf(G) >

LEL(G).

Corollary 2.8 [4]. Let G ∈ Γn,k with k ≥ 4 and n − k ≥ 2. If k < 2n
3

and n ≥ 20, then Kf(G) >

LEL(G).
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3. Graphs with Kf smaller than LEL

In [4], an open problem is proposed:
Problem 3.1 [4]. Is it possible to find a constant c (which may depend on the number of vertices and

maximum vertex degree ∆), such that for any connected graph G with m ≥ c edges ,

Kf(G) < LEL(G) ?

Theorems 2.1 and 2.5 immediately imply:
Corollary 3.2 [1]. Let G be a connected graph of order n. Let δ be the smallest degree of a vertex of G.

If Kf(G) < LEL(G), then G must have more than 1
2
[(n− 2)n2/3 + δ] edges.

Corollary 3.3 [1]. Let G be a connected graph of order n. If Kf(G) < LEL(G), then G must have

more than 1
2
(n− 1)n2/3 edges.

In [1], a weakened variant of Corollary 3.2 was obtained:
Corollary 3.4 [1]. Let G be a connected graph of order n. If Kf(G) < LEL(G), then G must have

more than 1
2
[(n− 2)n2/3 + 1] edges.

Remark 3.5 [1]. By combining Corollaries 3.3 and 3.4, if the relation Kf(G) < LEL(G) is obeyed,

then the graph G must possess more than 1
2
min{(n− 1)n2/3, (n− 2)n2/3 + 1} edges. It is easy to show

that (n− 2)n2/3 + 1 < (n− 1)n2/3 holds for n ≥ 3.

By using Remark 3.5, the following theorem is attained:
Theorem 3.6 [1]. Let G(†) be the set of connected graphs with cyclomatic number c. For any fixed value

of c, the number of elements of G(†) for which Kf < LEL holds is finite.

Remark 3.7 [1]. For c = 0, 1, 2, 3, 4, connected graphs for which the Kirchhoff index is smaller than the

Laplacian–energy–like invariant can possess at most 3, 5, 5, 6, and 7 vertices, respectively.

Remark 3.8 [4]. For G ∼= Kn, Kf(G) = n− 1 < (n− 1)
√
n = LEL(G).

Corollary 3.9 [4]. The only tree for which Kf(T ) < LEL(T ) holds is K2.

Corollary 3.10 [4]. The only unicyclic graph for which KF (G) < LEL(G) holds is K3.

Corollary 3.11 [4]. The only bicyclic graph for which Kf(G) < LEL(G) holds is K4 − e.

Corollary 3.12 [1]. The only tricyclic graphs for which Kf(G) < LEL(G) holds are G ∼= H1–H4,

depicted in Fig. 1.

Corollary 3.13 [1]. The only tetracyclic graphs for which Kf(G) < LEL(G) holds are G ∼= H5–H8,

depicted in Fig. 1.

Remark 3.14 [1]. There are 2, 20, and 132 connected tetracyclic graphs with 5, 6, and 7 vertices,

respectively. Among the 7-vertex species, no one satisfies the inequality Kf < LEL.

The union of simple graphs G1 and G2 is the graph G1∪G2 with vertex set V (G1)∪V (G2) and edge
set E(G1) ∪ E(G2). Let G1 ∨G2 be the graph obtained from G1 ∪G2 by connecting all vertices of G1

to all vertices of G2.
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Figure 1. The tricyclic and tetracyclic graphs with Kf(G) < LEL(G).

Let

G1(n) = Kn−2 ∨ (2K1)

G2(n) = Kn−4 ∨ C4

G3(n) = Kn−3 ∨ (K1 ∪K2)

G4(n) = Kn−6 ∨ (C4 ∨ 2K1)

G5(n) = Kn−5 ∨ ((K2 ∪K1) ∨ 2K1)

G6(n) = Kn−4 ∨ P4

G7(n) = Kn−3 ∨ (3K1)

G8(n) = Kn−4 ∨ (K1 ∪K3) .

Then

G1(n) = K2 ∪ (n− 2)K1

G2(n) = 2K2 ∪ (n− 4)K1

G3(n) = K1,2 ∪ (n− 3)K1

G4(n) = 3K2 ∪ (n− 6)K1

G5(n) = K1,2 ∪K2 ∪ (n− 5)K1

G6(n) = P4 ∪ (n− 4)K1

G7(n) = K3 ∪ (n− 3)K1

G8(n) = K1,3 ∪ (n− 4)K1 .

Theorem 3.15 [4]. For any graph G ∈ {Kn, G1(n), . . . , G8(n)}, the inequality Kf(G) < LEL(G)

holds.

Denote by G the complement of G. Let G∗(n) be the graph depicted in Fig. 2.
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Figure 2. The graph G∗(n).

Theorem 3.16 [6]. Let G be a connected graph with n ≥ 7 vertices. If G is a spanning subgraph of

G∗(n), then Kf(G) < LEL(G).

Theorem 3.17 [12]. Let G be a connected graph with algebraic connectivity µn−1 ≥ k and let m be the

number of edges and ∆ the maximum degree of G. If

2m >
k(
√
n+

√
k)

k +
√
n+

√
k

(
(n+ k)(n− 1)

k
− (n− 1)

√
k(∆ + 1)

√
n+

√
k

)

then Kf(G) < LEL(G).

The following corollary provides a partial answer to Problem 3.1:
Corollary 3.18 [12]. Let G be a connected graph G with algebraic connectivity µn−1 ≥ 1. Let m be the

number of edges and ∆ the maximum degree of G. If

2m >

√
n+ 1√
n+ 2

(
n2 − 1− (n− 1)

√
∆+ 1√

n+ 1

)

then Kf(G) < LEL(G).

Corollary 3.19 [12]. Let T be a tree and T its complement. If the order of T is n ≥ 7 and ∆(T ) ≤ n−2,

then K(T ) < LEL(T ).

Corollary 3.20 [12]. Let U be a unicyclic graph and U its complement. If the order of U is n ≥ 14 and

∆(U) ≤ n− 2, then Kf(U) < LEL(U).

Corollary 3.21 [12]. Let B be a bicyclic graph and B its complement. If the order of B is n ≥ 15 and

∆(B) ≤ n− 2, then Kf(B) < LEL(B).

Corollary 3.22 [12]. Let TC be a tricyclic graph and TC its complement. If the order of TC is n ≥ 16

and ∆(TC) ≤ n− 2, then Kf(TC) < LEL(TC).

Corollary 3.23 [12]. Let QC be tetracyclic graph and QC its complement. If the order of QC is n ≥ 17

and ∆(QC) ≤ n− 2, then Kf(QC) < LEL(QC).

4. Graph operations on Kf and LEL

Theorem 4.1 [1]. Let G be a connected graph and e its edge, such that G − e is also connected. If

Kf(G) > LEL(G), then Kf(G− e) > LEL(G− e) holds.

Corollary 4.2 [1]. If Kf(G) > LEL(G) and if e1, e2, . . . , et are edges of G, such that G − e1 − e2 −
· · · − et is connected, then Kf(G− e1 − e2 − · · · − et) > LEL(G− e1 − e2 − · · · − et).

Similar to Theorem 4.1, in [1] it was obtained:
Theorem 4.3 [1]. Let G + e be the graph obtained by adding a new edge to the connected graph G. If

Kf(G) < LEL(G), then Kf(G+ e) < LEL(G+ e) holds.
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Corollary 4.4 [1]. If G is a connected graph of order n with cyclomatic number c ≥ 0, such that

Kf(G) < LEL(G), then we can construct a connected graph G† of order n, with cyclomatic number

c†, c < c† ≤ (n−1)(n−2)
2

, such that Kf(G†) < LEL(G†).

Corollary 4.5 [1]. If n ≥ 4, then Kf(Kn − e) < LEL(Kn − e).

The product of G1 and G2 is the graph G1 × G2 whose vertex set is the Cartesian product V (G1)×
V (G2). Suppose that v1, v2 ∈ V (G1) and u1, u2 ∈ V (G2). Then (v1, u1) and (v2, u2) are adjacent in
G1 ×G2 if and only if one of the following conditions is satisfied: (i) v1 = v2 and {u1, u2} ∈ E(G2), or
(ii) {v1, v2} ∈ E(G1) and u1 = u2.

Let Hn = Kp ×K2. Then n = 2p.

Theorem 4.6 [1]. Let G be a graph of order n ≥ 8 (n is even ) and let Hn be a subgraph of G. Then

Kf(G) < LEL(G).

Remark 4.7 [1]. In particular, H4 = C4, Kf(C4) > LEL(C4), and Kf(H6) > LEL(H6).

Let H ′
n be the graph of order n (n = 2p + 1) obtained from Hn in such a way that H ′

n = Hn ∪K1,
where Hn = Kp ×K2.

Theorem 4.8 [1]. Let G be a graph of order n ≥ 5 (n is odd ) and let H ′
n be a subgraph of G. Then

Kf(G) < LEL(G).

Next results are related to the complement of a graph.

Theorem 4.9 [12]. If G is a graph for which µ1 < n− n2/3, then Kf(G) < LEL(G).

The line graph of G, denoted by `(G), is the graph whose vertices correspond to the edges of G, with
two vertices of `(G) being adjacent if and only if the corresponding edges of G share a common vertex.

Remark 4.10 [12]. Let t1 be the maximum vertex degree of the line graph L(G). By the proof the

Theorem 4.9, if t1 < n− n2/3 − 2, then Kf(G) < LEL(G).

Corollary 4.11 [12]. If G ∈ Γn,k with k ≥ 4 and n− k ≥ n2/3 + 2. Then Kf(G) < LEL(G).

Corollary 4.12 [12]. Let G � Kn be an r-regular graph with n vertices. If r < (n−n2/3)
2

, then Kf(G) <

LEL(G). If r > n+n2/3−2
2

, then Kf(G) < LEL(G).

Let KKj
n be the graph obtained from two copies of complete graphs Kn, by joining a vertex of one

copy with j , 1 ≤ j ≤ n, vertices of the other copy [12].

Theorem 4.13 [12]. For j ≥ n
4
, let KKj

n be a spanning subgraph of the graph of G. Then Kf(G) <

LEL(G) for n ≥ 22.

Remark 4.14 [12]. If G is a graph of order n, (n ≡ 0(mod 8)) having two cliques of order n
2

each, such

that there are at least n
8

edges between a vertex in one of the cliques and n
8

vertices of the other clique,

then for n ≥ 44, Kf(G) < LEL(G).

Theorem 4.15 [12]. If KKj
n is a spanning subgraph of a graph G with 2n vertices, then Kf(G) <

LEL(G) for n ≥ 7.

Theorem 4.16 [12]. For p ≥ 4, let Kp ∨Kr, 1 ≤ r ≤ p, be a spanning subgraph of a graph G of order

n = p+ r. Then Kf(G) < LEL(G).

Theorem 4.17 [12]. If Kn
2
,n
2

is a spanning subgraph of a graph G of order n, then Kf(G) < LEL(G)

for all n ≥ 5.

Similar to Theorem 3.15, the following is an analogous condition on the graph complement.
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Theorem 4.18 [12]. Let G be a connected graph with n vertices, with largest Laplacian eigenvalue

µ1 ≤ n
2

and algebraic connectivity µn−1 ≥ k. If

2m <
(∆ + 1)(n−∆− 1)

(
n(n− 1) + (n− 1)

√
k(n− k)

)

n(
√
n− k +

√
k) + (∆ + 1)(n−∆− 1)

then Kf(G) < LEL(G).

Corollary 4.19 [12]. Let T be a tree on n ≥ 41 vertices with largest Laplacian eigenvalue µ1 ≤ n
2

and

algebraic connectivity µn−1 ≥ 0.1. Then Kf(T ) < LEL(T ).

5. Comparison of Kf and LEL of special graphs

Theorem 5.1 [6]. Let G be a chemical graph with n vertices. Then Kf(G) > LEL(G) except the

graphs Hi (i = 1, . . . , 41) in Figs. 3–7.
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Figure 3. Chemical graphs with n = 8 vertices, δ = ∆ = 4 and Kf < LEL.
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Figure 4. Chemical graphs with degree sequences (4, 4, 4, 3, 3, 3, 3) and (4, 4, 4, 4, 4, 3, 3).
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Figure 5. Chemical graphs with degree sequence (4, 4, 4, 4, 4, 4, 2).
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Figure 6. Chemical graphs with n = 6 vertices and Kf < LEL.
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Figure 7. Chemical graphs with n ≤ 5 vertices and Kf < LEL.

Theorem 5.2 [6]. Let G be a connected r-regular graph with n vertices. If r ≤ (n−1
n
)n2/3, then

LEL(G) < Kf(G).

Remark 5.3 [6]. For an r-regular graph with r = n2/3, let r = 4 = 82/3 = n2/3. It is easy to see that
there exist graphs with LEL(G) > Kf(G).
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Theorem 5.4 [6]. Let G be an r-regular graph with r ≤ (n−1
n
)n2/3. Then LEL(`(G)) < Kf(`(G)),

where `(G) is the line graph of G.

The independence number of a graphs G, denoted by α, is the number of vertices in the largest
independent set of G.

Let CS(n, n− α) := Kα ∪ (n− α)K1.

Theorem 5.5 [6]. Let G be a connected graph with n vertices and independence number α. If α >

n−√
n, then LEL(G) < Kf(G) holds except for the graphs in Fig. 8.
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Figure 8. Graphs with independence number α ≥ n−√
n and Kf < LEL.

Acknowledgment: Research supported by National Natural Science Foundation of China (No. 11301-
093), Natural Science Foundation of Guangdong, China (No. 2014A030313640), Foundation for Dis-
tinguished Young Talents in Higher Education of Guangdong, China (No. Yq2014111), and Guangdong
Higher School Characteristic Innovation Project (Natural Science) (No. 2015KTSCX081).

References
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1. Introduction

Let G = (V,E), V = {1, 2, . . . , n}, E = {e1, e2, . . . , em}, be a simple connected graph of order n ≥ 2

and size m. If vertices i and j are adjacent, we denote it by i ∼ j. Further, let d1 ≥ d2 ≥ · · · ≥ dn > 0,
∆ = d1, ∆2 = d2, δ = dn, be a sequence of vertex degrees, A the adjacency matrix of G, and D =

diag(d1, d2, . . . , dn) the diagonal matrix of vertex degrees. Matrix L = D −A is the Laplacian matrix
of G. Eigenvalues of L, µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0, are the Laplacian eigenvalues of graph G.
Some well known properties of the Laplacian eigenvalues of graph are (see for example [5] and [13]):

n−1∑

i=1

µi =
n∑

i=1

di = 2m and
n−1∑

i=1

µ2
i =

n∑

i=1

d2i +
n∑

i=1

di = M1 + 2m,

where

M1 =
n∑

i=1

d2i =
∑

i∼j

(di + dj) =
m∑

i=1

(d(ei) + 2) ,

is the first Zagreb index [30]. In the same paper (see also [24, 25, 34, 35]) the second Zagreb index, M2,
and so called forgotten Zagreb index, F, were defined as follows

M2 = M2(G) =
∑

i∼j

didj and F = F (G) =
n∑

i=1

d3i .
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Matrix L∗ = D−1/2LD−1/2 = I − D−1/2AD−1/2 is the normalized Laplacian matrix of G. Its
eigenvalues, ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 > ρn = 0, represent normalized Laplacian eigenvalues of G. The
following is valid for ρi, i = 1, 2, . . . , n, (see [13]):

n−1∑

i=1

ρi = n and
n−1∑

i=1

ρ2i = n+ 2R−1,

where
R−1 =

∑

i∼j

1

didj
,

is the general Randić index (also called branching index) introduced in [71].
In 1993 [41] a new distance function, named resistance distance, based on the theory of electrical

networks was introduced. A graph G was viewed as an electrical network N obtained by replacing each
edge of G with a unit resistor. The resistance distance between the vertices i and j of the graph G,
denoted by rij , is then defined to be the effective resistance between the nodes i and j in N . Similar
to the long recognized shortest–path distance, the resistance distance is also intrinsic to the graph, not
only with some nice purely mathematical properties, but also with a substantial potential for chemical
applications.

The Wiener index is the sum of ordinary distances between all pairs of vertices of a (connected)
graph; for details and further references see [76]. The Kirchhoff index is defined in analogy to the
Wiener index as [6, 41]:

Kf(G) =
∑

i<j

rij.

A long time known result for the Kirchhoff index is [29]:

Kf(G) = n

n−1∑

i=1

1

µi

.

In 2007, a closely related graph invariant, named degree Kirchhoff index, was put forward in [12]. It
is defined as

Kf ∗(G) =
∑

i<j

didjrij.

In analogy with the Kirchhoff index, the degree Kirchhoff index can also be represented as [12]

Kf ∗(G) = 2m
n−1∑

i=1

1

ρi
.

The graph invariants Kf and Kf ∗ are currently much studied in the mathematical and mathematico–
chemical literature. In this chapter we give a survey on the bounds for the Kirchhoff and degree Kirchhoff
indices. We say that a bound, either of Kirchhoff or degree Kirchhoff index, belongs to a class I(α) if it
depends on parameters from the set α. We consider bounds involving either of the following parameters:
a number of vertices, n, a number of edges, m, vertex degrees, d1, . . . , dn, the first Zagreb index, M1,

general Randić index, R−1, number of spanning trees of a graph, t =
1

n

n−1∏

i=1

µi =

∏n
i=1 di
2m

n−1∏

i=1

ρi.
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We will give mutual comparison of the bounds only if they belong to the same class. Before we
proceed with the survey, we give exact values of the Kirchhoff and degree Kirchhoff indices for some
special classes of graphs.

For the complete graph Kn, complete bipartite graph Kr,n−r, 1 ≤ r ≤
⌊
n
2

⌋
, and cycle Cn, the

following equalities are, respectively, valid:

Kf(Kn) = n− 1, Kf ∗(Kn) = (n− 1)3,
Kf(Kr,n−r) = (n− 1)

(
r

n−r
+ n−r

r

)
− 1, Kf ∗(Kr,n−r) = r(n− r)(2n− 3),

Kf(Cn) =
n3 − n

12
, Kf ∗(Cn) =

n3 − n

3
.

In a special case when r = 1 a star graph K1,n−1 is obtained, and

Kf(K1,n−1) = (n− 1)2, Kf ∗(K1,n−1) = (n− 1)(2n− 3).

For the complete bipartite graphs where r = n
2
, n is even, we have

Kf(Kn
2
,n
2
) = 2n− 3, Kf ∗(Kn

2
,n
2
) =

n2

4
(2n− 3).

For the path Pn, holds

Kf(Pn) =
n3 − n

6
.

Let G = Kn − e be a graph obtained after removing an edge from the complete graph Kn, and
G = Kn−1+e a graph obtained after adding a vertex to the complete graph Kn−1 and edge that connects
that vertex to an arbitrary vertex from Kn−1. The values of Kirchhoff index for these graphs are [17,42]:

Kf(Kn − e) = n− 2 +
n

n− 2
and Kf(Kn−1 + e) = 2n− 1− 2

n− 1
.

In [60] (see also [64]) a class of d-regular graphs Γd, 1 ≤ d ≤ n − 1, was defined as follows. Let
N(i) be a set of all neighborhoods of the vertex i, i.e. N(i) = {k | k ∈ V, k ∼ i}, and d(i, j) the distance
between vertices i and j. Denote by Γd a set of all d-regular graphs, 1 ≤ d ≤ n− 1, with the properties
that diameter is D = 2 and |N(i) ∩N(j)| = d. For any Gd ∈ Γd holds

Kf(Gd) =
n(n− 1)− d

d
and Kf ∗(Gd) = d(n(n− 1)− d).

The rest of the chapter is organized as follows. In Sections 2 and 3 we provide an overview of lower
and upper bounds of the Kirchhoff index, respectively. Sections 4 and 5 are devoted to lower and upper
bounds of the degree Kirchhoff index. Open problems are pointed out at various places.

2. Lower bounds for the Kirchhoff index

The following Chebyshev-type inequality [58, 59] plays an important role in determining lower bounds
of the Kirchhoff index:

n−k2∑

i=k1

pi

n−k2∑

i=k1

piaibi ≥
n−k2∑

i=k1

piai

n−k2∑

i=k1

pibi, (1)
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where 1 ≤ k1 ≤ n − k2, 0 ≤ k2 ≤ n − 1, a = (ai) and b = (bi) are non-negative real sequences of the
same monotonicity, and p = (pi) are positive real numbers. Equality holds if and only if either of the
sequences a = (ai) or b = (bi) is constant.

Now we list lower bounds for Kf(G) in various classes obtained using (1).

• For k1 = 1, k2 = 1, pi = µi, ai = bi =
1
µi

, i = 1, 2, . . . , n− 1, from (1) we get

Kf(G) ≥ n(n− 1)2

2m
. (2)

Equality holds if and only if G ∼= Kn. This inequality, proved in [78] (see also [57]), sets up a
lower bound for the Kf(G) in the class I(n,m).

Since 2m ≤ n∆, from (2) follows

Kf(G) ≥ (n− 1)2

∆
, (3)

with equality if and only if G ∼= Kn. This bound, reported in [86] (see also [64]), belongs to the
class I(n,∆). In the special case, for d-regular graphs, 1 ≤ d ≤ n− 1, from (3) follows [66]

Kf(G) ≥ (n− 1)2

d
, (4)

with equality if and only if G ∼= Kn.

In [79] the following lower bound for Kf(G) that belongs to the class I(n, δ) was obtained

Kf(G) ≥ n− 1 +
n

δ
− δ + 1

n− 1
,

with equality if and only if G ∼= Kn.

The lower bound for Kf(G) in the class I(n) obtained in [49], (see also [60,81]) has the following
form

Kf(G) ≥ Kf(Kn) = n− 1. (5)

This is the best possible bound for the Kf(G) in the class I(n). Let us note that inequality (5) can
be easily obtained from (2) and inequalities 2m ≤ n(n− 1), or (3) and ∆ ≤ n− 1.

Since for the planar graphs hold m ≤ 3(n− 2), from (2) follows

Kf(G) ≥ n(n− 1)2

6(n− 2)
, (6)

with equality if and only if G ∼= K3 or G ∼= K4 (see [78]). This represents a lower bound for
Kf(G) in the class I(n) for planar graphs.

The graphs Gp, 2 ≤ p ≤ bn
2
c, obtained by removing p edges from a complete graph Kn, were

considered in [75]. It was proved that

Kf(Gp) ≥ n− 1 +
2p

n− 2
,
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with equality if and only if Gp
∼= Kn − pK2.

In [41] it was proved that for every tree T holds

W (T ) ≥ W (K1,n−1),

where W = W (G) is a Wiener index. Since for any tree W (T ) = Kf(T ), it means that the lower
bound for Kf(T ) in the class I(n) is obtained as well, i.e. that

Kf(T ) ≥ (n− 1)2,

with equality if and only if T ∼= K1,n−1.

Since the inequality 2m ≤ n(n− 1) holds if and only if

n ≥ 1

2

(√
8m+ 1 + 1

)
,

from (5) we get

Kf(G) ≥ 1

2

(√
8m+ 1− 1

)
,

with equality if and only if G ∼= Kn. This is the best possible lower bound for Kf(G) in the class
I(m).

• For k1 = 2, k2 = 1, pi = µi, ai = bi =
1
µi

, i = 2, 3, . . . , n− 1, from (1) the following inequality is
obtained

Kf(G) ≥ n

(
1

µ1

+
(n− 2)2

2m− µ1

)
,

with equality if and only if µ2 = µ3 = · · · = µn−1, i.e. if and only if G ∼= Kn, or G ∼= K1,n−1, or
G ∼= Kn

2
,n
2

for even n (see [47, 84, 85]).

• For k1 = 1, k2 = 2, pi = µi, ai = bi =
1
µi

, i = 1, 2, . . . , n− 2, from (1) follows

Kf(G) ≥ n

(
1

µn−1

+
(n− 2)2

2m− µn−1

)
,

with equality if and only if µ1 = µ2 = · · · = µn−2, i.e. if and only if G ∼= Kn, or G ∼= Kn − e.
Accordingly, we have that

Kf(G) ≥ nmax

{
1

µ1

+
(n− 2)2

2m− µ1

,
1

µn−1

+
(n− 2)2

2m− µn−1

}
,

with equality if and only if G ∼= Kn, or G ∼= K1,n−1, or G ∼= Kn
2
,n
2

for even n, or G ∼= Kn − e.

Consider the function (see [18])

f(x) =
1

x
+

(n− 2)2

2m− x
.

It is monotone increasing when x ≥ 2m
n−1

, monotone decreasing when 2m
n−1

≥ x, and has a minimum
for x = 2m

n−1
. This means that for any k, µ1 ≥ k ≥ 2m

n−1
holds

Kf(G) ≥ n

(
1

µ1

+
(n− 2)2

2m− µ1

)
≥
(
1

k
+

(n− 2)2

2m− k

)
≥ n(n− 1)2

2m
,
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and for any k, 2m
n−1

≥ k ≥ µn−1,

Kf(G) ≥ n

(
1

µn−1

+
(n− 2)2

2m− µn−1

)
≥
(
1

k
+

(n− 2)2

2m− k

)
≥ n(n− 1)2

2m
.

Consequently, for any k, µ1 ≥ k ≥ µn−1, holds

Kf(G) ≥ n

(
1

k
+

(n− 2)2

2m− k

)
, (7)

with equality if and only if k = n and G ∼= Kn, or k = n and G ∼= K1,n−1, or k = n and
G ∼= Kn

2
,n
2

for even n, or k = n− 2 and G ∼= Kn − e.

The inequality (7) determines a lower bound for Kf(G) in the class I(n,m, k), µ1 ≥ k ≥ µn−1.
The obtained bound is very good since the inequality (7) is strong and is reached for various types
of graphs.

Having in mind that for connected graphs hold µ1 ≥ 1 + ∆ (see [36]), it is easy to show that

µ1 ≥ 1 + ∆ ≥ M1

2m
+ 1 ≥ 2m

n
+ 1 ≥ 2m

n− 1
≥ µn−1.

For k = 2m
n−1

, from (7) the inequality (2) is obtained.

For k = 2m
n

+ 1, from (7) follows

Kf(G) ≥ n2

(
1

2m+ n
+

(n− 2)2

2m(n− 1)− n

)
. (8)

Equality holds if and only if G ∼= Kn. This inequality establishes a lower bound for Kf(G) in the
class I(n,m). It is better than the one given by (2).

For k = M1

2m
+ 1, from (7) the following is obtained

Kf(G) ≥ 2mn

(
1

M1 + 2m
+

(n− 2)2

4m2 −M1 − 2m

)
, (9)

with equality if and only if G ∼= Kn. On the other hand, in [16] it was proved that

Kf(G) ≥ 2mn(n− 1)(n− 2)

4m2 −M1 − 2m
, (10)

with equality if and only if G ∼= Kn. Both (9) and (10) set up a lower bound for Kf(G) in the
class I(n,m,M1). However, bound (10) is better than (9).

Since M1 ≥ 4m2

n
(see [20]), from (10) follows

Kf(G) ≥ n2(n− 1)(n− 2)

2m(n− 1)− n
,

with equality if and only if G ∼= Kn. This inequality is stronger than (2).
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For k = 1 +∆ from (7) the inequality

Kf(G) ≥ n

(
1

1 + ∆
+

(n− 2)2

2m−∆− 1

)
, (11)

is obtained [84] (see also [85]). Equality holds if and only if G ∼= Kn or G ∼= K1,n−1.

In [60] (see also [83, 84]) the following lower bound for Kf(G) was determined

Kf(G) ≥ n− 1 +
n(n− 1)− 2m

∆
, (12)

with equality if and only if G ∼= Kn, or G ∼= Kn
2
,n
2
, for even n, or G ∈ Γd.

Lower bounds (11) and (12) belong to the same class I(n,m,∆), but are not comparable and,
hence, none of them is the best possible in the class.

From (11) it follows that for regular graphs of degree d, 1 ≤ d ≤ n− 1, hold

Kf(G) ≥ n

(
1

1 + d
+

(n− 2)2

nd− d− 1

)
, (13)

with equality if and only if G ∼= Kn (see [2] and [66]).

In [11] (see also [17]) the following lower bound for Kf(G) in the class I(n,m,∆, δ) was derived

Kf(G) ≥ n

(
1

1 + ∆
+

1

δ
+

(n− 3)2

2m−∆− δ − 1

)
, (14)

where G 6= Kn. Equality holds if and only if either G ∼= K1,n−1, or G ∼= Kn−e, or G ∼= Kn−1+e.

Since 1 + ∆ ≤ n from (14), follows (see [17])

Kf(G) ≥ n

(
1

n
+

1

δ
+

(n− 3)2

2m−∆− δ − 1

)
, (15)

with equality if and only if either G ∼= K1,n−1, or G ∼= Kn − e, or G ∼= Kn−1 + e. When G 6= Kn,
the inequality (14) is stronger than (15). In [16] the following lower bound for the Kirchhoff index
in the class I(n,m,∆,∆2, δ) was determined

Kf(G) ≥ n

1 + ∆
+

n

2m−∆− 1

(
(n− 2)2 +

(∆2 − δ)2

∆2δ

)
,

with equality if and only if G ∼= Kn or G ∼= K1,n−1.

In [54] the following inequality was proved

Kf(G) ≥ n− 1−∆

∆
+

(n− 1)

2m−∆


(n− 1)2 +

(√
∆2

δ
−
√

δ

∆2

)2

 ,

with equality if and only if G ∼= Kn, or G ∼= K1,n−1, or G ∼= Kn
2
,n
2

for even n, or G ∈ Γd.

Although the previous two inequalities belong to the same class, they are not comparable.
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In [46] (see also [1]) a lower bound for Kf(G) in the class I(n,m,∆,∆2) was obtained as a
special case of one more general result. It was proved that

Kf(G) ≥ n

(
1

1 + ∆
+

1

∆2

+
(n− 3)2

2m−∆−∆2 − 1

)
, (16)

when dn−2 ≥ dn−1 + δ − 1. Equality holds if and only if G ∼= K1,n−1. Interestingly, in [1] for the
above inequality the condition 2m ≤ 1 + ∆+ (n− 2)∆2 was put on.

In [46,83,84] lower bounds for Kf(G) in the class I(n, d1, . . . , dn) were determined. In [83] (see
also [46]) the following bound was established

Kf(G) ≥ n

(
1

1 + ∆
+

n−2∑

i=2

1

di
+

1

dn−1 + δ − 1

)
, (17)

with equality if and only if G ∼= K1,n−1 or G ∼= K3. In [84] it was proved that

Kf(G) ≥ −1 + (n− 1)
n∑

i=1

1

di
= −1 + (n− 1)ID, (18)

where ID = ID(G) is the inverse degree of a graph (see for example [44, 45]). Equality in (18)
holds if and only if G ∼= Kn, or G ∼= Kr,n−r, 1 ≤ r ≤ bn

2
c, or G ∈ Γd.

Let us note that the invariant ID is also met in the literature under names general first Zagreb index
and zeroth order general Randić index.

In [83] it was reported that inequalities (17) and (18) are not comparable. However, we couldn’t
find out an example when the lower bound (17) is better than (18).

At first glance, the inequalities (17) and (18) seem to be quite demanding, since they require
knowing degrees of all vertices of a graph to compute the invariant ID. However, the invariant
ID is well studied in the literature and its available lower bounds can be used to determine lower
bounds for Kf(G) that are even better than already mentioned in this section. Here we list some
examples.

• For k1 = 1, k2 = 0, pi = di, ai = bi =
1
di

, i = 1, 2, . . . , n, from (1) the inequality

ID =
n∑

i=1

1

di
≥ n2

2m
,

is obtained. From the above and (18) follows (see [54])

Kf(G) ≥ n2(n− 1)− 2m

2m
, (19)

with equality if and only if G ∼= Kn, or G ∼= Kn
2
,n
2

for even n, or G ∈ Γd.

Since
n2(n− 1)− 2m

2m
≥ n2(n− 1)− n(n− 1)

2m
=

n(n− 1)2

2m
,
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the inequality (19) is stronger than (2). This means that the lower bound (19) is better than the one
determined by (2).

Since 2m ≤ n∆, from (19) follows [60]:

Kf(G) ≥ n(n− 1)−∆

∆
, (20)

with equality if and only if G ∼= Kn, or G ∼= Kn
2
,n
2
, for even n, or G ∈ Γd.

From the inequality
n(n− 1)−∆

∆
≥ (n− 1)2

∆
,

it can be concluded that the inequality (20) is stronger than (3). Hence, lower bound for Kf(G) in
the class I(n,∆) obtained in(20) is better than the one determined by (3).

It is well known that for connected planar graphs hold m ≤ 3(n − 2). Thus, from (19) we have
that for connected planar graphs

Kf(G) ≥ n2(n− 1)

6(n− 2)
− 1,

with equality if and only if G ∼= K3 or G ∼= K4. This inequality is stronger than (6).

Similarly, if G is a connected planar bipartite graph, then

Kf(G) ≥ n2(n− 1)

4(n− 2)
− 1,

with equality if and only if G ∼= K2,2.

• For k1 = 2, k2 = 0, pi = di, ai = bi =
1
di

, i = 2, 3, . . . , n, from (1) the inequality

ID ≥ 1

∆
+

(n− 1)2

2m−∆
, (21)

is obtained.

Based on (18) and (21) the following lower bound for Kf(G) in the class I(n,m,∆) has been
derived in [54]

Kf(G) ≥ n− 1−∆

∆
+

(n− 1)3

2m−∆
, (22)

with equality if and only if G ∼= Kn, or G ∼= K1,n−1, or G ∼= Kn
2
,n
2
, for even n, or G ∈ Γd. Since

n− 1−∆

∆
+

(n− 1)3

2m−∆
≥ n− 1 +

n(n− 1)− 2m

∆
,

the bound (22) is better than the one obtained by (12) in the same class I(n,m,∆).

Inequalities (22) and (11) are exact when G ∼= Kn or G ∼= K1,n−1. The inequality (22) is stronger
than (11) when G ∼= Pn, or G ∼= Kn

2
,n
2
, or G ∈ Γd, or when sequence of vertex degrees of a

connected graph is of the form D = (n − 1, d2, . . . , dn). We have performed testing on a set of
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connected (regular) graphs with n ≥ 4 vertices to find out the case, if any, when the inequality
(11) is stronger than (22), but we didn’t find it. However, it is still an open question whether the
lower bound given by (22) is the best possible in the class I(n,m,∆).

From the inequality (22) follows that for regular graph of degree d, 1 ≤ d ≤ n− 1, holds

Kf(G) ≥ n(n− 1)− d

d
, (23)

with equality if and only if G ∼= Kn or G ∼= Kn
2
,n
2
, where n is even, or G ∈ Γd.

The inequality (23) was proved in [60]. It is stronger than (4). Note that in the case of d-regular
graphs, 1 ≤ d ≤ n− 1, the inequalities (12), (18), (19) and (22) reduce to (23). An open question
is whether the bound (23) is the best possible in the class I(n, d).

Since ID ≥ 2R−1 (see [48]) according to (18) the following inequality is obtained

Kf(G) ≥ −1 + 2(n− 1)R−1, (24)

with equality if and only if G ∼= Kn, or G ∼= Kn
2
,n
2

for even n, or G ∈ Γd. The inequality (24)
determines lower bound for Kf(G) in the class I(n,R−1). When the invariant R−1 is replaced
with its (known) lower bounds, from (24) a variety of bounds, known and new ones, for Kf(G)

in various classes can be obtained. Thus, for example, based on the inequality [43]

2R−1 ≥
n

n− 1
,

and (24), the inequality (5) is obtained. From the inequality [10, 72]

2R−1 ≥
n

∆
,

and (24), the inequality (20) is obtained. From the inequality (see [53])

R−1 ≥
n− 1

2(n− 2)

(
k − n

n− 1

)2

+
n

2(n− 1)
,

where k is an arbitrary real number with the property ρ1 ≥ k ≥ ρn−1, and (24) the following is
obtained

Kf(G) ≥ n− 1 +
(n− 1)2

n− 2

(
k − n

n− 1

)2

,

with equality if and only if k = n
n−1

and G ∼= Kn, or k = 2 and G ∼= Kn
2
,n
2

for even n. In the
above inequality the lower bound for Kf(G) in the class I(n, k) is acquired. In the special case
we have

Kf(G) ≥ n− 1 +
(n− 1)2

n− 2
max

{(
ρ1 −

n

n− 1

)2

,

(
ρn−1 −

n

n− 1

)2
}
,

with equality if and only if G ∼= Kn or G ∼= Kn
2
,n
2
, where n is even.
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Let us point out on some lower bounds that can be obtained according to (24) and depend on
invariants M2, F and M1.

From (1) follows ∑

i∼j

didj
∑

i∼j

1

didj
≥ m2.

Accordingly we have that

R−1 ≥
m2

M2

.

From the above and (24) follows

Kf(G) ≥ 2(n− 1)m2

M2

− 1,

with equality if and only if L(G) is regular. Thus, we obtained a lower bound for Kf(G) in the
class I(n,m,M2).

On the other hand, since
2M2 ≤ F

we have that
Kf(G) ≥ 4(n− 1)m2

F
− 1

with equality if and only if G ∼= Kn, or G ∼= Kn
2
,n
2
, or G ∈ Γd. This represents a lower bound for

Kf(G) in the class I(n,m, F ).

Based on the inequality (see [39])

F ≤ (∆ + δ)M1 − 2m∆δ,

the following lower bound in the class I(n,m,∆, δ,M1) can be obtained

Kf(G) ≥ 4(n− 1)m2

(∆ + δ)M1 − 2m∆δ
− 1,

with equality if and only if G ∼= Kn, or G ∼= Kn
2
,n
2
, or G ∈ Γd.

• For k1 = 3, k2 = 0, pi = di, ai = bi =
1
di

, i = 3, 4, . . . , n, from (1) the inequality

ID ≥ 1

∆
+

1

∆2

+
(n− 2)2

2m−∆−∆2

,

is obtained. From the above and (18) the following is obtained (see [54])

Kf(G) ≥ n− 1−∆

∆
+

n− 1

∆2

+
(n− 1)(n− 2)2

2m−∆−∆2

, (25)

with equality if and only if G ∼= Kn, or G ∼= K1,n−1, or G ∼= Kn
2
,n
2

for even n, or G ∈ Γd.

The inequality (25) is stronger than (16) when G ∼= Kn
2
,n
2
, G ∼= Pn and G ∈ Γd. However, it is an

open question whether (25) is always better than (16).
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• For k1 = 2, k2 = 1, pi = di, ai = bi =
1
di

, i = 2, 3, . . . , n− 1, from (1) the inequality

ID ≥ 1

∆
+

1

δ
+

(n− 2)2

2m−∆− δ
,

is obtained. From the above and (18) the inequality

Kf(G) ≥ n− 1−∆

∆
+

n− 1

δ
+

(n− 1)(n− 2)2

2m−∆− δ
, (26)

is obtained (see [54]). Equality holds if and only if G ∼= Kn, or G ∼= K1,n−1, or G ∼= Kn
2
,n
2

when
n is even, or G ∈ Γd.

Inequalities (26) and (15) are not comparable. Thus, for example, for G ∼= Kn
2
,n
2

the inequality
(26) is stronger than (15), but when G ∼= Kn − e, inequality (15) is stronger than (26).

The following lower bound for Kf(G) can be obtained as a special case of one more general result
reported in [85]

Kf(G) ≥ n

1 + ∆
+ (n− 2)n

n−3
n−2

(
t

1 + ∆

)− 1
n−2

,

with equality if and only if G ∼= Kn or G ∼= K1,n−1.

Similarly, the following can be obtained from the one more general inequality proved in [18]

Kf(G) ≥ n

1 + ∆
+ (n− 2)n

n−3
n−2 (1 + ∆)

1
n−2 t−

1
n−2 + (∆

1/2
2 − δ1/2)2,

with equality if and only if G ∼= Kn. This sets up a lower bound for Kf(G) in the class
I(n,∆,∆2, δ, t). This inequality is stronger than the previous one.

The following double inequality which gives relationship between Kirchhoff, Kf(G), and degree-
Kirchhoff index, Kf ∗(G), was proved in [86] (see also [66])

n

2m∆
Kf ∗(G) ≤ Kf(G) ≤ n

2mδ
Kf ∗(G). (27)

Equalities hold if and only if G is regular.

Inequalities (27) can be used to determine lower and upper bounds for Kirchhoff index, Kf(G),
according to the bounds for degree Kirchhoff index, and vice versa. Note that obtained bounds
may not be the best possible in the corresponding class. Here is one example.

Let

P = 1 +

√
2R−1

n(n− 1)
. (28)

In [7] (see also [2]) the following inequality for the degree Kirchhoff index was proved

Kf ∗(G) ≥ 2m

(
1

P
+

(n− 2)2

n− P

)
,

with equality if and only if G ∼= Kn. Based on this and left part of inequality (27), it follows that

Kf(G) ≥ n

∆

(
1

P
+

(n− 2)2

n− P

)
,
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with equality if and only if G ∼= Kn. This inequality, proved in [2], sets up lower bound for
Kf(G) in the class I(n,∆, R−1). It is not known whether this inequality is the best possible in its
class. Therefore, we suggest to use (27) only for regular graphs, or when there is no other way to
estimate Kf(G), i.e. Kf ∗(G).

In the sequel we provide an overview of the lower bounds for Kf(G) of connected bipartite graphs.

Let G = (V,E) be a connected bipartite graph V = V1 ∪ V2, V1 ∩ V2 = ∅, |V1| = p, |V2| = q,
p + q = n. In [77] the authors determined the lower bound of Kf(G) in the class I(p, q). They proved
that

Kf(G) ≥ (p+ q − 1)(p2 + q2)− pq

pq
,

with equality if and only if G ∼= Kn
2
,n
2
, where n is even.

In the case of connected bipartite graphs the following inequalities are valid (see for example [47]
and [20])

µ1 ≥
M1

m
≥ 2

√
M1

n
≥ 4m

n
≥ 2m

n− 1
.

Now, according to (7) the following inequalities are valid:

• For k = 4m
n

we have

Kf(G) ≥ n2(2n− 3)

4m
, (29)

with equality if and only if G ∼= Kn
2
,n
2
, for even n. This inequality establishes lower bound for

Kf(G) for connected bipartite graphs in the class I(n,m).

Since 2m ≤ n∆, from (29) follows

Kf(G) ≥ n(2n− 3)

2∆

with equality if and only if G ∼= Kn
2
,n
2
, for even n. This inequality was proved in [86] (see

also [64]).

• For k = 2
√

M1

n
we obtain

Kf(G) ≥ n

2


 1√

M1

n

+
(n− 2)2

m−
√

M1

n


 , (30)

with equality if and only if G ∼= Kn
2
,n
2
, where n is even. This was proved in [85] (see also [8,47]).

• For k = M1

m
the following is obtained

Kf(G) ≥ n

(
m

M1

+
m(n− 2)2

2m2 −M1

)
,

with equality if and only if G ∼= Kn
2
,n
2
, where n is even, or G ∼= K1,n−1. This inequality, proved

in [87] (see also [8, 47, 88]), sets up lower bound for Kf(G) in the class I(n,m,M1) that is
stronger than the bound given by (30).
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Let

T =
1

2

(
∆+ δ +

√
(∆− δ)2 + 4∆

)
.

From one more general result, obtained in [8] for bipartite graphs, the following inequality can be ob-
tained

Kf(G) ≥ n

(
1

T
+

(n− 2)2

2m− T

)
,

with equality if and only if G ∼= K1,n−1.

In [87] (see also [8, 88]) the following lower bound for Kf(G) in I(n,m, t,M1) class for connected
bipartite graphs was determined

Kf(G) ≥ n

(
m

M1

+ (n− 2)

(
M1

t nm

) 1
n−2

)
,

with equality if and only if G ∼= Kn
2
,n
2

where n is even.

3. Upper bounds for the Kirchhoff index

Among the papers considering the bounds of Kirchhoff index there are far much more those dealing with
lower than upper bounds. In this section we give a review of the papers considering upper bounds for
the Kirchhoff index.

The following inequality that establishes upper bound for Kf(G) in the class I(n) was derived
in [49] (see also [62])

Kf(G) ≤ Kf(Pn) =
n3 − n

6
.

This is the best possible upper bound for Kf(G) in the class I(n).

For the graphs Gp, 2 ≤ p ≤
⌊
n
2

⌋
, obtained by removing p edges from a complete graph Kn, in [75]

the following was proved

Kf(Gp) ≤ n− 1− p+
n

n− 1− p
+

n(p− 1)δ

(n− 1)(n− 1− p)
,

with equality if and only if Gp = Kn −K1,p.

Let k be an arbitrary real number so that µn−1 ≥ k. In [68] the upper bound for Kf(G) in the class
I(n,m, k) was determined. It reads

Kf(G) ≤ (n+ k)(n− 1)− 2m

k
, (31)

with equality if and only if k = n and G ∼= Kn, or k = 1 and G ∼= K1,n−1, or k = n
2

and G ∼= Kn
2
,n
2
, or

k = n− 2 and G ∼= Kn − e.

As can be seen, the inequality (31) is very strong since it reaches equality in many cases. Therefore,
we recommend to use (31) to evaluate upper bound for Kf(G) whenever there is a good assessment of
the lower bound for µn−1.
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In [69] an upper bound for Kf(G) in the class I(n,m,∆, k) was reported. The authors proved that

Kf(G) ≤ n
∆+ 1 + k(n− 1) + n(n− 2)− 2m

k(∆ + 1)
, (32)

with equality if and only if k = n and G ∼= Kn, or when k = 1 and G ∼= K1,n−1, or k = n − 2 and
G ∼= Kn − e.

In [79] the following inequality was proved

Kf(G) ≤
(
n−∆+ 3

3

)
+ (∆− 1)

(
n−∆+ 2

2

)
+ (∆− 1)(∆− 2), (33)

with equality if and only if G ∼= Kn or G ∼= Pn. This inequality posts an upper bound for Kf(G) in the
class I(n,∆).

In [16] the following upper bound in the class I(n,m, t,M1) was determined

Kf(G) ≤ n− 1

t

(
4m2 −M1 − 2m

(n− 1)(n− 2)

)n−2
n

.

Equality holds if and only if G ∼= Kn or G ∼= K1,n−1.

Based on the previous and inequality M1 ≥ 4m2

n
(see [20]), the following one that determines an

upper bound for Kf(G) in the class I(n,m, t) is obtained

Kf(G) ≤ n− 1

t

(
2m(2m(n− 1)− 1)

n(n− 1)(n− 2)

)n−2
n

,

with equality if and only if G ∼= Kn.

Denote with D(n, a, b) a class of bipartite graphs with n = p+ q vertices consisting of a path Pn−a−b

together with a independent vertices adjacent to one pendent vertex of Pn−a−b and b independent vertices
adjacent to the other pendent vertex of Pn−a−b. For (p, q)-bipartite graphs (p < q) in [77] the following
upper bound for Kf(G) was determined

Kf(G) ≤
{

1
6
(−2p+ 3p2 − p3 − 6pq + 6p2q + 3q2 + 3pq2), (q − p) ≡ 0( mod 2)

1
6
(−3 + p+ 3p2 − p3 − 6pq + 6p2q + 3q2 + 3pq2), (q − p) ≡ 1( mod 2)

with equality if and only if G ∈ D
(
p+ q,

⌊
p+q+1

2

⌋
,
⌊
p−q+1

2

⌋)
.

In the sequel we list some inequalities that can be used to obtain upper bounds for Kf(G) in various
classes.

In [51] the following inequalities were proved

Kf(G) ≤ n(n− 1)2

2m

(
1 +

(µ1 − µn−1)
2

µ1µn−1

α(n− 1)

)
, (34)

where

α(n− 1) =
1

n− 1

⌊
n− 1

2

⌋(
1− 1

n− 1

⌊
n− 1

2

⌋)
=

1

4

(
1− (−1)n + 1

2(n− 1)2

)
,
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with equality if and only if G ∼= Kn.
We will illustrate how (34) can be used to obtain upper bounds for Kf(G) in, for example, classes

I(n,m, k,M1) and I(n,m, k), where k is real number with the property µn−1 ≥ k > 0.
In [55] the following was proved

(µ1 − µn−1)
2 ≤ 2

n− 1

(
(n− 1)(M1 + 2m)− 4m2

)
, (35)

with equality if and only if G ∼= Kn. Let k be an arbitrary real number so that µn−1 ≥ k. Then

µ1µn−1 ≥ k
2m

n− 1
. (36)

According to (34), (35) and (36) we have that

Kf(G) ≤ n(n− 1)2

2m

(
1 +

(n− 1)(M1 + 2m)− 4m2

mk
α(n− 1)

)
, (37)

with equality if and only if G ∼= Kn. Thus, an upper bound for Kf(G) in the class I(n,m, k,M1) is
obtained. Further, since (see [9])

M1 ≤ m

(
2m

n− 1
+ n− 2

)
,

from (37) we have that

Kf(G) ≤ n(n− 1)2

2m

(
1 +

n(n− 1)− 2m

k
α(n− 1)

)
,

with equality if and only if G ∼= Kn. Thus an upper bound for Kf(G) in the class I(n,m, k) is obtained.
In [51] it was proved that

Kf(G) ≤ n
(µ1 + µn−1)(n− 1)− 2m

µ1µn−1

, (38)

with equality if and only if G is a complete split graph or G ∼= Kn
2
,n
2
, for even n.

Interestingly, it is easy to obtain (31) from (38). Also, since

µ1 + µn−1 ≤ n+
2m

n− 1
=

n(n− 1) + 2m

n− 1
,

from (36) and (38) follows

Kf(G) ≤ n2(n− 1)2

2mk
,

with equality if and only if k = n and G ∼= Kn.
Further, since

µ1µn−1 ≥ k(1 + ∆),

from (38) follows

Kf(G) ≤ n2(n− 1)

k(1 + ∆)
,
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with equality if and only if k = n and G ∼= Kn.

The next three inequalities may also be interesting for determining upper bounds for Kf(G).

In afore mentioned paper [51] the following inequalities were also proved

Kf(G) ≤ n

1 + ∆
+

n(n− 2)2

2m− n

(
1 +

(µ2 − µn−1)
2

µ2µn−1

α(n− 2)

)
,

with equalities if and only if G ∼= Kn or G ∼= K1,n−1, and

Kf(G) ≤ n

1 + ∆
+ n

(µ2 + µn−1)(n− 2)− (2m− n)

µ2µn−1

,

with equality if and only if G ∼= Kn or G ∼= K1,n−1, and

Kf(G) ≤ n(n− 1)2

8m

(√
µ1

µn−1

+

√
µn−1

µ1

)2

with equality if and only if G ∼= Kn. These inequalities can be used to determine lower bounds for
Kf(G) in various classes (see [21] and [52]).

4. Lower bounds for the degree Kirchhoff index

In this section we present lower bounds of various classes for the degree Kirchhoff index.

Lower bound for degree Kirchhoff index Kf ∗(G) in the class I(n) was established in [65] by the
following inequality

Kf ∗(G) ≥ Kf ∗(Kn) = (n− 1)3.

From the above, it is easy to determine lower bound for Kf ∗(G) in the class I(m), i.e. the following is
valid

Kf ∗(G) ≥ 1

8

(√
8m+ 1− 1

)3
,

with equality if and only if G ∼= Kn.

For k1 = 2, k2 = 1, pi = ρi, ai = bi =
1
ρi

, i = 2, 3, . . . , n− 1, from (1) follows

Kf ∗(G) ≥ 2m

(
1

ρ1
+

(n− 2)2

n− ρ1

)
, (39)

with equality if and only if ρ2 = ρ3 = · · · = ρn−1.

Similarly, for k1 = 1, k2 = 2, pi = ρi, ai = bi =
1
ρi

, i = 1, 2, . . . , n− 2, from (1) follows

Kf ∗(G) ≥ 2m

(
1

ρn−1

+
(n− 2)2

n− ρn−1

)
, (40)

with equality if and only if ρ1 = ρ2 = · · · = ρn−2.

Now consider the function

f(x) =
1

x
+

(n− 2)2

n− x
.
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This function is monotone increasing for any real x with the property x ≥ n
n−1

, monotone decreasing for
x ≤ n

n−1
and has a minimum for x = n

n−1
. Thus, according to (39) and (40), we have that for any real k

with the property ρ1 ≥ k ≥ ρn−1 holds

Kf ∗(G) ≥ 2m

(
1

k
+

(n− 2)2

n− k

)
, (41)

with equality if and only if k = n
n−1

and G ∼= Kn, or k = 2 and G ∼= K1,n−1, or k = 2 and G ∼= Kn
2
,n
2

where n is even.
Since (see for example [7])

ρ1 ≥ P ≥ ∆+ 1

∆
≥ n

n− 1
≥ ρn−1,

where P = 1 +
√

2R−1

n(n−1)
, the followings are valid:

For k = n
n−1

from (41) we get [22] (see also [2, 38, 57, 64])

Kf ∗(G) ≥ 2m(n− 1)2

n
, (42)

with equality if and only if G ∼= Kn. This inequality establishes lower bound for Kf ∗(G) in the class
I(m,n).

Let us note that inequality (42) can be easily obtained in following manner

Kf ∗(G) ≥ (n− 1)3 = (n− 1)(n− 1)2 ≥ 2m(n− 1)2

n
.

This implies that the lower bound (42) is not the best possible in the class I(n,m). And, really, in [61]
it was proved that

Kf ∗(G) ≥ n− 1 + 2m(n− 2), (43)

with equality if and only if G ∼= Kn or G ∼= K1,n−1.
The inequality (43) is stronger than (42). Hence, the lower bound (43) is better than (42) in the class

I(n,m).
For k = ∆+1

∆
from (41) we get [22]

Kf ∗(G) ≥ 2m

(
∆

∆+ 1
+

(n− 2)2

n− 1− 1
∆

)
, (44)

with equation if and only if G ∼= Kn.
In [65] the following was proved

Kf ∗(G) ≥ 2m

(
n− 2 +

1

∆ + 1

)
, (45)

with equality if and only if G ∼= Kn.
The inequality (45) is stronger than (44). Thus, bound (45) is better than (44) in the class I(n,m,∆).

However, the inequality (43) is stronger than (45). This follows from the inequalities (see [61])

2m ≤ n∆ ≤ (∆ + 1)(n− 1).
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Accordingly, it is questionable whether the lower bound for Kf ∗(G) determined by (45) is the best
possible in the class I(n,m,∆).

Since n ≥ ∆+ 1, from (43) follows

Kf ∗(G) ≥ ∆+ 2m(n− 2), (46)

with equality if and only if G ∼= Kn or G ∼= K1,n−1.
Lower bounds (45) and (46) belongs to the (same) class I(n,m,∆). Since (45) and (46) are not

comparable, the open question is what is the best lower bound for Kf ∗(G) in the class I(n,m,∆).
Consider, now, d-regular graphs, 1 ≤ d ≤ n− 1. For these graphs hold (see Eq. (27))

Kf ∗(G) = d2Kf(G).

From the above and inequality (23) the following is obtained

Kf ∗(G) ≥ d(n(n− 1)− d),

with equality if and only if G ∼= Kn, or G ∼= Kn
2
,n
2

when n is even, or G ∈ Γd. The question is whether
the lower bound for Kf ∗(G) established by this inequality is the best possible for d-regular graphs in
the class I(n, d). Performed testings suggest that it is, but there is no explicit proof.

In [37] the following lower bound for Kf ∗(G) in the class I(n, d, t) was obtained

Kf ∗(G) ≥ n(n− 1)d2(t · n)− 1
n−1 ,

with equality if and only if G ∼= Kn.
Interestingly, from the above inequality directly follows

Kf(G) ≥ n(n− 1)(t · n)− 1
n−1 ,

with equality if and only if G ∼= Kn.
For k = P , from (41) we obtain [7] (see also [2–4, 65])

Kf ∗(G) ≥ 2m

(
1

P
+

(n− 2)2

n− P

)
. (47)

Equality holds if and only if G ∼= Kn. This inequality determines the lower bound for Kf ∗(G) in the
class I(n,m,R−1).

Let G be a simple connected graph different from a complete one, i.e. G � Kn, and let β be an
arbitrary real number with the property ρ2 ≥ β, β ≤ P , P + (n − 2)β ≥ n. In [4] the following was
proved as a part of one more general result

Kf ∗(G) ≥ 2m

(
1

P
+

1

β
+

(n− 3)2

n− P − β

)
. (48)

For k1 = 3, k2 = 1, pi = ρi, ai = bi = 1
ρi

, i = 3, . . . , n − 1, and k1 = 2, k2 = 2, pi = ρi,
ai = bi =

1
ρi

, i = 2, 3, . . . , n− 2, from (1) the following is obtained respectively

Kf ∗(G) ≥ 2m

(
1

ρ1
+

1

ρ2
+

(n− 3)2

n− ρ1 − ρ2

)
, (49)
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and
Kf ∗(G) ≥ 2m

(
1

ρ1
+

1

ρn−1

+
(n− 3)2

n− ρ1 − ρn−1

)
. (50)

Equality in (49) holds if and only if ρ3 = ρ4 = · · · = ρn−1, and in (50) if and only if ρ2 = ρ3 = · · · =
ρn−2.

From (49), for any two real numbers r1 and r2 with the properties ρ1 ≥ r1 ≥ n−ρ2
n−2

and ρ2 ≥ r2 ≥
n−r1
n−2

, holds

Kf ∗(G) ≥ 2m

(
1

r1
+

1

r2
+

(n− 3)2

n− r1 − r2

)
. (51)

Also, from (50), for any two real numbers r3 and r4 with the properties ρ1 ≥ r3 ≥ n−ρn−1

n−2
and ρn−1 ≥

r4 ≥ n−r3
n−2

, hold

Kf ∗(G) ≥ 2m

(
1

r3
+

1

r4
+

(n− 3)2

n− r3 − r4

)
. (52)

Equality in (51) holds if and only if r1 = r2 =
n

n−1
and G ∼= Kn, or r1 = 2, r2 = 1 and G ∼= K1,n−1, or

r1 = 2, r2 = 1 and G ∼= Kn
2
,n
2

for even n. Similarly, equality in (52) holds if and only if r3 = r4 =
n

n−1

and G ∼= Kn, or r3 = 2, r4 = 1 and G ∼= K1,n−1, or r3 = 2, r4 = 1 and G ∼= Kn
2
,n
2

for even n.
By substituting parameters r1 and r2 in (51), i.e. r3 and r4 in (52), by the specific values, a lot of

known as well as some new inequalities for Kf ∗(G) can be obtained. Thus, for example, for r1 = P ,
r2 = n−P

n−2
from (51), the inequality (47) is obtained. For r1 = P and r2 = β from (51) the inequality

(48) is obtained. For r3 = P and r4 = β from (52) the inequality (48) is obtained as well.
In [7] (see also [50]) a lower bound for Kf ∗(G) in the class I(n,m,

∏n
i=1 di, R−1, t) was established

with the following inequality

Kf ∗(G) ≥ 2m

(
1

P
+ (n− 2)

(
P
∏n

i=1 di
2mt

) 1
n−2

)
,

with equality if and only if G ∼= Kn.
Similarly, in [22] a lower bound for Kf ∗(G) in the class I(n,m,∆,

∏n
i=1 di, t) was determined. The

authors proved that

Kf ∗(G) ≥ 2m

(
∆

∆+ 1
+ (n− 2)

(
(∆ + 1)

∏n
i=1 di

2m∆t

) 1
n−2

)
,

with equality if and only if G ∼= Kn.
In the sequel we list some results concerning the lower bounds of Kf ∗(G) for bipartite graphs.
Since for bipartite graphs hold ρ1 = 2, then according to (39), i.e. for k = 2, and (41) we have [86]

(see also [7, 64])
Kf ∗(G) ≥ m(2n− 3), (53)

with equality if and only if G ∼= Kr,n−r, 1 ≤ r ≤
⌊
n
2

⌋
.

Since G is connected, m ≥ n − 1 is valid. Then, from (53) follows that for any bipartite graph
holds [65]:

Kf ∗(G) ≥ Kf ∗(K1,n−1) = (n− 1)(2n− 3).
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In [7] (see also [50]) the following lower bound in the class I(n,m,
∏n

i=1 di, t) for bipartite graphs
was obtained

Kf ∗(G) ≥ 2m

(
1

2
+ (n− 2)

(∏n
i=1 di
mt

) 1
n−2

)
,

with equality if and only if G ∼= Kr,n−r, 1 ≤ r ≤
⌊
n
2

⌋
.

5. Upper bounds for the degree Kirchhoff index

The best upper bound for Kf(G) in the class I(n) is reached when G is a path Pn. From (27) we have
that (see [64])

Kf ∗(G) ≤ 2m∆

n
Kf(G) ≤ (n− 1)2Kf(Pn) =

1

6
(n(n+ 1)(n− 1)3).

Since graph Pn is not a regular one, upper bound for Kf ∗(G) in the class I(n), obtained in the above
inequality, obviously is not best possible.

In [3] (see also [67]) the upper bound in the class I(n) for Kf ∗(G) was determined. It was proved
that for n ≤ 48

Kf ∗(G) ≤ (n− 1)4,

and for n ≥ 49

Kf ∗(G) ≤ 1

54

(
n5 + 50n3 − 16n2 + 165n− 52

)
.

It was not given whether and when these bounds are achieved.

In the sequel we outline some inequalities for Kf ∗(G) which depend on eigenvalues ρ1, ρ2 and ρn.
From the application point, these are not convenient. However, by replacing these eigenvalues with
appropriate boundaries that depend on other parameters, different upper bounds for Kf ∗(G) in various
classes can be obtained. An example follows.

In [51] following inequality was proved

Kf ∗(G) ≤ 2m(n− 1)2

n

(
1 +

(ρ1 − ρn−1)
2

ρ1ρn−1

α(n− 1)

)
. (54)

Equality in (54) holds if and only if G ∼= Kn.

Also, it was proved that

Kf ∗(G) ≤ 2m
(n− 1)(ρ1 + ρn−1)− n

ρ1ρn−1

, (55)

with equality if and only if there is k, 1 ≤ k ≤ n − 1, so that ρ1 = ρ2 = · · · = ρk and ρk+1 = ρk+2 =

· · · = ρn−1.

Now, consider some consequences of the (55).

Consider the function

f(x) =
(n− 1)(x+ ρn−1)− n

x
.
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This function is monotone increasing for every x 6= 0. Since ρ1 ≤ 2, then f(ρ1) ≤ f(2), and according
to (55) we have

Kf ∗(G) ≤ m
(n− 1)(2 + ρn−1)− n

ρn−1

.

A function

g(x) =
(n− 1)(2 + x)− n

x

is monotone decreasing for every x 6= 0. Let k be an arbitrary real number with the property ρn−1 ≥
k > 0. Then g(ρn−1) ≤ g(k), and therefore

Kf ∗(G) ≤ m(n− 2 + k(n− 1))

k
, (56)

with equality if and only if k = n
n−1

and G ∼= Kn, or k = 1 and G ∼= Kr,n−r, 1 ≤ r ≤
⌊
n
2

⌋
. Thus, an

upper bound for Kf ∗(G) in the class I(n,m, k) is obtained. The inequality (56) is analogous to (31) for
upper bound of Kf(G).

In a special case when G is a connected planar graph, according to (56)

Kf ∗(G) ≤ 3(n− 2)(n− 2 + k(n− 1))

k
,

with equality if and only if k = 3
2

and G ∼= K3, or k = 4
3

and G ∼= K4.

Now, we will give an example how (54) can be used to determine upper bounds Kf ∗(G).

In [56] it was proved that

(ρ1 − ρn−1)
2 ≤ 2

n− 1
(2(n− 1)R−1 − n) . (57)

Since, for example,

ρ1ρn−1 ≥ k
n

n− 1
, ρ1ρn−1 ≥ k

∆+ 1

∆
, ρ1ρn−1 ≥ kP,

from (54) and (57) following inequalities are obtained

Kf ∗(G) ≤ 2m(n− 1)2

n

(
1 +

2(2(n− 1)R−1 − n)

kn
α(n− 1)

)
,

Kf ∗(G) ≤ 2m(n− 1)2

n

(
1 +

2(1 + ∆)(2(n− 1)R−1 − n)

k∆(n− 1)

)
,

Kf ∗(G) ≤ 2m(n− 1)2

n

(
1 +

2(2(n− 1)R−1 − n)

(n− 1)kP
α(n− 1)

)
,

with equalities if and only if G ∼= Kn.

Now, we can obtain some other upper bounds for Kf ∗(G) that do not depend on R−1 by using upper
bounds for R−1, such as R−1 ≤

⌈
n
2

⌉
(see [43]), or R−1 ≤ n

2δ
(see [10, 72]).

On other bounds for the Kirchhoffian indices the interested reader can refer to [14, 15, 19, 23, 26–28,
31–33, 40, 70, 73, 74, 80, 82] and the references cited therein.
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[57] I. Ž. Milovanović, E. I. Milovanović, E. Glogić, Lower bounds of the Kirchhoff and degree Kirch-
hoff indices, Publ. State Univ. Novi Pazar A 7 (2015) 25–31.
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Abstract

We review bounds for the general Randić index, Rα =
∑

ij∈E(didj)
α, and use the power mean

inequality to prove, for example, that Rα ≥ mλ2α for α < 0, where λ is the spectral radius of a graph.
This enables us to strengthen various known lower and upper bounds for Rα and to generalise a non-
spectral bound due to Bollobás et al. We also use the power mean inequality to strengthen bounds for
the general sum-connectivity index, Xα =

∑
ij∈E(di + dj)

α, and generalise a relationship between
Xα and Rα.
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1. Introduction

Let G be a graph with no isolated vertices with vertex set V (G) where n = |V |, edge set E(G) where
m = |E|, degrees ∆ = d1 ≥ ... ≥ dn = δ ≥ 1 and average degree d. Let A denote the adjacency matrix
of G, D denote the diagonal matrix of vertex degrees and Q = A +D denote the signless Laplacian of
G. Let λ denote the largest eigenvalue of A and ρ (often called the Q−index of G) denote the largest
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eigenvalue of Q. Let ω(G) denote the clique number of G and χ(G) denote the chromatic number of G.
Define the general Randić index, Rα, and the general sum-connectivity index, Xα, as usual as:

Rα =
∑

ij∈E
(didj)

α and Xα =
∑

ij∈E
(di + dj)

α.

R−0.5 is the best known and most studied topological index used by mathematical chemists. X−0.5

and Xα were first defined and studied by Zhou and Trinajstić [24] to [26]. Gutman [10] published a
recent survey of degree-based topological indices, in which he compares the performance of numerous
indices in chemical applications. He notes, for example, that R−1 performs significantly better than
R−0.5.

Note that Rα = Mα
2 (the variable second Zagreb index), and in particular R1 = M2 and that X1 =

M1 (the first Zagreb index). We will not refer to Zagreb indices again in this paper, and from here
onwards Mp will refer to a generalized p-mean rather than a Zagreb index. Note also that 2X−1 = H(G),
which is often called the Harmonic index.

In section 2 we introduce the power mean inequality and prove the Lemma which is the novel feature
of this paper. In sections 3 and 4 we use this Lemma to derive bounds for Rα and Xα using eigenvalues
and degrees respectively. We then review implications of these general bounds for R−1 and R−0.5 in
sections 5 and 6. We conclude with a discussion of the relationships between Rα and Xα and summarise
the power means for these indices.

2. Power mean inequality

It is convenient to introduce the terminology of power means (also known as generalized means). Let
w1, ..., wn be n positive real numbers and let p be a real number. Define the sum of the p-powers as:

Sp(w1, ..., wn) = Sp(wi) =
n∑

i=1

wp
i

and the generalized p-mean, for p 6= 0 as:

Mp(w1, ..., wn) = Mp(wi) =

(
1

n
Sp(w1, ..., wn)

)1/p

.

Throughout this paper we will refer to Mp(wi) as a p-power mean. Note that p = 1 corresponds to
the arithmetic mean and p = −1 corresponds to the harmonic mean. We define M0 to be the geometric
mean as follows:

M0(w1, ..., wn) = M0(wi) =

(
n∏

i=1

wi

)1/n

.

It is important that the above definition is consistent with the following limit process:



123

M0(w1, ..., wn) = lim
p→0

Mp(w1, ..., wn).

For all real p < q the well known power mean inequality states that:

Mp(w1, ..., wn) ≤ Mq(w1, ..., wn) (1)

with equality if and only if w1 = ... = wn. There are several rigorous proofs of this inequality, including
for p = 0, for example by Hardy et al [12]. Also M∞(wi) = max (wi) and M−∞ = min (wi).

We use the fact that

n · [Mp(w1, . . . , wn)]
p = Sp(w1, . . . , wn) (2)

for all w1, . . . , wn > 0 and for all p, including the case p = 0.

The following lemma is used to prove many of the new bounds in this paper.

Lemma 1. Let q be arbitrary. Assume that for the generalized q-mean

L ≤ Mq(w1, ..., wn) ≤ U

where L and U are lower and upper bounds. Then, we have the following inequalities:

• for p ≤ q and

– for p ≥ 0

Sp(w1, ..., wn) ≤ nUp

– for p < 0

Sp(w1, ..., wn) ≥ nUp

• for p ≥ q and

– for p ≥ 0

nLp ≤ Sp(w1, ..., wn)

– for p < 0

nLp ≥ Sp(w1, ..., wn)

Also min (wi) ≤ Mq(wi) ≤ max (wi), for all q.

Proof. The power mean inequality (1) implies that Mp(w1, . . . , wn) ≤ U for p < q and L ≤ Mp(w1, . . . ,

wn) for p > q.

We apply the function x 7→ nxp to go from Mp(w1, . . . , wn) to Sp(w1, . . . , wn) as in (2). We have to
reverse the direction of the above inequalities when applying this function for p < 0.
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As an illustration of the use of the power mean inequality, Zhou and Trinajstić [24] proved (their
Proposition 2) that:

X−0.5 ≥
m
√
m√

X1

.

Squaring both sides and re-arranging, we see that:

M1(di + dj) =
X1

m
≥
(

m

X−0.5

)2

=

(
X−0.5

m

)−2

= M−0.5(di + dj).

In other words, Proposition 2 in [24] is a special case of the power mean inequality with wi = (di+dj)

when p = −0.5 and q = 1.

3. Bounds for Rα and Xα using eigenvalues

Favaron et al [9] proved that R−0.5 ≥ m/λ and Runge [22] and Hofmeister [13] proved that R−1 ≥
m/λ2. We can generalise these results as follows.

Theorem 1. We have the following lower and upper bounds for Rα:

• For α < 0,

Rα ≥ mλ2α,

• For 0 < α ≤ 0.5,

Rα ≤ mλ2α,

Proof. Favaron et al [9] proved that:

(
1

m

∑

ij∈E

√
di.dj

)2

≤ λ2.

In other words, λ2 is an upper bound on the 0.5-power mean of the m values of di · dj for (i, j) ∈ E.
Therefore using Lemma 1 we obtain:

• For α < 0,

Rα = Sα(di · dj) ≥ mUα = mλ2α.

• For 0 < α ≤ 0.5,

Rα = Sα(di · dj) ≤ mUα = mλ2α.

There is equality in these bounds for Rα when di · dj is equal for all edges in E. This is the case for
regular graphs and semiregular bipartite graphs.
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We can derive the following corollaries from Theorem 1 which strengthen known bounds.

Bollobás and Erdos [2] proved that for −1 ≤ α < 0:

Rα ≥ m

(√
8m+ 1− 1

2

)2α

.

We can generalise and strengthen this bound as follows.

Corollary 1. For α < 0, Rα is bounded from below by

Rα ≥ m(2m− n+ 1)α.

Proof. Hong [14] proved that for graphs with no isolated vertices λ2 ≤ (2m− n + 1). Therefore using
Theorem 1 and that α < 0 and that 2m ≤ n(n− 1):

Rα ≥ mλ2α ≥ m(2m− n+ 1)α ≥ m

(√
8m+ 1− 1

2

)2α

.

Li and Yang [17] proved that for α ≤ −1:

Rα ≥ n(n− 1)1+2α

2
. (3)

We can strengthen this bound as follows.

Corollary 2. For α ≤ −1, Rα is bounded from below by

Rα ≥ n2α+2(ω − 1)2α+1

2ω2α+1
. (4)

Proof. Nikiforov [21] proved that λ2 ≤ 2m(ω − 1)/ω. Noting that α ≤ −1 we have:

Rα ≥ mλ2α ≥ m(2m(ω − 1))α

ωα
=

mα+12α(ω − 1)α

ωα
.

Turan’s theorem states that m ≤ n2(ω − 1)/2ω. Therefore since α ≤ −1:

Rα ≥ n2(α+1)(ω − 1)α+12α(ω − 1)α

2α+1ωα+1ωα
=

n2α+2(ω − 1)2α+1

2ω2α+1
.

We can demonstrate that (4) strengthens bound (3) as follows. We wish to show that for α ≤ −1:

n2α+2(ω − 1)2α+1

2ω2α+1
≥ n(n− 1)1+2α

2
.

This simplifies to:

(n(ω − 1))1+2α ≥ ((n− 1)ω)1+2α.

Take the (1 + 2α) root of both sides and note that 1 + 2α ≤ −1. Therefore:
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n(ω − 1) ≤ (n− 1)ω

which is true for all graphs.

Lu, Liu and Tian [20] proved that for −1 ≤ α < 0:

Rα ≥ 2−αnαm1−αλ3α.

We can generalise this bound as follows.

Corollary 3. For α < 0, Rα is bounded from below by

Rα ≥ 2−αnαm1−αλ3α.

Proof. Since α < 0 and λ ≥ 2m/n we have that:

Rα ≥ mλ2α = mλ3αλ−α ≥ mλ3α(2m/n)−α = 2−αnαm1−αλ3α.

Theorem 2. We have the following lower and upper bounds for Xα:

• For α < 0,

Xα ≥ mρα,

• For 0 < α ≤ 1,

Xα ≤ mρα.

Proof. Liu and Liu [19] and Elphick and Liu [8] proved that for any graph:

∑
i∈V d2i
m

=

∑
ij∈E di + dj

m
≤ ρ.

In other words, ρ is an upper bound on the 1-power mean of the m values of di + dj for (i, j) ∈ E.
Therefore using Lemma 1 we obtain:

• For α < 0,
Xα = Sα(di + dj) ≥ mUα = mρα.

• For 0 < α ≤ 1,
Xα = Sα(di + dj) ≤ mUα = mρα.

There is equality in these bounds for Xα when di + dj is constant for all edges in E. This is the case, for
example, for regular graphs and semiregular bipartite graphs.

Zhou and Trinajstić [26] proved (their Proposition 4) that for α < 0, Xα ≥ mnα for triangle-free
graphs. We generalise this result for any clique number in the following corollary.
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Corollary 4. For α < 0:

Xα ≥ m

(
2n(ω − 1)

ω

)α

.

In particular, H(G) = 2X−1 ≥ ωm/(ω − 1)n.

Proof. Abreu and Nikiforov [1] proved that ρ ≤ 2n(ω − 1)/ω. Therefore for α < 0:

Xα ≥ mρα ≥ m

(
2n(ω − 1)

ω

)α

= mnα when ω(G) = 2.

4. Bounds for Rα and Xα using degrees

Ilić and Stevanović [15] proved that Rα ≥ md2α for α ≥ 0. We reproduce and extend these inequalities
in the following Theorem, using Lemma 1.

Theorem 3. We have the following lower bound on Rα:

• For α ≥ 0,

Rα ≥ md2α.

Proof. Ilić and Stevanović [15] proved that:

R1

m
=

∑
ij∈E di · dj

m
≥
(∏

ij∈E
di · dj

)1/m

= M0(di · dj) ≥ d2.

Therefore d2 is a lower bound for the 0-power mean of Rα. Hence using Lemma 1, Rα ≥ md2α for
α ≥ 0.

Bollobás and Erdös [2] proved that for 0 < α ≤ 1:

Rα ≤ m

(√
8m+ 1− 1

2

)2α

.

We strengthen this bound in the following theorem.

Theorem 4. For 0 < α ≤ 1, Rα is bounded from above by

Rα ≤ m(2m− n+ 1)α.

Proof. Das and Gutman [7] proved the following bound:

R1 ≤ 2m2 − (n− 1)mδ +
1

2
(δ − 1)m

(
2m

n− 1
+ n− 2

)
.

If δ = 1 then clearly R1 ≤ m(2m − n + 1). If δ > 1 then it is straightforward to show that
R1 ≤ m(2m − n + 1). Therefore R1/m ≤ 2m − n + 1, so (2m − n + 1) is an upper bound for the
1−power mean of Rα.

Hence using Lemma 1, Rα ≤ m(2m− n+ 1)α for 0 < α ≤ 1.
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Zhou and Trinajstić [25] proved that X−0.5 ≤ √
nm/2 and also proved [26] that for α > 1, Xα ≥

4αn−αm1+α. We can reproduce and generalise these results as follows.

Theorem 5. We have the following lower and upper bounds on Xα:

• For α ≥ 1,

Xα ≥ m(2d)α.

• For −1 ≤ α < 0,

Xα ≤ m(2d)α.

Proof. Using the Cauchy-Schwartz inequality we have that
∑

i∈V d2i ≥ 4m2/n. Therefore:

X1

m
=

∑
ij∈E di + dj

m
=

∑
i∈V d2i
m

≥ 4m2

mn
= 2d.

It is well known that H(G) ≤ n/2 and consequently X−1 = H(G)/2 ≤ n/4. Therefore:

(
X−1

m

)−1

=
m

X−1

≥ 4m

n
= 2d.

Therefore 2d is a lower bound for the 1-power mean of Xα and a lower bound for the −1-power
mean of Xα. Hence using Lemma 1, Xα ≥ m(2d)α for α ≥ 1 and Xα ≤ m(2d)α for −1 ≤ α < 0.

Zhou and Trinajstić [24] proved (their Proposition 7) that X−0.5 ≤ n
√
∆/2

√
2. We generalise and

strengthen this result in the following corollary.

Corollary 5. For −1 ≤ α < 0, Xα ≤ n2α−1dα+1.

Proof. For −1 ≤ α < 0:

Xα ≤ m(2d)α =
nd

2
(2d)α = n2α−1dα+1 ≤ n2α−1∆α+1.

Theorem 6.

For α < 0, Xα ≥ m

(
m(∆ + δ)2

n∆δ

)α

and for 0 < α ≤ 1, Xα ≤ m

(
m(∆ + δ)2

n∆δ

)α

.

Proof. Ilić, Ilić and Liu [16] proved that:

X1

m
≤ m(∆ + δ)2

n∆δ
.

Therefore m(∆+δ)2/n∆δ is an upper bound for the 1−power mean of Xα. Using Lemma 1 therefore
completes the proof.
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5. Implications for R−1

Cavers et al [4] reviewed upper and lower bounds for R−1 in the context of bounds for Randić energy.
In particular, Shi [23] proved that:

R−1 ≥
n

2∆
(5)

with equality if and only if G is regular and Li and Yang [17] proved that:

R−1 ≥
n

2(n− 1)
, (6)

with equality if and only if G is a complete graph. Liu and Gutman [18] proved that for graphs with
no isolated vertex:

R−1 ≥
n− 1

m
(7)

with equality only for Star graphs. Clark and Moon [5] proved that for trees, R−1 ≥ 1.
Below, in Corollary 6, we prove that:

R−1 ≥
ω

2(ω − 1)
or equivalently

2R−1

2R−1 − 1
≤ ω(G), (8)

with equality for semiregular bipartite and regular complete ω-partite graphs. (A semiregular bipar-
tite graph is a bipartite graph for which all vertices on the same side of the bipartition have the same
degree.)

Bound (8) clearly strengthens bound (6). It also demonstrates that R−1 ≥ 1 not only for trees but for
all triangle-free graphs. Bound (8) never outperforms bound (5) for regular graphs but it does outperform
bound (5) for some irregular graphs, such as irregular complete bipartite graphs.

Corollary 6. R−1 is bounded from below by

R−1 ≥
ω

2(ω − 1)
.

This is exact for semiregular bipartite and regular complete ω-partite graphs.

Proof. Letting α = −1 we have R−1 ≥ m/λ2. Nikiforov [21] proved that:

λ2 ≤ 2m(ω − 1)

ω
.

Therefore:

R−1 ≥
m

λ2
≥ mω

2m(ω − 1)
=

ω

2(ω − 1)
.

Corollary 7. For chemical graphs, other than K5, R−1 ≥ 2/3.
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Proof. For a chemical graph ∆ ≤ 4. It follows from Brooks’ famous theorem [3] that, excluding K5,
ω(G) ≤ ∆ ≤ 4. Therefore:

R−1 ≥
ω

2(ω − 1)
≥ 4

6
=

2

3
.

This is exact for K4.

6. Implications for R−0.5

R−0.5 is the original topological index devised by Milan Randić in 1975 and has consequently been
investigated more than any other general Randić index.

Bollobás and Erdös [2] proved that for graphs with no isolated vertex:

n

2
≥ R−0.5 ≥

√
n− 1 (9)

with equality in the lower bound only for Star graphs. In Corollary 9 we prove that:

R−0.5 ≥
m√

2m− n+ 1
. (10)

Since connected graphs have m ≥ n− 1, it is straightforward to show that bound (10) is never worse
than the well known bound (9) for connected graphs.

Hansen and Vukicević [11] proved that χ(G) ≤ 2R−0.5. In Corollary 8 we provide a simple alterna-
tive proof of this result using Theorem 1.

Corollary 8. Hansen and Vukicević [11] proved that χ(G) ≤ 2R−0.5. We can use Theorem 1 to

strengthen their bound as follows.

2R−0.5 ≥ λ+ 1 ≥ χ(G).

Proof. As noted above λ2 ≤ 2m(ω − 1)/ω and it is well known that (ω − 1)ω ≤ (χ − 1)χ ≤ 2m and
that χ(G) ≤ 1 + λ. Therefore λ ≤ 2m/ω, so:

λ(λ+ 1) ≤ 2m(ω − 1)

ω
+

2m

ω
= 2m.

Hence:

2R−0.5 ≥
2m

λ
≥ λ+ 1 ≥ χ(G).

Corollary 9. Hong [14] proved that for graphs with no isolated vertices, λ2 ≤ (2m−n+1). Therefore

with α = −0.5:

R−0.5 ≥
m

λ
≥ m√

2m− n+ 1
≥

√
n− 1 for connected graphs.
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Proof. Let m = n − 1 + a where a ≥ 0 because m ≥ n − 1 for connected graphs. We are therefore
seeking to prove that:

m2 = (n− 1 + a)2 ≥ (n− 1)(2n− 2 + 2a− n+ 1),

which simplifies to a2 ≥ 0

7. Relationships between Rα and Xα

Zhou and Trinajstic [25] proved that X−0.5 ≤
√

mR−0.5/2, with equality if and only if G is regular. We
can generalise this relationship as follows.

Theorem 7. For α < 0, Xα ≤ 2α
√
mRα, with equality if and only if G is regular.

Proof. For all edges in G:

0 ≤ (di − dj)
2 = d2i + d2j − 2didj = (di + dj)

2 − 4didj.

Therefore, raising to the power of α with α < 0 and summing over edges:

∑

ij∈E
(4didj)

α ≥
∑

ij∈E
(di + dj)

2α.

Then using Cauchy-Schwartz:

Xα =
∑

ij∈E
(di + dj)

α ≤
√
m
∑

ij∈E
(di + dj)2α ≤

√
m
∑

ij∈E
(4didj)α = 2α

√
mRα.

8. Summary

The following tables summarise the power means we have used in this paper.

Table 1. Power means for Rα

Power mean Lower bound Upper bound
0.5 λ2

0 d2

1 2m− n+ 1
±∞ min (di · dj) max (di · dj)
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Table 2. Power means for Xα

Power mean Lower bound Upper bound
1 ρ
1

∑
d2i /m

∑
d2i /m

1 2d m(∆ + δ)2/n∆δ
−1 2d
±∞ min (di + dj) max (di + dj)

There are, we expect, further useful power means for Rα and Xα to be found.

Acknowledgements: We would like to thank Michael Cavers and Tamás Réti for helpful comments on
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1. Introduction and Notation

Unless otherwise specified, all graphs considered in this chapter are simple, i.e., they are finite,
undirected and without multiple edges or loops. Let G = (V (G), E(G)) denote a graph with vertex set
V and edge set E. The order n = |V (G)| of G is the number of its vertices, while the size m = |E(G)|
of G is the number of its edges.
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The degree (valency) of a vertex v ∈ V (G) is the number δG(v) (or δ(v) when no confusion can arise)
of edges incident to v, and we use ∆(G) and ∆(G) to denote the maximum and minimum degree in a
graph G. The open neighborhood N(v) = NG(v) of a vertex in G is the set of vertices adjacent to v. Note
that δ(v) = |N(v)|. The closed neighborhood of a vertex v is defined by N [v] = NG[v] = NG(v)∪ {v}.

The distance d(u, v) = dG(u, v) between two vertices u and v in a connected graph G is the number
of edges in a shortest path joining u and v. The eccentricity e(v) of a vertex v of a connected graph G is
the maximum distance from it to any other other vertex. The diameter D = D(G) of G is the maximum
eccentricity in G, or equivalently, D = D(G) is the maximum distance between two vertices of G.
The minimum eccentricity in G is said to be the radius of G and denoted by r = r(G). For standard
graph-theoretic notation and terminology the reader is referred to [7, 9].

A single number that can be used to characterize some property of the graph of a molecule is called
a topological index, or graph invariant. Topological indices and graph invariants based on the distances
between the vertices of a graph are widely used in theoretical to establish relations between the structure
and the properties of molecules. They provide correlations with physical, chemical and thermodynamic
parameters of chemical compounds [10]. For quite some time there has been rising interest in the field
of computational chemical in topological indices. The interest in topological indices is mainly related to
their use in nonempirical quantitative structure-property relationship (QSPR) and quantitative structure-
activity relationships (QSAR). One of the oldest and well-studied distance-based topological index is the
Wiener number W (G), also termed as Wiener index in chemical or mathematical chemical literature,
which is defined as the sum of distances over all unordered vertex pairs in G, namely,

W = W (G) =
∑

{u,v}⊆V (G)

dG(u, v). (1)

This index was first time introduced by Wiener more than 60 years ago [59]. Initially, the Wiener
index was considered as a molecular–structure descriptor used in chemical applications, but soon it
attracted the interest of ”pure” mathematicians [21, 22]; for details and additional references see the
reviews [11, 60] and the recent papers [42, 43, 61].

To overcome the inconsistency caused by the contributions of distant pairs of vertices when com-
pared with the contributions from close pairs to the topological indices, the sum of reciprocal values of
distances between pairs of different vertices was introduced in [34, 52]. For a connected graph G, the
Harary index is defined as

H = H(G) =
∑

{u,v}⊆V (G)

1

dG(u, v)
. (2)

Recently, Das et. al. [17] considered the generalized version of Harary index, namely the t-Harary
index, which is defined as

Ht = Ht(G) =
∑

{u,v}⊆V (G)

1

dG(u, v) + t
, t ≥ 0. (3)

For more results on Harary index, one may be referred to [18, 45, 46, 52, 64].
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In 1994, Dobrynin and Kochetova [12] and Gutman [26] independently proposed a vertex-degree-
weighted version of Wiener index called sum-degree distance or Schultz molecular topological index,
which is defined for a connected graph G as

DD+ = DD+(G) =
∑

{u,v}⊆V (G)

(δG(u) + δG(v))dG(u, v). (4)

This graph invariant may be regarded as weighted degree-sum version of Wiener index. One may be
referred to [5, 13, 14, 35, 37, 57] and the references cited therein.

The multiplicative variant of the degree distance is put forward in [26] and called there the Schultz
index of the second, but for which the name Gutman index has also sometimes been used [58] (we call
it product–degree distance). It is defined as

DD× = DD×(G) =
∑

{u,v}⊆V (G)

(δG(u)δG(v))dG(u, v). (5)

This graph invariant can be viewed as weighted degree-product version of Wiener index. The interested
readers may consult [1, 24, 39, 50, 51, 62] and the references quoted therein for more details.

Noting that the sum-degree distance is a degree-weight version of the Wiener index and bearing in
mind that the relation between Wiener index and Harary index, Hua et al. [30] and Alizadeh et al. [2]
introduced the reciprocal sum-degree distance or additively weighted Harary index of G, which is defined
is

RDD+ = RDD+(G) =
∑

{u,v}⊆V (G)

u6=v

δG(u) + δG(v)

dG(u, v)
. (6)

Some basic mathematical properties of this index were established and its behavior under several stan-
dard graph products were investigated there. Let D̂G(u) =

∑
v∈V (G)\{u}

1
dG(u,v)

, then we can rewrite
Eq.(6) as

RDD+(G) =
∑

u∈V (G)

δG(u)D̂G(u),

which is frequently used throughout the chapter. For the research development of this graph invariant,
one may be referred to [47, 53].

It is known that the intuitive idea of pairs of close atoms contributing more than the distant ones
has been difficult to capture in topological indices. A possibly useful approach could be to replace
the additive weighting of pairs by the multiplicative one, thus giving rise to the concept of reciprocal
product-degree distance [2, 27]:

RDD× = RDD×(G) =
∑

{u,v}⊆V (G)

u6=v

δG(u)δG(v)

dG(u, v)
. (7)

Recently, Li et al. [48] introduced a new graph invariant named the reformulated reciprocal sum-
degree distance, which is defined as

RDDt
+ = RDDt

+(G) =
∑

{u,v}⊆V (G)

u6=v

δG(u) + δG(v)

dG(u, v) + t
, t ≥ 0. (8)
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W DD+ DD×
H RDD+ RDD×
Ht RDDt

+ RDDt
×?

In view of Eq.(3), RDDt
+ is just the additively weighted t-Harary index; while in view of Eq.(6), it

is also the generalized version of the reciprocal sum-degree distance of a connected graph. In this paper,
several mathematical properties of this novel graph index were studied. Let D̂t(G;u) =∑

v∈V (G)\{u}
1

dG(u,v)+t
, then we can rewrite Eq.(8) as

RDDt
+(G) =

∑

u∈V (G)

δG(u)D̂t(G;u).

The graph invariants, defined via Eqs. (1)–(8), can be arranged as in the Table above. From this
Table it is immediately seen that one more such invariants is missing. This is the reformulated reciprocal
product–degree distance, defined as

RDDt
× = RDDt

×(G) =
∑

{u,v}⊆V (G)

u6=v

δG(u)δG(v)

dG(u, v) + t
, t ≥ 0. (9)

In view of Eq.(3), RDDt
× is just the multiplicatively weighted t-Harary index; while in view of

Eq.(7), it is also the generalized version of the reciprocal product-degree distance of a connected graph.

2. The reciprocal sum-degree distance

This section is divided into several subsections, each dealing with a class of graphs.

2.1 Graphs with maximum and minimum RDD+

Hua et al. [30] seems to be the first to prove that the maximum and minimum RDD+ of a connected
graph of order n goes to infinity with n. In fact, they proved in 2012 that for a graph G with non-isolated
vertices the complete graph Kn and the path Pn respectively attains its maximum and minimum RDD+.
A little later Alizadeh et al. also showed the minimum value for this graph invariant [2]. The proof of
this result is based on following two lemmas.

Lemma 2.1. Let G be a connected graph with at least three vertices.

(a) If G is not isomorphic to Kn, then RDD+(G) < RDD+(G+ e), where e ∈ E(G).

(b) If G has an edge e′ not being a cut edge, then RDD+(G− e′) < RDD+(G).

Proof. We first prove (a) holds. Suppose that G is not a complete graph. Then there exists a pair of
vertices u and v in G such that uv ∈ E(G). It is obvious that dG(x, y) ≥ dG−uv(x, y) for any pair of
vertices x and y in G. Also we have dG(u, v) > 1 = dG+uv(u, v). In addition, δG+uv(w) ≥ δG(w) for
any w in G. It follows from Eq.(6) that RDD+(G) < RDD+(G+ e), as desired.
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Now, we consider (b). Since the edge e′ is not a cut edge, we have G − e′ is connected and
not isomorphic to the complete graph of the same order. Thus, by (a), we have RDD+(G − e′) <

RDD+((G− e′) + e′) = RDD+(G), as claimed. �

Figure 1. α1-transformation G1 ⇒ G2.

Transformation 2.2. Suppose that H is a nontrivial connected graph and u is a vertex in H . Let G1

(resp. G2) be a graph obtained by identifying the vertex u of H with a non-pendent vertex (resp. a

pendent vertex) of the path Pl (l ≥ 3). We call G1 ⇒ G2 the α1-transformation, see Fig. 1.

Lemma 2.3. ( [30]) Let G1 and G2 be two graphs illustrated in Transformation 2.2. Then RDD+(G2) <

RDD+(G1).

Proof. For each vertex x in V (H) \ {u}, we clearly have δG1(x) = δH(x) = δG2(x). Also, δG1(u) =

δH(u) + 2 and δG2(u) = δH(u) + 1.

Without loss of generality, we label all vertices of path Pl (l ≥ 3) as v1, v2, · · · , vl and assume in G1

that u = vi for some 2 ≤ i ≤ l − 1. It follows that u = v1 or vl in G2.

For 1 ≤ j ≤ l, we let dij = dPl
(vi, vj). Rearranging these dij’s and relabeling them as d′ij’s such that

d′i1 ≤ d′i2 ≤ · · · ≤ d′il. Then d′ij ≤ j − 1 for j = 1, 2, · · · , l. In particular, d′i1 = 0. We complete the
proof by considering two cases.

• For each vertex x in V (H) \ {u}, we have

D̂G1(x) =
∑

y∈V (H)\{u,x}

1

dH(x, y)
+

∑

y∈V (Pl)

1

dG(x, y)

=
∑

y∈V (H)\{u,x}

1

dH(x, y)
+
∑

1≤j≤l

1

dH(x, u) + dPl
(vi, vj)

=
∑

y∈V (H)\{u,x}

1

dH(x, y)
+

1

dH(x, u)
+
∑

1≤j≤l

j 6=i

1

dH(x, u) + dPl
(vi, vj)

=
∑

y∈V (H)\{u,x}

1

dH(x, y)
+

1

dH(x, u)
+
∑

2≤j≤l

1

dH(x, u) + d′ij

≥
∑

y∈V (H)\{u,x}

1

dH(x, y)
+

1

dH(x, u)
+
∑

2≤j≤l

1

dH(x, u) + j − 1

=D̂G2(x).

Recall that δG1(x) = δH(x) = δG2(x) holds for all vertex x in V (H) \ {u}. Hence,
∑

x∈V (H)\{u}
δG1(x)D̂G1(x) ≥

∑

x∈V (H)\{u}
δG2(x)D̂G2(x). (10)
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• For each vertex vj in Pl, we have

D̂G1(vj) = D̂Pl
(vj) +

∑

x∈V (H)\{u}

1

dPl
(vi, vj) + dH(u, x)

. (11)

and

D̂G2(vj) = D̂Pl
(vj) +

∑

x∈V (H)\{u}

1

dPl
(v1, vj) + dH(u, x)

. (12)

For convenience, let δ′ij be the degree of vertex corresponding to d′ij for each 1 ≤ j ≤ l. Then we
have, δ′i1 = δH(u) + 2 and δ′il = 1. It is obvious that there must exist a positive integer j0 in the interval
[2, l − 1] such that δ′ij0 = 1.

For 1 ≤ j ≤ l, we let d1j = dPl
(v1, vj). It immediately follows that d11 ≤ d12 ≤ · · · ≤ d1l. Clearly,

δG2(v1) = δH(u) + 1 and δG2(vl) = 1. For the above chosen j0, we have δG2(vj0) = 2.

For 2 ≤ j ≤ l − 1 and j 6= j0, we have δ′ij = δG2(vj) = 2.

From the definition above it follows that d′ij ≤ d1j for any j = 1, 2, · · · , l.

For simplicity, we let fx(j) = d′ij + dH(u, x) and gx(j) = d1j + dH(u, x) for each given vertex x in
V (H) \ {u}. It follows that

fx(j) ≤ gx(j), (13)

for each x and j = 1, 2, · · · , l.

Note that for each 2 ≤ j ≤ l and j 6= i, δG1(vj) = δG2(vj) = δPl
(vj). By means of Eqs.(11) and

(12), we have

l∑

j=1

δG1(vj)D̂G1(vj) =
l∑

j=1

δG1(vj)D̂Pl
(vj) +

l∑

j=1

δ′ij
∑

x∈V (H)\{u}

1

fx(j)

=(δH(u) + 2)D̂Pl
(vi) + 1 · D̂Pl

(v1) +
∑

j=2

j 6=i

δPl
(vj)D̂Pl

(vj)

+
∑

j=2

j 6=j0

δ′ij
∑

x∈V (H)\{u}

1

fx(j)
+ δ′ij0

∑

x∈V (H)\{u}

1

fx(j0)

+δ′i1
∑

x∈V (H)\{u}

1

dH(u, x)
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and

l∑

j=1

δG2(vj)D̂G2(vj) =
l∑

j=1

δG2(vj)D̂Pl
(vj) +

l∑

j=1

δG2(vj)
∑

x∈V (H)\{u}

1

gx(j)

=(δH(u) + 1)D̂Pl
(v1) + 2 · D̂Pl

(vi) +
∑

j=2

j 6=i

δPl
(vj)D̂Pl

(vj)

+
∑

j=2

j 6=j0

δG2(vj)
∑

x∈V (H)\{u}

1

gx(j)
+ δG2(vj0)

∑

x∈V (H)\{u}

1

gx(j0)

+δG2(v1)
∑

x∈V (H)\{u}

1

dH(u, x)
.

By above analysis and Eq.(13), we have

∑

j=2

j 6=j0

δ′ij
∑

x∈V (H)\{u}

1

fx(j)
≥
∑

j=2

j 6=j0

δG2(vj)
∑

x∈V (H)\{u}

1

gx(j)
. (14)

By means of Eqs.(12) and (13), we obtain

l∑

j=1

δG1(vj)D̂G1(vj)−
l∑

j=1

δG2(vj)D̂G2(vj)

≥δH(u)(D̂Pl
(vi)− D̂Pl

(v1)) + δ′ij0
∑

x∈V (H)\{u}

1

fx(j0)

−δG2(vj0)
∑

x∈V (H)\{u}

1

gx(j0)

+(δH(u) + 2)
∑

x∈V (H)\{u}

1

dH(u, x)
− (δH(u) + 1)

∑

x∈V (H)\{u}

1

dH(u, x)

=δH(u)(D̂Pl
(vi)− D̂Pl

(v1)) +
∑

x∈V (H)\{u}

1

fx(j0)

−2
∑

x∈V (H)\{u}

1

gx(j0)
+

∑

x∈V (H)\{u}

1

dH(u, x)

≥δH(u)(D̂Pl
(vi)− D̂Pl

(v1)).

It is sufficient to prove that D̂Pl
(vi) > D̂Pl

(v1) for each given 2 ≤ i ≤ l − 1. Clearly, D̂Pl
(v1) =∑l−1

k=1
1
k
. Let d′ij be defined as previous. Since 0 = d′i1 ≤ d′i2 ≤ · · · ≤ d′il and d′ij ≤ j − 1, we have

D̂Pl
(vi) =

∑l
j=2

1
d′ij

≥∑l
j=2

1
j−1

= D̂Pl
(v1) for each 2 ≤ i ≤ l− 1. Also, we have 1

d′i3
= 1 > 1

2
. Hence,

D̂Pl
(vi) > D̂Pl

(v1) for each given 2 ≤ i ≤ l − 1.

By discussion above, we have arrived at

l∑

j=1

δG1(vj)D̂G1(vj) >
l∑

j=1

δG2(vj)D̂G2(vj). (15)
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Form the combination of Eqs.(10) and (15) it follows readily that RDD+(G2) <

RDD+(G1). �
By means of Lemmas 2.1 and 2.3, we are able to characterize connected graphs with the maximum

and minimum RDD+, respectively. More precisely, we have

Theorem 2.4. ( [30]) Among all nontrivial connected graphs of order n, the graphs with maximum and

minimum RDD+ are Kn and Pn, respectively.

Proof. The case of n = 2 is trivial. So in what follows we suppose that n ≥ 3.

We first prove that Kn is maximal with respect to RDD+. If G is not a complete graph, then we can
repeatedly add edges into G until we obtain G ∼= Kn. It follows from Lemma 2.1 that RDD+(G) ≤
RDD+(Kn), with equality if and only if G ∼= Kn.

Now, let us show that Pn is minimal with respect to RDD+. Suppose first that G is not isomorphic to
a tree. Let T (G) be a spanning tree of G. It follows from Lemma 2.1 that RDD+(T (G)) < RDD+(G).
It is sufficient to consider the case of G is a tree. If G is not isomorphic to Pn, then we can repeatedly
employ α-transformation on G and we must obtain the path Pn in the end. By Lemma 2.3, each step of
α1-transformation will result in a new tree with a strictly smaller RDD+ than that of the previous one.
Hence, RDD+(G) > RDD+(Pn), as desired. �

Following the approach of Ref. [28], Alizadeh et al. gave another proof of the above theorem, we
encourage the interested reader to consult [2] for details.

The n-th harmonic number Hn is defined as the n-th partial sum of the harmonic series, Hn =∑n
k=1

1
k
. By using the asymptotic formula Hn ≈ lnn + γ for harmonic numbers, one can obtain the

asymptotic behavior of the type (n+ 1) lnn for the lower bound of RDD+.

In [2], the authors gave an upper bound on RDD+ among trees with the same number of vertices
and then characterize the corresponding extremal graph.

Theorem 2.5. ( [2]) Among all nontrivial trees of order n, the graph with maximum RDD+ is the star

Sn.

Figure 2. α2-transformation T ⇒ T ′.

Proof. Let x be a vertex of T with neighbors x1, x2, · · · , xk, y such that δ(xi) = 1 for each i =

1, 2, · · · , k. Let T ′ be the tree obtained from T by α2-transformation shown in Fig. 2.



143

For simplicity, suppose S0 = {y, x, x1, x2, · · · , xk} and S1 = V (T ) \ S0. The vertices of S0 are not
affected by α2-transformation. Hence, we have

RDD+(T
′)−RDD+(T ) =

∑

vi,vj∈S0

(
δ(vi) + δ(vj)

dT ′(vi, vj)
− δ(vi) + δ(vj)

dT (vi, vj)

)

+
∑

vi∈S0,vj∈S1

(
δ(vi) + δ(vj)

dT ′(vi, vj)
− δ(vi) + δ(vj)

dT (vi, vj)

)

=k


∑

vj∈S1

(
1

d(y, vj)
− 1

d(x, vj)

)
+

1 + δ(vj)

d(y, vj) + 1
− 1 + δ(vj)

d(y, vj) + 2




+k

(
δ(y) + 1

2
+ k − δ(x)

)
.

Since, for each vertex vj of S1, d(y, vj) < d(x, vj), RDD+(T
′) − RDD+(T ) ≥ k

( δ(y)−1
2

)
, and the

equality holds if and only if δ(y) = 1. Applying α2-transformation for any pair of vertices such as x and
y for a finite number of times, we must get the Sn in the end. This completes the proof. �

2.2 Graphs with given property

Recently, finding bounds for the topological indices of graphs, as well as the related problem of
finding the graphs with maximum and minimum value of the respective graph invariant, attracted the at-
tention of many researchers and many results were obtained. Indeed, over a significant class of graph, the
bounds for the reciprocal sum-degree distance were obtained. In this section, we consider this problem
which will be divided into several classes in the sequel.

2.2.1 Graphs with given independent and matching number

The independent sets is an important notion in graph theory. The problem of finding independent
sets started more than two centuries ago with the eight queens puzzle, i.e., the problem of placing eight
chess queens on an 8 × 8 chessboard such that none of them are able to capture any other using the
standard chess queen’s moves. However, the formal definition of independent sets was posed during the
fifties. Since then, several variants of independent sets were defined and a graph invariant was associated
to each variant.

Let G and H be two vertex-disjoint graphs. The join of graphs G and H , denoted by G∨H , is defined
as a graph whose vertex set is V (G)∪V (H) and edge set is E(G)∪E(H)∪{xy|x ∈ V (G), y ∈ V (H)}.

A vertex subset S of a graph G is called an independent set of G, if the subgraph induced by S is an
empty graph. Then α = max{|S| : S is an independent set of } is said to be the independent number of
G.

Theorem 2.6. ( [30]) Let G be an n-vertex connected graph with independent number α. Then

RDD+(G) ≤ n3 − (α + 1)n2 −
(
3

2
α2 − 3

2
α− 1

)
n+

3

2
α3 +

3

2
α2 − α,
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with equality if and only if G is isomorphic to αK1 ∨Kn−α.

Proof. Let G′ be a graph chosen among all n-vertex connected graphs with independent number α such
that G′ has the largest RDD+. Let S be a maximal independent set in G′ with |S| = α. Since adding
edges into a graph will increase its RDD+ by Lemma 2.1, each vertex x in S is adjacent to every vertex
y in G′ − S. Moreover, the subgraph induced by vertices in G′ − S is a clique in G′. Consequently, it
follows that G′ ∼= αK1 ∨Kn−α. An elementary calculation gives RDD+(αK1 ∨Kn−α) = (n− α)(n−
1)2 +α(n−α)[(n−α)+ 1

2
(α− 1)] = n3 − (α+1)n2 − (3

2
α2 − 3

2
α− 1)n+ 3

2
α3 + 3

2
α2 −α, as desired.

�
The matching number, also called edge-independent number, β(G) of a graph G is the maximum

number of disjoint edges in G. Let G β
n denote the class of connected graphs of order n with matching

number β.

A component of a graph is said to be odd (resp. even) if it has odd (resp. even) number of vertices.
Indicate the number of odd components by o(G).

The following is an immediate consequence of the Tutte-Berge formula proved by Lovász and Plum-
mer in [44].

Lemma 2.7. Let G be a connected graph of order n. Then

n− 2β = max{o(G−X)− |X| : X ⊂ V }.

Theorem 2.8. ( [53]) Let G be a connected graph of order n ≥ 4 with matching number β ∈ [2, bn
2
c].

Let

σ =
23− 4n+

√
37n2 − 121n+ 109

21
.

Each of the following holds:

(a) if β = bn
2
c, then RDD+(G) ≤ n(n− 1)2, with equality if and only if G ∼= Kn;

(b) if σ < β ≤ bn
2
c−1, then RDD+(G) ≤ 4β3+(2n−12)β2+(11−3n)β+ n2−n−4

2
, with equality

if and only if G ∼= K1 + (K2β−1 ∪Kn−2β);

(c) if β = σ, then RDD+(G) ≤ 4σ3+(2n−12)σ2+(11−3n)σ+ n2−n−4
2

= 1
2
σ3− 1

2
σ2+ n2−3n+2

2
σ,

with equality if and only if G ∼= Kβ +Kn−β or G ∼= K1 + (K2β−1 ∪Kn−2β);

(d) if 2 ≤ β < σ, then RDD+(G) ≤ 1
2
β3 − 1

2
β2 + n2−3n+2

2
β, with equality if and only if G ∼=

Kβ +Kn−β.

Proof. Let G′ be a connected graph with maximum RDD+-value in G β
n . In view of Lemma 2.7, there

exists a vertex subset X ′ ⊂ V (G′) such that

n− 2β = max{o(G′ −X)− |X| : X ⊂ V } = o(G′ −X ′)− |X ′|.

For simplicity, let |X ′| = s and o(G′ −X ′) = t. Then n− 2β = t− s.
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Suppose that s = 0. It follows that G′ − X ′ = G′, and n − 2β = t ≤ 1. By our choice of G and
Lemma 2.1, we obtain that G′ = Kn, then we have RDD+(G

′) = n(n− 1)2.

Assume in the following that s ≥ 1, and consequently t ≥ 1. Let G+
1 , G

+
2 , · · · , G+

t be all odd
components of G′ − X ′. If G′ − X ′ has an even component, then by adding an edge in G′ between a
vertex of the even component and a vertex of an odd component of G′ −X ′, we obtain a graph G′′, for
which n − 2β(G′′) ≥ o(G′′ − X ′) − |X ′| = o(G′ − X ′) − |X ′|. It follows that β(G′′) = β, and by
Lemma 2.1 G′′ has lager RDD+ than that of G′, a contradiction. Thus, G′ − X ′ does not have even
components. Similarly, G+

1 , G
+
2 , · · · , G+

t and the subgraph induced by X ′ are all complete, and any
vertex of G+

1 , G
+
2 , · · · , G+

t is adjacent to every vertex in X ′. Let ni = |V (G+
i )| for i = 1, 2, · · · , t. Then

G′ = Ks + (Kn1 ∪Kn2 ∪ · · · ∪Knt).

Let R̂DD+(G1, G2) denote the contribution to the RDD+-value between vertices of G1 and those
of G2, then we have





R̂DD+(Kni
, Kni

) = 2
(
ni

2

)
(ni + s− 1),

R̂DD+(Kni
, Knj

) = ninj(ni + s− 1 + nj + s− 1),

R̂DD+(Kni
, Ks) = sni(n− 1 + ni + s− 1),

R̂DD+(Ks, Ks) = 2
(
s
2

)
(n− 1).

Hence, the reciprocal sum-degree distance of G′ can be represented as

RDD+(G
′) =

t∑

i=1

R̂DD+(Kni
, Kni

) +
∑

i<j

R̂DD+(Kni
, Knj

)

+
t∑

i=1

R̂DD+(Kni
, Ks) + R̂DD+(Ks, Ks)

=
t∑

i=1

n3
i + (2s− 2)

t∑

i=1

n2
i + (s2 + (n− 3)s+ 1)

t∑

i=1

ni

+
∑

i<j

ninj(ni + nj + 2s− 2) + 2

(
s

2

)
(n− 1).

By Lagrange multiplier, we can show each of the following function




f1(n1, n2, · · · , nt) = n3
1 + n3

2 + · · ·+ n3
t ,

f2(n1, n2, · · · , nt) = n2
1 + n2

2 + · · ·+ n2
t ,

f3(n1, n2, · · · , nt) = n1 + n2 + · · ·+ nt,

f4(n1, n2, · · · , nt) =
∑

i<j ninj(ni + nj + 2s− 2),

attains its maximum under the conditions n1 + n2 + · · · + nt = n − s and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nt if
and only if n1 = n2 = · · · = nt−1 = 1 and nt = 2β − 2s+ 1.

Hence,

RDD+(G
′) =f1(n1, n2, · · · , nt) + 2(s− 1)f2(n1, n2, · · · , nt)

+(s2 + (n− 3) + 1)f3(n1, n2, · · · , nt) +
1

2
f4(n1, n2, · · · , nt),
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which attains maximum if and only if n1 = n2 = · · · = nt−1 = 1 and nt = n− s− t+1 = 2β− 2s+1.

It follows that
G′ = Ks + (K2β−2s+1 ∪Kn+s−2β−1).

Simply calculation shows that





R̂DD+(K2β−2s+1, K2β−2s+1) = 2
(
2β−2s+1

2

)
(2β − s),

R̂DD+(Kn+s−2β−1, Kn+s−2β−1) =
(
n+s−2β−1

2

)
s,

R̂DD+(K2β−2s+1, Kn+s−2β−1) = (2β − 2s+ 1)(n+ s− 2β − 1)β,

R̂DD+(Ks, Ks) = 2
(
s
2

)
(n− 1).

Taking into account the contributions to RDD+-value above, it yiels

RDD+(G
′) =R̂DD+(K2β−2s+1, K2β−2s+1) + R̂DD+(Kn+s−2β−1, Kn+s−2β−1)

+R̂DD+(K2β−2s+1, Kn+s−2β−1) + R̂DD+(Ks, Ks)

=− 7

2
s3 +

4n+ 24β − 1

2
s2 +

n2 − 5n− 24β2 − 8nβ + 4

2
s

+4β3 + 2nβ2 + (n− 1)β.

Analyzing the function Φ on s

Φ(s) =− 7

2
s3 +

4n+ 24β − 1

2
s2 +

n2 − 5n− 24β2 − 8nβ + 4

2
s+ 4β3

+2nβ2 + (n− 1)β.

It follows that s ≤ β, since t− s = n− 2β ≥ t+ s− 2β. By taking derivatives, we have

Φ′(s) = −21

2
s2 + (4n+ 24β − 1)s+

n2 − 5n− 24β2 − 8nβ + 4

2
,

Φ′′(s) = −21s+ 4n+ 24β − 1 = 21(β − s) + 4n+ 3β − 1 ≥ 4n+ 3β − 1 > 0.

This implies that Φ(s) is a strictly convex function for s ≤ β, and the maximum value of Φ(s) is attained
when s = 1 or s = β. Let

Φ(1) = 4β3 + (2n− 12)β2 − (3n− 11)β +
n2 − n− 4

2
,

Φ(β) =
1

2
β3 − 1

2
β2 +

n2 − 3n+ 2

2
β.

After subtraction, we obtain

Φ(1)− Φ(β) =
7

2
β3 +

4n− 23

2
β2 − n2 + 3n− 20

2
β +

n2 − n− 4

2
.

Now, let us consider the function Ψ on β

Ψ(β) =
7

2
β3 +

4n− 23

2
β2 − n2 + 3n− 20

2
β +

n2 − n− 4

2
.

It follows that
Ψ′(β) =

21

2
β2 + (4n− 23)β − n2 + 3n− 20

2
.
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The quadratic equation Ψ′(β) = 0 has two distinct roots, since 37n2 − 121n + 109 > 0. Let σ be its
positive root, namely

σ =
23− 4n+

√
37n2 − 121n+ 109

21
.

If β > σ, and Ψ′(β) > 0, then Ψ(β) is an increasing function, and Ψ(β) > Ψ(1) = 0 follows. This
implies that Φ(1) > Φ(β). If β < σ, then Φ(1) < Φ(β). This completes the proof of Theorem 2.8. �

2.2.2 Graphs with given chromatic number

A coloring of a graph G is an assignment of colors to the vertices of G such that two adjacent vertices
have different colors. The minimum number of colors in a coloring of G is the chromatic number of G
and is denoted by χ(G). The chromatic number is a very widely studied graph invariants, whose history
started with the famous four color problem, posed by Guthrie in 1852, we encourage the interested
readers to consult [8, 54, 55] and the work of Kempe [38] and Heawood [32] for details.

Denote by Tn,t the Turán graph, a complete t-partite graph of order n with |ni − nj| ≤ 1, where
ni = 1, 2, · · · , t, is the number of vertices in the i-th partite set of Tn,t.

Theorem 2.9. ( [30]) Let G be an n-vertex connected graph with chromatic number χ such that n =

qχ+ p, 0 ≤ p ≤ χ. Then

RDD+(G) ≤ n3 − (3q + 2)n2 −
(
3

2
q2χ+

3

2
qχ+

3

2
q2 +

5

2
q + 1

)
n− q(q + 1)2χ,

with equality if and only if G is isomorphic to Tn,t.

Proof. Let G′ be a graph chosen among all n-vertex connected graphs with chromatic number χ such
that G′ has the largest RDD+. Because the addition of edges into a graph will increase its RDD+, we
must have G′ ∼= Kn1 ∨Kn2 ∨ · · · ∨Knχ , where ni is the number of vertices in the i-th partite set.

By the definition of RDD+, we obtain

RDD+(G
′) =

χ∑

i=1

ni(n− ni)

[
(n− ni) + (ni − 1) · 1

2

]

=

χ∑

i=1

ni(n− ni)

(
n− ni

2
− 1

2

)

=
1

2

χ∑

i=1

n3
i +

1

2
(1− 3n)

χ∑

i=1

n2
i +

1

2
(2n3 − n2).

Suppose that G′ is not isomorphic to Tn,χ. Then there must exist nj ≥ ni + 2 for some 1 ≤ i, j ≤ χ.
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Let G′′ ∼= Kn1 ∨Kn2 ∨ · · · ∨Kni+1 ∨ · · · ∨Knj−1 ∨ · · · ∨Knχ . Then

RDD+(G
′′)−RDD+(G

′) =
1

2
[(nj − 1)3 + (ni + 1)3 − n3

j − n3
i ]

+
1− 3n

2
[(nj − 1)2 + (ni + 1)2 − n2

j − n2
i ]

=
1

2
(−3n2

j + 3n2
i + 3nj + 3ni) +

1− 3n

2
(2ni + 2− 2nj)

=
ni + 1− nj

2
(3nj + 3ni + 2− 6n).

Since G′ is connected, we have χ ≥ 2, and then ni < nj ≤ n − 1. Thus, 3nj + 3ni + 2 − 6n < 0.
Note that ni + 1 − nj < 0, it follows that RDD+(G

′′) > RDD+(G
′), a contradiction to our choice of

G′. Hence, G′ ∼= Tn,χ. Moreover, we have

RDD+(Tn,χ) =p(q + 1)(n− q − 1)

[
(n− q − 1) + q · 1

2

]

+(χ− p)q(n− q)

[
(n− q) + (q − 1) · 1

2

]

=

χ∑

i=1

ni(n− ni)

(
n− ni

2
− 1

2

)

=n3 − (3q + 2)n2 +

(
3

2
q2χ+

3

2
qχ+

3

2
q2 +

5

2
q + 1

)
n− q(q + 1)2χ.

This completes the proof. �

2.2.3 Graphs with given vertex–connectivity and edge–connectivity

The concept of connectivities are among the first notations studied in graph theory, which play an
important and fundamental role in the exploration of graph properties. The connectivities also play an
significant and fundamental role in graphs, especially in the notation of graph vulnerability.

We begin this section by bounding the reciprocal sum-degree distance in terms of connectivities:
vertex-connectivity and edge-connectivity. The vertex-connectivity or simply connectivity is the mini-
mum number of vertices whose deletion from a connected graph disconnects it, and the edge-connectivity
is the minimum number of edges whose deletion from a connected graph disconnects it.

Theorem 2.10. ( [30]) Let G be an n-vertex connected graph with vertex-connectivity κ. Then

RDD+(G) ≤ n3 − 9

2
n2 +

(
2κ+

13

2

)
n+

1

2
κ2 − 5

2
κ− 3,

with equality if and only if G is isomorphic to Kκ ∨ (K1 +Kn−κ−1).

Proof. Let G′ be a graph chosen among all n-vertex connected graphs with vertex-connectivity κ such
that G′ has the largest RDD+. Let C be a vertex-cut in G′ such that |C| = κ and G′ − C = G1 ∪G2 ∪
· · · ∪ Gt (t ≥ 2). It follows from Lemma 2.1 that t = 2, otherwise we can obtain a new graph G′′ with
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vertex-connectivity κ by adding edges between any two components, which has a strictly larger RDD+

than that of G′, a contradiction to our choice of G′.

The same reason leads us to that both G1 and G2 are cliques of G′, that the subgraph of G′ induced
by C is a clique, and that any vertex in G1 ∪G2 is adjacent to each vertex in C. Let ni denote the order
of Gi. Thus, we have G′ ∼= Kκ ∨ (Kn1 +Kn2).

Without loss of generality, we assume that n2 ≥ n1. If n1 = 1, then the result follows readily.
Suppose now that n2 ≥ n1 ≥ 2. It follows from the definition

RDD+(G
′) =

∑

x∈V (G1)

δG′(x)D̂G′(x) +
∑

x∈V (G2)

δG′(x)D̂G′(x)

+
∑

x∈V (C)

δG′(x)D̂G′(x)

=n1(n− n2 − 1)

[
(n− n2 − 1) +

1

2
n2

]
+ k(n− 1)2

+n2(n− n1 − 1)

[
(n− n1 − 1) +

1

2
n1

]

=(n3 − 2n2 + n) +

(
3− 5

2
n− 1

2
k

)
n1n2.

Let G′′ = Kκ ∨ (Kn1−1 +Kn2+1). Then

RDD+(G
′′)−RDD+(G

′) =

(
3− 5

2
n− 1

2
k

)
[(n1 − 1)(n2 + 1)− n1n2]

=

(
3− 5

2
n− 1

2
k

)
(n1 − n2 − 1) > 0,

a contradiction to our choice of G′.

Thus, G′ ∼= Kκ∨ (K1+Kn−κ−1). An elementary calculation gives RDD+(Kκ∨ (K1+Kn−κ−1)) =

n3 − 9
2
n2 + (2κ+ 13

2
)n+ 1

2
κ2 − 5

2
κ− 3, as desired. �

In the same paper, Hua et al. also showed that Kκ ∨ (K1 +Kn−κ−1) maximizes RDD+ among all
n-vertex connected graphs with edge-connectivity κ.

Theorem 2.11. ( [30]) Let G be an n-vertex connected graph with edge-connectivity κ. Then

RDD+(G) ≤ n3 − 9

2
n2 +

(
2κ+

13

2

)
n+

1

2
κ2 − 5

2
κ− 3,

with equality if and only if G is isomorphic to Kκ ∨ (K1 +Kn−κ−1).

Proof. Suppose that G′ is a graph chosen among all n-vertex connected graphs with edge-connectivity
κ such that G′ has the maximum RDD+. In what follows we intend to prove that G′ ∼= Kκ ∨ (K1 +

Kn−κ−1).

Let {e1, e2, · · · , eκ} be a κ-edge cut in G′, and let G′ − {e1, e2, · · · , eκ} := G1 ∪ G2. Since adding
edges into a graph will increase its RDD+ by Lemma 2.1, both G1 and G2 must be complete graphs.
Denote by ni the order of Gi for i = 1, 2.



150

We claim that ni = 1 or ni ≥ κ ≥ 2. Suppose that ni ≥ 2. On one hand, Gi has
(
ni

2

)
edges, as Gi is

a complete graph. On the other hand, the sum of degrees of all vertices in Gi is at least niκ, and thus Gi

has at least niκ−κ
2

edges. Hence,

ni(ni − 1)

2
≥ niκ− κ

2
,

this is, n2
i − (κ+ 1)ni + κ ≥ 0, implying that ni ≥ κ, as claimed.

Suppose without loss of generality that n2 ≥ n1. If n1 = 1, Gmax is just the graph Kκ ∨ (K1 +

Kn−κ−1), as claimed.

Assume now that n2 ≥ n1 ≥ κ. In the following, we first confirm that each vertex in G′ has degree
at most κ+ 1.

Let v be a vertex with neighbors v1, v2, · · · , vκ. Write A = {v1, v2, · · · , vκ} and B = V (G′) \
{v, v1, v2, · · · , vκ}. If G[A∪B], the subgraph of G′ induced by A∪B, is the complete graph Kn−1, then
G′ ∼= Kκ ∨ (K1 +Kn−κ−1), as desired.

If G[A ∪ B] is not complete, then we can add an edge, say uv, between a vertex u in A and a vertex
v in B and the resulting graph is denoted by G′′. Clearly, the edge-connectivity of G′′ is κ. But then, we
have RDD+(G

′) < RDD+(G
′′) by Lemma 2.1, a contradiction to the choice of G′.

So we may suppose that δG′(v) ≥ κ + 1 for any vertex v in G′. It follows that n2 ≥ n1 ≥ κ + 1. In
fact, if n1 = κ, then each vertex in G1 is adjacent to at least two vertices in G2, since each vertex in G′ is
of degree at most κ+1. But then the number of edges between G1 and G2 is at least 2κ, a contradiction.

From [31], we know that if G is an n-vertex connected graph with edge-connectivity κ, then

M1(G) ≤ n3 − 5n2 + (2κ+ 8)n+ κ2 − 3κ− 4,

with equality if and only if G ∼=κ ∨(K1 +Kn−κ−1).

In 2012, Hua and Zhang [30] proved that for any connected graph G of order n ≥ 2 and size m ≥ 1,
we have

RDD+(G) ≤ (n− 1)m+
M1(G)

2
,

with either equality if and only if the diameter of G is at most two. Note that G′ has
(
n1

2

)
+
(
n2

2

)
+ κ

edges. Hence,

RDD+(G
′) ≤(n− 1)

[(
n1

2

)
+

(
n2

2

)
+ κ

]
+

M1(G
′)

2

≤(n− 1)

[(
n1

2

)
+

(
n2

2

)
+ κ

]
+

n3 − 5n2 + (2κ+ 8)n+ κ2 − 3κ− 4

2

=n3 − 7

2
n2 +

(
2κ+

9

2

)
n+

1

2
κ2 − 5

2
κ− 2− (n− 1)n1n2.
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Since n2 ≥ n1 ≥ κ and n1 + n2 = n, we have n1n2 > κ(n− κ). Hence,

RDD+(G
′) <n3 − 7

2
n2 +

(
2κ+

9

2

)
n+

1

2
κ2 − 5

2
κ− 2− (n− 1)κ(n− κ)

=n3 −
(
κ+

7

2

)
n2 +

(
κ2 + 3κ+

9

2

)
n− 1

2
κ2 − 5

2
κ− 2.

But then

RDD+(Kκ ∨ (K1 +Kn−κ−1))−RDD+(G
′)

>

[
n3 − 9

2
n2 +

(
2κ+

13

2

)
n+

1

2
κ2 − 5

2
κ− 3

]

−
[
n3 −

(
κ+

7

2

)
n2 +

(
κ2 + 3κ+

9

2

)
n− 1

2
κ2 − 5

2
κ− 2

]

=(κ− 1)n2 − (κ2 + κ− 2)n+ κ2 − 1

≥(κ− 1)n · [2(κ+ 1)]− (κ2 + κ− 2)n+ κ2 − 1

=κ2n− κn+ κ2 − 1 > 0,

again a contradiction to our choice of G′.

From discussion above, we have completed the proof. �
Let f(κ) = n3 − 9

2
n2 +

(
2κ+ 13

2

)
n + 1

2
κ2 − 5

2
κ − 3. It is not difficult to see that f(κ) is a

strictly increasing function. It then follows that immediately from Theorem 2.10 and 2.11 the following
sequence: for any n-vertex connected graph with vertex-connectivity (or edge-connectivity) at most κ,
f(κ) attains its maximum RDD+ and the corresponding extremal graph is Kκ ∨ (K1 +Kn−κ−1).

2.2.4 Graphs with given pendent vertex

The results outlined in this subsection apply to arbitrary graphs with n vertices and p pendent vertices.
Let Kp

n denote the graph obtained by attaching p pendent edges to a vertex of Kn−p.

The Zagreb indices have been introduced more than thirty years ago by Gutman and Trinajestić.
They were originally defined as

M1(G) =
∑

u∈V (G)

(δG(u))
2,

M2(G) =
∑

uv∈E(G)

δG(u)δG(v).

Here M1(G) and M2(G) denote the first and the second Zagreb indices. These graph invariants have rich
history, the interested readers for more information on Zagreb indices can be referred to [3, 4, 31, 63, 65,
66] and therein.

We first demonstrate the validity of the following lemma.

Lemma 2.12. ( [30]) Let G be an n-vertex connected graph with p pendent vertices. Then

M1(G) ≤ n3 − (3p− 1)n2 + (3p2 + 6p+ 1)n− p3 − 3p2 − 2p− 1,
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with equality if and only if G is isomorphic to Kp
n.

Proof. Suppose that G′ is a graph chosen among all connected graphs with n vertices and p pendent
vertices such that it has the maximum first Zagreb index. Let D(G′) = {d1, d2, · · · , dn} denote the
degree sequence of G′. If we label all pendent vertices of Gmax as v1, v2, · · · , vp, then G[V (G′) \
{v1, v2, · · · , vp}] must be a clique in G′, for otherwise, we can obtain a new graph with a strictly larger
first Zagreb index than that of G′ by adding edges into G′.

Note that the degree sequence D(Kp
n) = {n − 1, n− p− 1, · · · , n− p− 1︸ ︷︷ ︸

n−p−1

, 1, · · · , 1︸ ︷︷ ︸
p

} If G′ 6= Kp
n,

then there must exist a pair (di, dj) in G′ with n−p ≤ di ≤ dj ≤ n−2. We can construct a new n-vertex
and p-pendent vertex connected graph G′′ by replacing the pair (di, dj) in G′ by the pair (di − 1, dj +1).
It is not difficult to check that M1(G

′) < M1(G
′′), a contradiction to our choice of G′. Hence, G′ is

isomorphic to Kp
n. Simple calculation shows that M1(K

p
n) = n3 − (3p− 1)n2 + (3p2 +6p+1)n− p3 −

3p2 − 2p− 1, as desired. �
We now give an upper bound for the reciprocal sum-degree distance of graphs with given order and

number of pendent vertices.

Theorem 2.13. Let G be an n-vertex connected graph with p pendent vertices. Then

RDD+(G) ≤ 2n3 − (5p+ 1)n2 + (4p2 + 11p+ 2)n− p3 − 4p2 − 5p− 1

2
,

with equality if and only if G is isomorphic to Kp
n.

Proof. Suppose that G′ is a connected graph with n vertices and p pendent vertices v1, v2, · · · ,
vp satisfying that the induced graph by V (G′) − {v1, v2, · · · , vp} is a clique in G′. It is sufficient to
consider the upper bound for RDD+ of G′ by Lemma 2.1.

It was proved by Hua et al. [30] that for any connected graph H with order n and size m, RDD+(H)

≤ (n− 1)m+ M1(H)
2

, and with either equality if and only if the diameter of G is at most two. Note that
G′ has p+

(
n−p
2

)
= p+ (n−p)(n−p−1)

2
edges. It follows that

RDD+(G
′) ≤(n− 1)m+

M1(G
′)

2

=(n− 1)

[
(n− p)2 + 3p− n

2

]
+

M1(G
′)

2

≤(n− 1)

[
(n− p)2 + 3p− n

2

]
+

M1(K
p
n)

2

=
2n3 − (5p+ 1)n2 + (4p2 + 11p+ 2)n− p3 − 4p2 − 5p− 1

2
.

The first equality holds if and only if the diameter of G′ is at most two and the second equality
holds if and only if G′ is isomorphic to Kp

n. Since Kp
n has diameter two, and therefore RDD+(G) ≤

2n3−(5p+1)n2+(4p2+11p+2)n−p3−4p2−5p−1
2

with equality if and only if G ∼= Kp
n. This completes the proof. �



153

3. The reciprocal product–degree distance

From the fact that adding an edge to G will increase the degrees of its vertices and decrease the
distances between some vertices, it follows that adding of an edge will increase the value of RDD×.
This immediately implies that the complete graph has the largest RDD× among all graphs with the
same number of vertices. Hence, for any graph G on n vertices, we have RDD×(G) ≤ 1

2
n(n− 1)3. By

the analogous argument, any graph on n vertices having the smallest RDD× must be tree.

3.1 General graphs with maximum and minimum RDD×

Deng, Krishnakumari, Venkatakrishnan and Balachandran [15] determined the minimum and maxi-
mum value of the reciprocal product-degree distance for trees. Their first lemma is based on the following
transformation.

Transformation 3.1. Let G0 be a graph with n0 ≥ 2 vertices, and P = v1v2v3 · · · vr a path of length

r − 1 ≥ 2. If G (resp. G1) is the graph obtained by identifying a vertex v0 in G0 to vk (resp. vk−1) in P ,

2 ≤ k ≤ r
2
, then G ⇒ G1 is called the ρ1-transformation, see Fig. 3

Lemma 3.2. ( [15]) Let G1 be the graph obtained from G by ρ1-transformation. Then

RDD×(G1) < RDD×(G).

Proof. Let T = {v1, v2, · · · , vr} and let G0 denote the subgraph of G induced by the vertex set V (G)\T .
From the definition of RDD×(G), we have

RDD×(G) ≤




∑

x,y∈V (G0)\{v0}
+

∑

x,y∈T\{vk,vk−1}
+

∑

x∈V (G0)\{v0}
y∈T\{vk,vk−1}



δ(x)δ(y)

d(x, y)

+δ(vk)


 ∑

x∈V (G0)\{v0}

δ(x)

d(x, x0)
+

∑

x∈T\{vk}

δ(x)

d(x, vk−1)




+δ(vk−1)


 ∑

x∈V (G0)\{v0}

δ(x)

d(x, x0) + 1
+

∑

x∈T\{vk,vk−1}

δ(x)

d(x, vk−1)


 .

After using ρ1-transformation, the degree of vk−1 increases by δG0(v0), while the degree of the vertex
vk decreases by δG0(v0). During the transformation, for pairs x, y ∈ V (G0)\{v0} or x, y ∈ T\{vk, vk−1},
the contribution δ(x)δ(y)

d(x,y)
does not change. Let α = α(x) = δG0(x, v0) for x ∈ V (G0) \ {v0} and

Hn =
∑n

k=1
1
k

be the n-th harmonic number.
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Figure 3. G1 is obtained from G by ρ1-transformation.

For simplicity, we distinguish the following two cases.

Case 1. k > 2

In the graph G, let

A1 =
∑

x∈V (G0)\{v0}
y∈T\{vk,vk−1}

δ(x)δ(y)

d(x, y)

=
∑

x∈V (G0)\{v0}
δ(x)

[
1

α + k − 1
+ 2(Hα+k−2 −Hα+1)

2(Hα+r−k−1 −Hα) +
1

α + r − k

]
.

A2 =δ(vk)


 ∑

x∈V (G0)\{v0}

δ(x)

d(x, v0)
+

∑

x∈T\{vk}

δ(x)

d(x, vk)




=(δ(v0) + 2)


 1

k − 1
+ 2Hk−2 + 2Hr−k−1 +

1

r − k
+

∑

x∈V (G0)\{v0}

δ(x)

α


 .

A3 =δ(vk−1)


 ∑

x∈V (G0)\{v0}

δ(x)

d(x, v0) + 1
+

∑

x∈T\{vk−1,vk}

δ(x)

d(x, vk−1)




=2


 1

k − 2
+ 2Hk−3 + 2(Hr−k −H1) +

1

r − k + 1
+

∑

x∈V (G0)\{v0}

δ(x)

α + 1


 .

In the graph G1, let

B1 =
∑

x∈V (G0)\{v0}
y∈T\{vk,vk−1}

δ(x)δ(y)

d(x, y)

=
∑

x∈V (G0)\{v0}
δ(x)

[
1

α + k − 2
+ 2(Hα+k−3 −Hα)
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2(Hα+r−k −Hα+1) +
1

α + r − k + 1

]
.

B2 =δ(vk)


 ∑

x∈V (G0)\{v0}

δ(x)

d(x, v0) + 1
+

∑

x∈T\{vk}

δ(x)

d(x, vk)




=2


 1

k − 1
+ 2(Hk−2 −H1) + (δ(v0) + 2) + 2Hr−k−1 +

1

r − k
+

∑

x∈V (G0)\{v0}

δ(x)

α + 1


 .

B3 =δ(vk−1)


 ∑

x∈V (G0)\{v0}

δ(x)

d(x, v0)
+

∑

x∈T\{vk−1,vk}

δ(x)

d(x, vk−1)




=(δ(v0) + 2)


 1

k − 2
+ 2Hk−3 + 2(Hr−k −H1) +

1

r − k + 1
+

∑

x∈V (G0)\{v0}

δ(x)

α


 .

From the above, we have

RDD×(G)−RDD×(G
1) = (A1 + A2 + A3)− (B1 +B2 +B3)

=
∑

x∈V (G0)\{v0}
δ(x)

[
1

α + k − 1
+

1

α + k − 2
− 1

α + r − k

− 1

α + r − k + 1

]

+ δ(v0)

[
1

k − 1
+

1

k − 2
− 1

r − k
− 1

r − k + 1

]
> 0.

The inequality holds since for k ≤ r
2
, we have

[
1

α + k − 1
+

1

α + k − 2
− 1

α + r − k
− 1

α + r − k + 1

]
> 0,

[
1

k − 1
+

1

k − 2
− 1

r − k
− 1

r − k + 1

]
> 0.

Case 2. k = 2

In the graph G, let

A1 =
∑

x∈V (G0)\{v0}
y∈T\{vk,vk−1}

δ(x)δ(y)

d(x, y)

=
∑

x∈V (G0)\{v0}
δ(x)

[
1

α + r − 2
+ 2(Hα+r−3 −Hα)

]
.
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A2 =δ(vk)


 ∑

x∈V (G0)\{v0}

δ(x)

d(x, v0)
+

∑

x∈T\{vk}

δ(x)

d(x, vk)




=(δ(v0) + 2)


1 + 2Hr−3 +

1

r − 2
+

∑

x∈V (G0)\{v0}

δ(x)

α


 .

A3 =δ(vk−1)


 ∑

x∈V (G0)\{v0}

δ(x)

d(x, v0) + 1
+

∑

x∈T\{vk−1,vk}

δ(x)

d(x, vk−1)




=(2Hr−2 − 1) +
1

r − 1
+

∑

x∈V (G0)\{v0}

δ(x)

α + 1
.

In the graph G1, let

B1 =
∑

x∈V (G0)\{v0}
y∈T\{vk,vk−1}

δ(x)δ(y)

d(x, y)

=
∑

x∈V (G0)\{v0}
δ(x)

[
1

α + r − 1
+ 2(Hα+r−2 −Hα+1)

]
.

B2 =δ(vk)


 ∑

x∈V (G0)\{v0}

δ(x)

d(x, v0)
+

∑

x∈T\{vk}

δ(x)

d(x, vk)




=2


δ(v0) + 1 + 2Hr−3 +

1

r − 2
+

∑

x∈V (G0)\{v0}

δ(x)

α + 1


 .

B3 =δ(vk−1)


 ∑

x∈V (G0)\{v0}

δ(x)

d(x, v0) + 1
+

∑

x∈T\{vk−1,vk}

δ(x)

d(x, vk−1)




=(δ(v0) + 1)


(2Hr−2 − 1) +

1

r − 1
+

∑

x∈V (G0)\{v0}

δ(x)

α


 .

From the above, we have

RDD×(G)−RDD×(G
1) = (A1 + A2 + A3)− (B1 +B2 +B3)

=
∑

x∈V (G0)\{v0}
δ(x)

[
2

α + 1
− 1

α + r − 2
− 1

α + r − 1

]
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+ δ(v0)

[
2− 1

r − 2
− 1

r − 1

]

+
∑

x∈V (G0)\{v0}
δ(x)

(
1

α
− 1

α + 1

)
> 0.

We have exhausted all the cases, so the proof is completed. �
Repeatedly using Transformation 3.1, we can easily obtain a path from a tree. By Lemma 3.2, we

have

Theorem 3.3. ( [15]) Let T be a tree with n ≥ 2 vertices, then RDD×(Pn) ≤ RDD×(T ), with equality

if and only if T is isomorphic to Pn.

The following is an immediately consequence of Theorem 3.3. But we outline another proof for the
lower bound which also was gave in [6].

Corollary 3.4. Let G be a graph with n vertices, then RDD×(Pn) ≤ RDD×(G)

≤ RDD×(Kn), with left (resp. right) equality if and only if T is isomorphic to Pn (resp. Kn).

Proof. By the previous argument, we only need to consider trees on n vertices. Let Tn be such a tree,
and let v be any vertex of Tn of degree at least 3 such that at least two of the components of Tn − v are
paths. Let those paths be of lengths s and l with s ≤ l. We denote the tree induced by the vertices not in
the above two paths by R. Let us call such a tree Ts,l. We transform Ts,l by transplanting the end-vertex
of the shorter path to the end-vertex of the longer path, obtaining a tree we denote by Ts−1,l+1. Evidently,
R is not affected by such a transformation. The transformation is illustrated in Fig. 3. We proceed by
comparing the contributions of various pairs of vertices to the RDD×-values of Ts,l and Ts−1,l+1. We
consider the following two cases.

Case 1. s > 1.

It is obvious that the contributions of all pairs not including the transplanted vertex and its neigh-
bors remain unaffected by our transformation. Moreover, it is clear that the contributions involving the
transplanted vertex are smaller in Ts−1,l+1 than in Ts,l since the distances involved are greater. The only
contributions that are greater in Ts−1,l+1 than in Ts,l are those involving the former end-vertex of l-path.
For a vertex x at distance d from v such contributions are 2δ(x)

d+l
and δ(x)

d+l
, respectively. Hence, the net

change per vertex u of R is δ(x)
d+l

in surplus for Ts−1,l+1. That surplus is, however, at least offset by the
change in the contributions of pairs containing the new end-vertex of the shorter path. Previous contri-
butions 2δ(x)

d+l
become δ(x)

d+l
, resulting in a net loss of δ(x)

d+l
per vertex x at distance d from v. Since s−1 < l,

such loss more than offsets the gain on the longer side, and hence RDD×(Ts−1,l+1) ≤ RDD×(Ts,l).

Case 2. s = 1.

We still follow the same pattern discussed above. In this case, our transformation also changes the
degree of v by decreasing it by 1. The only contributions that are greater in RDD×(Ts−1,l+1) than the
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corresponding contributions in RDD×(Ts,l) are those involving the former end-vertex on the longer
side. The net surplus per vertex is again δ(x)

d+l
per vertex x of R at distance d from v. Again, this is

compensated by the loss of δ(x)
d

per each such vertex coming from the decrease in the degree of v. It
remains to consider the change in the contributions of pairs (v, y) where y is on the remaining path of
length l+1. All such contributions in RDD×(Ts−1,l+1) are smaller than the corresponding contributions
in RDD×(Ts,l) except from the last two vertices. Their combined contributions are 2(δ(v)−1)

l
+ δ(v)−1

l+1
.

This quantity, however, cannot exceed the value of δ(v), representing the loss from the transplanted
vertex, since δ(v) > 2(δ(v)−1)

l
+ δ(v)−1

l+1
for all l ≥ 2. Again, RDD×(Ts−1,l+1) ≤ RDD×(Ts,l). �

We recall one more lemma from [15] as we need it in the proof of our main result.

Transformation 3.5. Let v be a vertex of degree p + 1 in a graph G, such that vv1, vv2, · · · , vvp are

pendent edges incident with v, and u is the neighbor of v distinct from v1, v2, · · · , vp. Denote by G1 the

graph obtained from G by removing edges vv1, vv2, · · · , vvp and adding new edges uv1, uv2, · · · , uvp.

Then we call G ⇒ G1 the ρ2-transformation.

Lemma 3.6. ( [15]) Let G1 be the graph obtained from G by ρ2-transformation. Then

RDD×(G) ≤ RDD×(G1), with equality if and only if G is a star with v as its center.

Proof. Let T = {v, v1, v2, · · · , vp} and H denote the subgraph of G induced by the vertex set V (G) \T .
From the definition of RDD×(G), we have

RDD×(G) =




∑

x,y∈H\{u}
+

∑

x,y∈T\{v}
+

∑

x∈H\{u}
y∈T\{v}



δ(x)δ(y)

d(x, y)

+δ(u)


 ∑

x∈H\{u}

δ(x)

d(x, u)
+

∑

x∈T\{v}

δ(x)

d(x, u)




+δ(v)


 ∑

x∈H\{u}

δ(x)

d(x, v)
+

∑

x∈T\{v}

δ(x)

d(x, v)


+

δ(u)δ(v)

d(u, v)
.

After the ρ2-transformation, the degree of the vertex u increases by p, while the degree of the vertex
v decreases by p. The distance between vi and vj for i 6= j does not change. The distance between vi

and v increases by one, while the distance between vi, 1 ≤ i ≤ p, and other vertices decreases by one.
During the transformation, for x, y ∈ H \ {u} and x, y ∈ T \ {v}, the contribution

∑ δ(x)δ(y)
d(x,y)

does not
change.

In the graph G,

A1 =
∑

x∈H\{u}
y∈T\{v}

δ(x)δ(y)

d(x, y)
=

∑

x∈H\{u}
y∈T\{v}

δ(x)

d(x, y)
.
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while in the graph G1,

B1 =
∑

x∈H\{u}
y∈T\{v}

δ(x)δ(y)

d(x, y)
=

∑

x∈H\{u}
y∈T\{v}

δ(x)

d(x, y)− 1
.

For the vertex u in the graph G,

A2 =δ(u)


 ∑

x∈H\{u}

δ(x)

d(x, u)
+

∑

x∈T\{v}

δ(x)

d(x, u)




=δ(u)
∑

x∈H\{u}

δ(x)

d(x, u)
+

pδ(u)

2
.

while in G1, it becomes

B2 =
∑

x∈H\{u}

(δ(u) + p)δ(x)

d(x, u)
+

∑

x∈T\{v}

(δ(u) + p)δ(x)

d(x, u)

=δ(u)
∑

x∈H\{u}

δ(x)

d(x, u)
+ p

∑

x∈H\{u}

δ(x)

d(x, u)
+ pδ(u) + p2.

For the vertex v in the graph G,

A3 =δ(v)


 ∑

x∈H\{u}

δ(x)

d(x, v)
+

∑

x∈T\{v}

δ(x)

d(x, v)
+

δ(u)

d(u, v)




=(p+ 1)
∑

x∈H\{u}

δ(x)

d(x, u) + 1
+ p(p+ 1) + (p+ 1)δ(u)

=p
∑

x∈H\{u}

δ(x)

d(x, u) + 1
+

∑

x∈H\{u}

δ(x)

d(x, u) + 1
+ p2 + p+ pδ(u) + δ(u).

while in G1, it becomes

B3 =
∑

x∈H\{u}

δ(x)

d(x, v)
+

∑

x∈T\{v}

δ(x)

d(x, v)
+

δ(u) + p

d(u, v)

=
∑

x∈H\{u}

δ(x)

d(x, u) + 1
+

p

2
+ δ(u) + p.

From the above, we have

RDD×(G
1)−RDD×(G) = (B1 − A1) + (B2 − A2) + (B3 − A3)

=

[ ∑

x∈H\{u}
y∈T\{v}

δ(x)

d(x, y)− 1
−

∑

x∈H\{u}
y∈T\{v}

δ(x)

d(x, y)

]

+

[
δ(u)

∑

x∈H\{u}

δ(x)

d(x, u)
+ p

∑

x∈H\{u}

δ(x)

d(x, u)
+ pδ(u)
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+ p2 − δ(u)
∑

x∈H\{u}

δ(x)

d(x, u)
− pδ(u)

2

]

+

[ ∑

x∈H\{u}

δ(x)

d(x, u) + 1
+

p

2
+ δ(u) + p

− p
∑

x∈H\{u}

δ(x)

d(x, u) + 1

−
∑

x∈H\{u}

δ(x)

d(x, u) + 1
− p2 − p− pδ(u)− δ(u)

]

=
∑

x∈H\{u}
y∈T−v

δ(x)

(d(x, y)− 1)d(x, y)
+ p

∑

x∈H\{u}

δ(x)

d(x, u)(d(x, u) + 1)

− p
δ(u)

2
+

p

2
.

Note that u has at least δ(u)−1 neighbors x ∈ H \{u}, therefore
∑

x∈H\{u}
δ(x)

d(x,u)(d(x,u)+1)
≥ δ(u)−1

2
,

and consequently

RDD×(G
1)−RDD×(G) ≥

∑

x∈H\{u}
y∈T\{v}

δ(x)

(d(x, y)− 1)d(x, y)
+

p(δ(u)− 1)

2
− pδ(u)

2
+

p

2

=
∑

x∈H\{u}
y∈T\{v}

δ(x)

(d(x, y)− 1)d(x, y)
≥ 0.

The equality holds if and only if H contains only one vertex u, i.e., G is a star with v as its center. �
For a tree T on n vertices, if T is not isomorphic to Sn, then T can be transformed into Sn by using

Transformation 3.5 repeatedly. From Lemma 3.6, we have

Theorem 3.7. ( [15]) Let T be a tree on n vertices, then RDD×(T ) ≤ RDD×(Sn) with equality if and

only if T is isomorphic to Sn.

3.2 Unicyclic graphs with maximum RDD×

This section will focus on the discussion of a special class of unicyclic graphs. Let Un,k be the
unicyclic graph of order n ≥ 3 with girth k ≥ 3 obtained from Ck by adding n− k pendent vertices to a
vertex of Ck.

Lemma 3.8. ( [15]) Let u and v be two vertices of a graph H . We use G to denote the graph obtained

from H by attaching s pendent vertices u1, u2, · · · , us and t pendent vertices v1, v2, · · · , vt to u and v,
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respectively. Assume that

G1 =G− {vv1, vv2, · · · , vvt}+ {uv1, uv2, · · · , uvt}
G2 =G− {uu1, uu2, · · · , uus}+ {vu1, vu2, · · · , vus}.

Then RDD×(G) < RDD×(G1) or RDD×(G) < RDD×(G2).

Proof. For convenience, let A = {u1, u2, · · · , us}, B = {v1, v2, · · · , vt} and dH(u, v) = l. From G to
G1, for any pair of vertices x, y satisfying x, y ∈ H \ {u, v} or x, y ∈ A or x, y ∈ B or x ∈ A and
y ∈ H \ {u, v}, the contribution

∑
x,y

δ(x)δ(y)
d(x,y)

does not change. Hence

RDD×(G) =

[ ∑

x,y∈H\{u,v}
+
∑

x,y∈A
+
∑

x,y∈B
+

∑

x∈A

y∈H\{u,v}

]
δ(x)δ(y)

d(x, y)

+
∑

x∈A
y∈B

δ(x)δ(y)

d(x, y)
+

∑

x∈H\{u,v}
y∈B

δ(x)δ(y)

d(x, y)

+ δ(u)

[ ∑

x∈H\{u,v}

δ(x)

d(x, u)
+
∑

x∈A

δ(x)

d(x, u)
+
∑

x∈B

δ(x)

d(x, u)

]

+ δ(v)

[ ∑

x∈H\{u,v}

δ(x)

d(x, v)
+
∑

x∈A

δ(x)

d(x, v)
+
∑

x∈B

δ(x)

d(x, v)

]
+

δ(u)δ(v)

d(u, v)

=

[ ∑

x,y∈H\{u,v}
+
∑

x,y∈A
+
∑

x,y∈B
+

∑

x∈A

y∈H\{u,v}

]
δ(x)δ(y)

d(x, y)
+

st

l + 2

+ t
∑

x∈H\{u,v}

δ(x)

d(x, v) + 1
+ (s+ δH(u))

[ ∑

x∈H\{u,v}

δ(x)

d(x, v) + 1
+ s+

t

l + 1

]

+ (t+ δH(v))

[ ∑

x∈H\{u,v}

δ(x)

d(x, v)
+ t+

s

l + 1

]

+
(s+ δH(u))(t+ δH(v))

l
.

Similarly,

RDD×(G1) =

[ ∑

x,y∈H\{u,v}
+
∑

x,y∈A
+
∑

x,y∈B
+

∑

x∈A

y∈H\{u,v}

]
δ(x)δ(y)

d(x, y)
+

st

2

+ t
∑

x∈H\{u,v}

δ(x)

d(x, u) + 1
+ (s+ t+ δH(u))

[ ∑

x∈H\{u,v}

δ(x)

d(x, u) + 1
+ s+ t

]



162

+ δH(v)

[ ∑

x∈H\{u,v}

δ(x)

d(x, v)
+

t

l + 1
+

s

l + 1

]
+

δH(v)(s+ t+ δH(u))

l
.

Combing the previous two equalities, we get

RDD×(G1)−RDD×(G) =
stl

2(l + 2)
+ t

∑

x∈H\{u,v}
δ(x)

[
d(x, v)− d(x, u)

(d(x, u) + 1)(d(x, v) + 1)

]

+ t
∑

x∈H\{u,v}
δ(x)

[
d(x, v)− d(x, u)

d(x, v)d(x, u)

]

+ 2st+ t(δH(u)− δH(v))−
2st+ t(δH(u))− δH(v)

l + 1

− st+ t(δH(u)− δH(v))

l
.

Similarly, we have

RDD×(G2)−RDD×(G) =
stl

2(l + 2)
+ s

∑

x∈H\{u,v}
δ(x)

[
d(x, u)− d(x, v)

(d(x, u) + 1)(d(x, v) + 1)

]

+ s
∑

x∈H\{u,v}
δ(x)

[
d(x, u)− d(x, v)

d(x, v)d(x, u)

]

+ 2st+ s(δH(v)− δH(u))−
2st+ s(δH(v)− δH(u))

l + 1

− st+ s(δH(v)− δH(u))

l
.

If RDD×(G1)−RDD×(G) > 0, then the result follows; otherwise
RDD×(G1)−RDD×(G) ≤ 0, then

∑

x∈H\{u,v}
δ(x)

[
d(x, u)− d(x, v)

(d(x, u) + 1)(d(x, v) + 1)

]
+

∑

x∈H\{u,v}
δ(x)

[
d(x, u)− d(x, v)

d(x, v)d(x, u)

]

≥ sl

2(l + 2)
+ 2s+ (δH(u)− δH(v))−

2s+ (δH(u)− δH(v))

l + 1

− s+ (δH(u)− δH(v))

l
.

and

RDD×(G2)−RDD×(G) ≥ sl(s+ t)

2(l + 2)
+ s(s+ t)

(
2− 2

l + 1
− 1

l

)
> 0.

This completes the proof. �
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Figure 4. ρ3-transformation G ⇒ G1 or G ⇒ G2.

Transformation 3.9. Let u and v be two vertices of a connected graph H . Let G be the graph ob-

tained from H by attaching s pendent vertices u1, u2, · · · , us and t pendent vertices v1, v2, · · · , vt to

u and v, respectively. Assume that G1 = G − {vv1, vv2, · · · , vvt} + {uv1, uv2, · · · , uvt}, G2 =

G − {uu1, uu2, · · · , uus} + {vu1, vu2, · · · , vus}. If RDD×(G) < RDD×(G1) (or RDD×(G) <

RDD×(G2)), then we call G ⇒ Gi for i = 1 or 2 the ρ3-transformation, see Fig 4.

For a unicyclic graph G of order n with girth k, firstly, using Transformation 3.5 on G repeatedly,
we can get a unicyclic graph from Ck by adding n− k pendent vertices to the vertices of Ck, then using
Transformation 3.9 repeatedly, we can get the unicyclic graph Un,k. From Lemmas 3.6 and 3.8, we now
obtain the following theorem.

Theorem 3.10. ( [15]) Let G be a unicyclic graph of order n with girth k. Then RDD×(G) ≤
RDD×(Un,k) with equality if and only if G is isomorphic to Un,k.

Theorem 3.10 shows that Un,k is the unicyclic graph with the maximum RDD× among all unicyclic
graph of order n and girth k.

Theorem 3.11. ( [15]) Let G be a unicyclic graph of order n ≥ 3. Then RDD×(G) ≤ n(5n+1)
4

with

equality if and only if G is isomorphic to Un,3.

Theorem 3.11 shows that Un,3 is the unique graph with maximum RDD× among all unicyclic graph
of order n.

4. Relation between RDD+ and RDD×

We discuss in this section the relation between the reciprocal sum-degree distance and the reciprocal
product-degree distance. We start with an auxiliary lemma proved by Dragomir in [16] which will be
used in later proofs.
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Lemma 4.1. Let −→x = (x1, x2, · · · , xN) and −→y = (y1, y2, · · · , yN) be sequences of real numbers,
−→z = (z1, z2, · · · , zN) and −→w = (w1, w2, · · · , wN) be nonnegative sequences, then

N∑

i=1

wi

N∑

i=1

zix
2
i +

N∑

i=1

zi

N∑

i=1

wiy
2
i ≥ 2

N∑

i=1

zixi

N∑

i=1

wiyi. (16)

In particular, if zi and wi are positive, then the equality holds in (16) if and only if −→x = −→y =
−→
k , where

−→
k = (k, k, · · · , k) is a constant sequence.

Define the inverse degree of a graph G with no isolated vertices as

R(G) =
∑

v∈V (G)

1

δ(v)
.

The inverse degree first attracted attention through conjectures of the computer program Graffiti [25]. It
has been studied by several authors, see for example [19, 23].

Theorem 4.2. Let G be a connected graph with n vertices, m edges, maximum degree ∆ and minimum

degree ∆, then

2RDD+(G)RDD×(G) ≤ (2m−∆)M1(G)

[
(n− 1)∆∆

∆+∆

+
(n− 1)(n− 2)∆

4
+ (n− 1)R(G)

]
, (17)

with equality if and only if G is isomorphic to K3.

Proof. Suppose that each i in Lemma 4.1 corresponds a vertex pair (vi, vj) such that N =
(
n
2

)
. Setting

zi = wi =
1

xiyi
and each xi is replaced by d(vi,vj)

δ(vi)δ(vj)
and yi is replaced by d(vi,vj)

δ(vi)+δ(vj)
, then we get

∑

{vi,vj}

δ(vi)δ(vj)(δ(vi) + δ(vj))

(d(vi, vj))2

∑

{vi,vj}

[
δ(vi) + δ(vj)

δ(vi)δ(vj)
+

δ(vi)δ(vj)

δ(vi) + δ(vj)

]

≥2
∑

{vi,vj}

δ(vi) + δ(vj)

d(vi, vj)

∑

{vi,vj}

δ(vi)δ(vj)

d(vi, vj)
.

(18)

To accomplish the proof, it is sufficient to find respectively the upper bound of

ζ1(vi, vj) :=
∑

{vi,vj}

[
δ(vi) + δ(vj)

δ(vi)δ(vj)
+

δ(vi)δ(vj)

δ(vi) + δ(vj)

]
.

and

ζ2(vi, vj) :=
∑

{vi.vj}

δ(vi)δ(vj)(δ(vi) + δ(vj))

(d(vi, vj))2
.



165

Note that 2
∆
≤ 1

δ(vi)
+ 1

δ(vj)
≤ 2

∆
, it immediately follows that δ(vi) δ(vj)

δ(vi)+δ(vj)
≤ ∆

2
. Again since 1

δ(vi)
+ 1

∆
≥

1
∆
+ 1

∆
, we have δ(vi) ∆

δ(vi)+∆
≤ ∆∆

∆+∆
. Suppose that vn is the minimum degree vertex of degree ∆. Using the

above results, we have
∑

{vi,vj}

δ(vi)δ(vj)

δ(vi) + δ(vj)
=

∑

{vi,vn}

δ(vi)∆

δ(vi) + ∆
+
∑

{vi,vj}
vj 6=vn

δ(vi)δ(vj)

δ(vi) + δ(vj)

≤ (n− 1)∆∆

∆+∆
+
[n(n− 1)

2
− (n− 1)

]∆
2

=
(n− 1)∆∆

∆+∆
+

(n− 1)(n− 2)∆

4
. (19)

By simple calculations, we get
∑

{vi,vj}

δ(vi) + δ(vj)

δ(vi) δ(vj)
=
∑

{vi,vj}

[ 1

δ(vi)
+

1

δ(vj)

]

=
n∑

vi∈V (G)

n− 1

δ(vi)
= (n− 1)R(G).

(20)

Inequalities (19) and (20) yield

ζ1(vi, vj) =
∑

{vi,vj}

[
δ(vi)δ(vj)

δ(vi) + δ(vj)
+

δ(vi) + δ(vj)

δ(vi)δ(vj)

]

≤(n− 1)∆∆

∆+∆
+

(n− 1)(n− 2)∆

4
+ (n− 1)R(G).

(21)

Note that
∑

vi∈V (G) δ(vi) = 2m and d(vi, vj) ≥ 1, it holds that

ζ2(vi, vj) =
∑

{vi,vj}

δ(vi)δ(vj)(δ(vi) + δ(vj))

(d(vi, vj))2

≤
∑

{vi,vj}
δ(vi)δ(vj)(δ(vi) + δ(vj))

=
∑

vi∈V (G)

δ2(vi)(2m− δ(vi))

≤(2m−∆)M1(G).

(22)

Using the above results (21) and (22), we get the required result in (17). First part of the proof is
done.

Now we assume that the equality holds in (17). From equality in (18), by Lemma 4.1, we get

d(vi, vj)

δ(vi)δ(vj)
=

d(vi, vk)

δ(vi)δ(vk)
=

d(vi, vj)

δ(vi) + δ(vj)
=

d(vi, vk)

δ(vi) + δ(vk)

and d(vi, vj) = d(vi, vk) holds for any vertices vi, vj and vk of graph G. This implies that δ(vi) =

δ(vj) = 2 and D(G) = 1. Hence G is isomorphism to K3. Conversely, one can see easily that the
equality holds in (17) for K3. �

The following is an immediate consequence of Theorem 4.2.
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Corollary 4.3. Let G be a connected graph with n vertices, m edges, maximum degree ∆, minimum

degree ∆ and p pendent vertices, then

2RDD+(G)RDD×(G) ≤ [(2m−∆)M1(G) + (∆− 1)p][
(n− 1)∆∆

∆+∆
+

(n− 1)(n− 2)∆

4
+ (n− 1)R(G)

]
,

(23)

with equality if and only if G is isomorphic to K3.

Proof. Since p is the number of pendent vertices in G, it follows that
∑

vi∈V (G)

δ(vi)
3 =p+

∑

vi∈V (G),δ(vi)6=1

δ(vi)
3

≥p+∆
∑

vi∈V (G),δ(vi)6=1

δ(vi)
2 = p+∆(M1(G)− p).

(24)

Applying inequality (24) to ζ2(vi, vj), it yields that

ζ2(vi, vj) ≤
∑

{vi,vj}
δ(vi)δ(vj)(δ(vi) + δ(vj))

=
∑

vi∈V (G)

δ(vi)
2(2m− δ(vi)) ≤ (2m−∆)M1(G) + (∆− 1)p.

We get the required result in (23). Moreover, the equality holds in (23) if and only if G is isomorphic to
K3. �

Lemma 4.4. (Radon’s inequality) For real numbers p > 0, a1, a2, · · · , aN ≥ 0 and b1, b2, · · · ,
bN > 0, the following inequality holds:

N∑

l=1

ap+1
l

bpl
≥

(
N∑
l=1

al

)p+1

(
N∑
l=1

bl

)p .

We now give another relation between the reciprocal sum-degree distance and reciprocal product-
degree of graphs.

Theorem 4.5. Let G be a connected graph with n vertices, m edges, maximum degree ∆ and minimum

degree ∆, then

(RDD+(G))2

RDD×(G)
≤ (∆ +∆)2

∆∆
H(G).

with equality if and only if G is a regular graph.

Proof. Assume that each l in Lemma 4.4 corresponds a vertex (vi, vj) with N =
(
n
2

)
and p = 1. Setting

each al is replaced by δ(vi)+δ(vj)

d(vi,vj)
and bl is replaced by δ(vi)δ(vj)

d(vi,vj)
, it follows that

(
∑

{vi,vj}

δ(vi)+δ(vj)

d(vi,vj)

)2

∑
{vi,vj}

δ(vi)δ(vj)

d(vi,vj)

≤
∑

{vi,vj}

(
δ(vi)+δ(vj)

d(vi,vj)

)2

δ(vi)δ(vj)

d(vi,vj)

,
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which is equivalent to

(RDD+(G))2

RDD×(G)
≤
∑

{vi,vj}

(√
δ(vi)

δ(vj)
+

√
δ(vj)

δ(vi)

)2

1

d(vi, vj)
.

It has been proved in [20] that

(√
δ(vi)

δ(vj)
+

√
δ(vj)

δ(vi)

)2

≤ (∆ +∆)2

∆∆
.

Moreover, the equality holds if and only if G is a regular graph or G is a bipartite semiregular graph.
Hence, we obtain

(RDD+(G))2

RDD×(G)
≤
∑

{vi,vj}

(∆ +∆)2

∆∆

1

d(vi, vj)
=

(∆ +∆)2

∆∆
H(G).

The equality holds if and only if G is a regular graph. �
We conclude this section by considering an upper bound of the difference between the reciprocal

product-degree distance and reciprocal sum-degree distance.

Theorem 4.6. Let G be a connected graph with n vertices and m edges, then

RDD×(G)−RDD+(G) ≤4m2 − (4n− 6)m+ n2 − n

4

−3

4
M1(G) +

1

2
M2(G)−H(G).

(25)

with equality if and only if the distance between any two non-pendent vertices in G is at most 2.

Proof. By the definition of the reciprocal product-degree distance and rciprocal sum-degree distance, we
get

RDD×(G)−RDD+(G) =
∑

{vi,vj}

δ(vi)δ(vj)− δ(vi)− δ(vj)

d(vi, vj)

=
∑

{vi,vj}

(δ(vi)− 1)(δ(vj)− 1)

d(vi, vj)
−H(G)

=
∑

vivj∈E(G)

(δ(vi)− 1)(δ(vj)− 1)

+
∑

vivj∈E(G)

(δ(vi)− 1)(δ(vj)− 1)

d(vi, vj)
−H(G)

≤
∑

vivj∈E(G)

(δ(vi)− 1)(δ(vj)− 1)
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+
1

2

∑

vivj∈E(G)

(δ(vi)− 1)(δ(vj)− 1)−H(G) (26)

=
1

2

∑

{vi,vj}
(δ(vi)− 1)(δ(vj)− 1)

− 1

2

∑

vivj∈E(G)

(δ(vi)− 1)(δ(vj)− 1)−H(G).

Simple calculations yields

Λ1 :=
∑

{vi,vj}
(δ(vi)− 1)(δ(vj)− 1)

=
1

2

[
(2m− n)(2m− n+ 1) + 2m−M1(G)

]

and

Λ2 :=
∑

vivj∈E(G)

(δ(vi)− 1)(δ(vj)− 1)

=M2(G)−M1(G) +m.

After easy manipulations, we have

RDD×(G)−RDD+(G) =
1

4

[
(2m− n)(2m− n+ 1) + 2m−M1(G)

]

+
1

2

[
M2(G)−M1(G) +m

]
−H(G).

First part of the proof is done.
Now suppose that the equality holds in (25). Then the inequality in (26) must be equality, which

implies that d(vi, vj) = 2 for any two vertices vi and vj in G with δ(vi), δ(vj) ≥ 2. Hence the equality
holds in (25) if and only if the distance between any two non-pendant vertices in G is at most 2. �

5. The reformulated reciprocal sum–degree distance

In this section, we mainly study the mathematical properties of the reformulated reciprocal sum-
degree distance under some edge-grafting transformations. Furthermore, extremal properties of the re-
formulated reciprocal sum-degree distance are also studied for some interesting classes of trees. For
simplicity, we divide it into several subsections, each dealing with a class of graphs.

5.1 Graphs with given k leaves

Let T k
n be the set of all n-vertex trees with k leaves. Note that there is just one tree for k = n− 1 or

2, hence in what follows we consider T k
n for 3 ≤ k ≤ n− 2.

In 2016, Li et al. [48] determined the graphs with maximum reformulated reciprocal sum-degree
distance among the trees in T k

n . We begin with a significant lemma which will be used in later proofs.
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Transformation 5.1. Let G1 be a simple graph as depicted in Fig. 5, where H1, H2 are two connected

graphs. Let G2 = G1 − {vlx : x ∈ NH2(vl)} + {v1x : x ∈ NH2(vl)}. We call G1 ⇒ G2 the θ1-
transformation.

Figure 5. G2 is obtained from G1 by θ1-transformation.

In particular, if G1 is a tree, Kelmans [41] used Transformation 5.1 to prove some results on the
number of spanning trees of graphs in 1976. Recently, Bollobás and Tyomkyn [9] used θ1-transformation
to count the total number of walks (resp. paths) of trees.

Theorem 5.2. ( [48]) Let G2 be the graph obtained from G1 by Transformation 5.1, then RDDt
+(G1) <

RDDt
+(G2).

Proof. For each vertex x in V (H1) \ {v1} and for each vertex y in V (H2) \ {vl}, it is routine to check
that δG1(x) = δH1(x) = δG2(x) and δG1(y) = δH2(y) = δG2(y). In addition, for each vertex y ∈ V (H2),
dH2(vl, y) = a in G1 if and only if dH2(v1, y) = a in G2.

For convenience, we distinguish the following three cases.

• For each vertex x in V (H1) \ {v1}, we have

D̂t(G1;x) =
∑

y∈V (H1)\{v1,x}

1

dH1(x, y) + t
+

l−1∑

k=0

1

dH1(x, v1) + k + t

+
∑

y∈V (H2)\{vl}

1

dH1(x, v1) + l − 1 + dH2(vl, y) + t
.

D̂t(G2;x) =
∑

y∈V (H1)\{v1,x}

1

dH1(x, y) + t
+

l−1∑

k=0

1

dH1(x, v1) + k + t

+
∑

y∈V (H2)\{v1}

1

dH1(x, v1) + dH2(v1, y) + t
.

It follows that D̂t(G1;x) < D̂t(G2;x). Note that, for all vertex x in V (H1)\{v1}, we have δG1(x) =

δH1(x) = δG2(x). Hence,

∑

x∈V (H1)\{v1}
δG1(x)D̂t(G1;x) <

∑

x∈V (H1)\{v1}
δG2(x)D̂t(G2;x). (27)
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• For each vertex x in V (H2) \ {vl}, we have

D̂t(G1;x) =
∑

y∈V (H2)\{vl,x}

1

dH2(x, y) + t
+

l−1∑

k=0

1

dH2(x, vl) + k + t

+
∑

y∈V (H1)\{v1}

1

dH2(x, vl) + l − 1 + dH1(v1, y) + t
,

D̂t(G2;x) =
∑

y∈V (H2)\{vl,x}

1

dH2(x, y) + t
+

l−1∑

k=0

1

dH2(x, v1) + k + t

+
∑

y∈V (H1)\{v1}

1

dH2(x, v1) + dH1(v1, y) + t
.

It follows that D̂t(G1;x) < D̂t(G2;x). Note that, for all vertex x in V (H2) \ {vl}, we have δG1(x) =

δH2(x) = δG2(x). Hence,

∑

x∈V (H2)\{vl}
δG1(x)D̂t(G1;x) <

∑

x∈V (H2)\{vl}
δG2(x)D̂t(G2;x). (28)

• For each vertex vj ∈ V (Pl) = {v1, v2, · · · , vl}, we have

D̂t(G1; vj) =
∑

x∈V (H1)\{v1}

1

dH1(x, v1) + j − 1 + t
+ D̂t(Pl; vj)

+
∑

x∈V (H2)\{vl}

1

dH2(x, vl) + l − j + t
.

(29)

D̂t(G2; vj) =
∑

x∈V (H1)\{v1}

1

dH1(x, v1) + j − 1 + t
+ D̂t(Pl; vj)

+
∑

x∈V (H2)\{v1}

1

dH2(x, v1) + j − 1 + t
.

(30)

Note that, for each vertex vj ∈ V (Pl) \ {v1, vl}, one has δG1(vj) = δG2(vj) = 2 and it is routine
to check that δG1(v1) = δH1(v1) + 1, δG1(vl) = δH2(vl) + 1, δG2(v1) = δH1(v1) + δH2(v1) + 1 and
δG2(vl) = 1. From the combination of Eqs.(29) and (30), it yields

l∑

j=1

δG1(vj)D̂t(G1; vj) = (δH1(v1) + 1)

( ∑

x∈V (H1)\{v1}

1

dH1(x, v1) + t
+ D̂t(Pl; v1)

+
∑

x∈V (H2)\{vl}

1

dH2(x, vl) + l − 1 + t

)

+ (δH2(vl) + 1)

( ∑

x∈V (H2)\{vl}

1

dH2(x, vl) + t
+ D̂t(Pl; vl)
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+
∑

x∈V (H1)\{v1}

1

dH1(x, v1) + l − 1 + t

)

+ 2
l−1∑

j=2

( ∑

x∈V (H1)\{v1}

1

dH1(x, v1) + j − 1 + t
+ D̂t(Pl; vj)

+
∑

x∈V (H2)\{vl}

1

dH2(x, vl) + l − j + t

)
,

and
l∑

j=1

δG2(vj)D̂t(G2; vj) = (δH1(v1) + δH2(v1) + 1)

( ∑

x∈V (H1)\{v1}

1

dH1(x, v1) + t

+ D̂t(Pl; v1) +
∑

x∈V (H2)\{v1}

1

dH2(x, v1) + t

)

+ 2
l−1∑

j=2

( ∑

x∈V (H1)\{v1}

1

dH1(x, v1) + j − 1 + t
+ D̂t(Pl; vj)

+
∑

x∈V (H2)\{v1}

1

dH2(x, v1) + j − 1 + t

)

+
∑

x∈V (H2)\{v1}

1

dH2(x, v1) + l − 1 + t
+ D̂t(Pl; vl)

+
∑

x∈V (H1)\{v1}

1

dH1(x, v1) + l − 1 + t
,

where D̂t(Pl; v1) = D̂t(Pl; vl). By direct calculation, we have

l∑

j=1

δG2(vj)D̂t(G2; vj)−
l∑

j=1

δG1(vj)D̂t(G1; vj)

=δH1(v1)

( ∑

x∈V (H2)\{vl}

1

dH2(x, vl) + t
−

∑

x∈V (H2)\{vl}

1

dH2(x, vl) + l − 1 + t

)

+δH2(vl)

( ∑

x∈V (H1)\{v1}

1

dH1(x, v1) + t
−

∑

x∈V (H1)\{v1}

1

dH1(x, v1) + l − 1 + t

)
> 0,

which is equivalent to

l∑

j=1

δG1(vj)D̂t(G1; vj) <
l∑

j=1

δG2(vj)D̂t(G2; vj). (31)

In view of (27) and (28) and (31), we have RDDt
+(G1) < RDDt

+(G2). �
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Transformation 5.3. Let G be an n-vertex connected graph as depicted in Fig. 6, where wv is a cut

edge of G, H1, H2 are two connected subgraphs, and H1 contains a path Pk = w1w2 · · ·wk satisfying

|V (H1)| ≥ l + 2 and |V (Pk)| ≥ |V (Pl)|. Let G′ = G− {vx : x ∈ NH2(v)} + {wx : x ∈ NH2(v)}. We

call G ⇒ G′ the θ2-transformation.

Figure 6. G′ is obtained from G by θ2-transformation.

In particular, if H1 (resp. H2) is a tree, Ilić [36] used Transformation 5.3 to study the Laplacian
coefficients of trees; Geng et al. [29] used this transformation to study the eccentric distance sum of
trees; Meng and coauthors [47] used θ2-transformation to study the property of the reciprocal sum-degree
distance of trees.

Theorem 5.4. ( [48]) Let G′ be the n-vertex connected graph obtained from G by Transformation 5.3

with G′ 6= G, where G′ and G are depicted in Fig. 6. Then RDDt
+(G) < RDDt

+(G
′).

Proof. Let Pl = u1u2 · · ·ul. Note that H1 contains a path Pk = w1w2 · · ·wk whose length is no less than
that of Pl. For convenience, we distinguish the following cases.

• For all vertex x ∈ V (H1) \ V (Pk), we have

D̂t(G;x) =
∑

y∈V (H1)\{x,w}

1

dH1(x, y) + t
+

1

dH1(x,w) + t

+
l∑

j=1

1

dH1(x,w) + 1 + j + t
+

1

dH1(x,w) + 1 + t

+
∑

y∈V (H2)

1

dH1(x,w) + 1 + dG[V (H2)∪{v}](y, v) + t
,
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and

D̂t(G
′;x) =

∑

y∈V (H1)\{x,w}

1

dH1(x, y) + t
+

1

dH1(x,w) + t

+
l∑

j=1

1

dH1(x,w) + j + 1 + t
+

1

dH1(x,w) + 1 + t

+
∑

y∈V (H2)

1

dH1(x,w) + 1 + dG′[V (H2)∪{w}](y, w) + t
,

where dG[V (H2)∪{v}](y, v) = dG′[V (H2)∪{w}](y, w) for each vertex y in H2. Hence, it is routine to check that
D̂t(G;x) < D̂t(G

′;x). Note that, for each vertex x in V (H1)\V (Pk), one has δG(x) = δH1(x) = δG′(x).
Hence,

∑

x∈V (H1)\V (Pk)

δG(x)D̂t(G;x) <
∑

x∈V (H1)\V (Pk)

δG′(x)D̂t(G
′;x). (32)

• For each vertex x in V (H2), we have

D̂t(G;x) =
∑

y∈V (H2)\{x}

1

dG[V (H2)∪{v}](x, y) + t
+

1

dG[V (H2)∪{v}](x, v) + t

+
l∑

j=1

1

dG[V (H2)∪{v}](x, v) + j + t
+

1

dG[V (H2)∪{v}](x, v) + 1 + t

+
∑

y∈V (H1)\{V (Pk),w}

1

dG[V (H2)∪{v}](x, v) + 1 + dH1(y, w) + t

+
k∑

j=1

1

dG[V (H2)∪{v}](x, v) + dH1(wj, w) + 1 + t
,

D̂t(G
′;x) =

∑

y∈V (H2)\{x}

1

dG′[V (H2)∪{w}](x, y) + t
+

1

dG′[V (H2)∪{w}](x,w) + t

+
l∑

j=1

1

dG′[V (H2)∪{w}](x,w) + j + 1 + t
+

1

dG′[V (H2)∪{w}](x,w) + 1 + t

+
∑

y∈V (H1)\{V (Pk),w}

1

dG′[V (H2)∪{w}](x,w) + dH1(y, w) + t

+
k∑

j=1

1

dG′[V (H2)∪{w}](x,w) + dH1(wj, w) + t
.

Note that dH1(wj, w) ≤ j for each j ∈ {1, 2, · · · , l}, we have

D̂t(G
′;x)− D̂t(G;x) =

l∑

j=1

1

dG′[V (H2)∪{w}](x,w) + j + 1 + t
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−
l∑

j=1

1

dG[V (H2)∪{v}](x, v) + j + t

+
k∑

j=1

1

dG′[V (H2)∪{w}](x,w) + j + t

−
k∑

j=1

1

dG[V (H2)∪{v}](x, v) + j + 1 + t

+
∑

y∈V (H1)\{V (Pk),w}

(
1

dG′[V (H2)∪{w}](x,w) + dH1(y, w) + t

− 1

dG[V (H2)∪{v}](x, v) + 1 + dH1(y, w) + t

)
> 0. (33)

In what follows, we shall show the above inequality holds. If k = l, then |V (H1) \ {V (Pk), w}| ≥ 1

since |V (H1)| ≥ l + 2. Hence, D̂t(G
′;x)− D̂t(G;x) > 0. Otherwise, we obtain k ≥ l + 1. Combining

with the condition |V (H1) \ {V (Pk), w}| ≥ 0, it yields that D̂t(G
′;x)− D̂t(G;x) > 0. In addition, for

each vertex x in H2, one has δG(x) = δH2(x) = δG′(x). Hence,

∑

x∈V (H2)

δG(x)D̂t(G;x) <
∑

x∈V (H2)

δG′(x)D̂t(G
′;x). (34)

• For each vertex uj in Pl, 1 ≤ j ≤ l, we have

D̂t(G;uj) =D̂t(Pl;uj) +
1

j + t
+

1

j + 1 + t
+

∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + j + t

+
k∑

j=1

1

j + 1 + dH1(wi, w) + t
+

∑

x∈V (H1)\{V (Pk),w}

1

j + 1 + dH1(x,w) + t
,

and

D̂t(G
′;uj) =D̂t(Pl;uj) +

1

j + t
+

1

j + 1 + t
+

∑

x∈V (H2)

1

dG′[V (H2)∪{w}](x,w) + j + 1 + t

+
k∑

j=1

1

j + 1 + dH1(wi, w) + t
+

∑

x∈V (H1)\{V (Pk),w}

1

j + 1 + dH1(x,w) + t
.
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Let Λ3 =
∑l

j=1 δG′(uj)D̂t(G
′;uj)−

∑l
j=1 δG(uj)D̂t(G;uj). It yields that

Λ3 ≥
l∑

j=1

δG(uj)
∑

x∈V (H2)

1

dG′[V (H2)∪{w}](x,w) + j + 1 + t

−
l∑

j=1

δG(uj)
∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + j + t

=
∑

x∈V (H2)

−2

dG[V (H2)∪{v}](x, v) + 1 + t
+

∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + l + t

+
∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + l + 1 + t
.

(35)

• For each vertex wj in Pk, 1 ≤ j ≤ k, one has δ(wj) = δG′(wj) = δG(wj). Hence,

D̂t(G;wj) =
∑

i 6=j

1

dH1(wi, wj) + t
+

1

dH1(w,wj) + t
+

1

dH1(w,wj) + 1 + t

+
∑

x∈V (H1)\{V (Pk),w}

1

dH1(x,wj) + t
+

l∑

i=1

1

dH1(w,wj) + 1 + i+ t

+
∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + dH1(w,wj) + 1 + t
,

and

D̂t(G
′;wj) =

∑

i 6=j

1

dH1(wi, wj) + t
+

1

dH1(w,wj) + t
+

1

dH1(w,wj) + 1 + t

+
∑

x∈V (H1)\{V (Pk),w}

1

dH1(x,wj) + t
+

l∑

i=1

1

dH1(w,wj) + 1 + i+ t

+
∑

x∈V (H2)

1

dG′[V (H2)∪{w}](x,w) + dH1(w,wj) + t
.

Let Λ4 =
∑k

j=1 δG′(wj)D̂t(G
′;wj) −

∑k
j=1 δG(wj)D̂t(G;wj). Since dH1(w,wj) ≤ j for each j ∈

{1, 2, · · · , k}, we have

Λ4 ≥
k∑

j=1

δG(wj)
∑

x∈V (H2)

1

dG′[V (H2)∪{w}](x,w) + j + t

−
k∑

j=1

δG(wj)
∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + j + 1 + t

≥
∑

x∈V (H2)

2

dG[V (H2)∪{v}](x, v) + 1 + t
−

∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + k + t

−
∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + k + 1 + t
,

(36)
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where the inequality (36) follows by δ(wj) ≥ 2 for 1 ≤ j ≤ k − 1 and d(wk) ≥ 1.

Hence, in view of (35), (36) and k ≥ l, we obtain

Λ3 + Λ4 ≥
∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + l + t
+

∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + l + 1 + t

−
∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + k + t
−

∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + k + 1 + t
≥ 0,

which is equivalent to

l∑

j=1

δG(uj)D̂t(G;uj) +

k∑

j=1

δG(wj)D̂t(G;wj) ≤
l∑

j=1

δG′(uj)D̂t(G
′;uj) +

k∑

j=1

δG′(wj)D̂t(G
′;wj). (37)

• For vertices w and v. By the definition of D̂t(G;u), we have

D̂t(G;w) =
∑

x∈V (H1)\{w}

1

dH1(x,w) + t
+

1

1 + t
+

l∑

j=1

1

j + 1 + t

+
∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + 1 + t
.

D̂t(G
′;w) =

∑

x∈V (H1)\{w}

1

dH1(x,w) + t
+

1

1 + t
+

l∑

j=1

1

j + 1 + t

+
∑

x∈V (H2)

1

dG′[V (H2)∪{w}](x,w) + t
.

D̂t(G; v) =
∑

x∈V (H1)\{w}

1

dH1(x,w) + 1 + t
+

1

1 + t
+

l∑

j=1

1

j + t

+
∑

x∈V (H2)

1

dG[V (H2)∪{v}](x, v) + t
.

D̂t(G
′; v) =

∑

x∈V (H1)\{w}

1

dH1(x,w) + 1 + t
+

1

1 + t
+

l∑

j=1

1

j + t

+
∑

x∈V (H2)

1

dG′[V (H2)∪{w}](x,w) + 1 + t
.

For convenience, denote m = δG[V (H2)∪{v}](v), then δG′[V (H2)∪{w}](w) = m ≥ 1. Combining with
the fact that δG(w) = δH1(w) + 1, δG(v) = m + 2, δG′(w) = δH1(w) +m + 1 and δG′(v) = 2, we can
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obtain that

δG′(w)D̂t(G
′;w) + δG′(v)D̂t(G

′; v)− δG(w)D̂t(G;w)− δG(v)D̂t(G; v)

≥m


 ∑

x∈V (H1)\{V (Pk),w}

1

dH1(x,w) + t
−

∑

x∈V (H1)\{V (Pk),w}

1

dH1(x,w) + 1 + t




+(δH1(w)− 1)


 ∑

x∈V (H2)

1

dG′[V (H2)∪{w}](x,w) + t

−
∑

x∈V (H2)

1

dG′[V (H2)∪{w}](x,w) + 1 + t


+m

(
1

l + 1 + t
− 1

k + 1 + t

)
,

where the inequality follows by the fact δH1(w,wj) ≤ j for each j ∈ {1, 2, · · · , k}. Note that m ≥ 1

and δH1(w) ≥ 1, hence

δG(w)D̂t(G;w) + δG(v)D̂t(G; v) < δG′(w)D̂t(G
′;w) + δG′(v)D̂t(G

′; v). (38)

In view of (32), (34), (37) and (38), we obtain RDDt
+(G) < RDDt

+(G
′). �

If taking H1 = Pk, k ≥ l + 2, in Theorem 5.4, we immediately obtain the following result.

Corollary 5.5. ( [48]) Given a connected graph H with v ∈ V (H), let Gk,l be the graph obtained from

H by attaching two pendent paths P 1 = vw1w2 · · ·wk and P 2 = vu1u2 · · ·ul, respectively, to v of H .

Set Gk−1,l+1 := Gk,l − wkwk−1 + wkul. If k ≥ l + 2, we have RDDt
+(Gk,l) < RDDt

+(Gk−1,l+1).

A spider is a tree with at most one vertex of degree more than 2, which is called the hub of the spider
(if no vertex of degree more than two, then any vertex can be hub). A leg of spider is a path from the hub
to one of its leaves.

Let S(a1, a2, · · · , ak) be a spider with k legs P 1, P 2, · · · , P k such that the length of P i is ai, i =
1, 2, · · · , k, satisfying

∑k
i=1 ai = n− 1. We call S(a1, a2, · · · , ak) a balanced spider if |ai − aj| ≤ 1 for

1 ≤ i, j ≤ k.

Theorem 5.6. ( [48]) Among T k
n , the balanced spider

S




⌊
n− k

k

⌋
, · · · ,

⌊
n− k

k

⌋

︸ ︷︷ ︸
k−r

,

⌈
n− k

k

⌉
, · · · ,

⌈
n− k

k

⌉

︸ ︷︷ ︸
r




maximizes the RDDt
+ value, where n− 1 ≡ r( mod k).

Proof. Let T be a tree in T k
n such that T has the largest RDDt

+, then T is a spider. Otherwise, by The-
orem 5.5, there exists another n-vertex tree with k leaves, say T ′, such that RDDt

+(T ) < RDDt
+(T

′),
a contradiction. Denote T := S(a1, a2, · · · , ak). In order to complete the proof, it is sufficient to show
that the spider is balanced, i.e., that |ai − aj| ≤ 1, 1 ≤ i, j ≤ k. If the spider T is not balanced, then
T contains two legs of length ai and aj such that |ai − aj| ≥ 2. By Corollary 5.5, there exists another
spider T ′′ such that RDDt

+(T ) < RDDt
+(T

′′), a contradiction. �
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5.2 Graphs with given matching number

For a graph G, the matching number β(G) is the cardinality of a maximum matching of G. In what
follows, we are to identify the trees with the maximum RDDt

+ among all n-vertex trees with matching
number β. A vertex v is matched if it is incident to an edge in the matching; otherwise the vertex is
unmatched. A vertex is said to be perfectly matched if it is matched in all maximum matchings of G.

For convenience, let T β
n be the set of all n-vertex trees with matching number β. Let T β

n be the tree
obtained from the star graph Sn−β+1 by attaching a pendent edge to each of certain β − 1 non-central
vertices of Sn−β+1. It is easy to see that T β

n contains an β-matching.

Theorem 5.7. ( [48]) For any tree T ∈ T β
n with n ≥ 2β, we have

RDDt
+(T ) ≤

(n+ 3β − 4) + (n− β)2

t+ 1
+

n2 − 3n− β2 + 3β

t+ 2

+
(β − 1)(2n− β − 4)

t+ 3
+

(β − 1)(β − 2)

t+ 4

(39)

and the equality holds in (39) if and only if T is isomorphic to T β
n .

Proof. Choose T to be a tree in T β
n such that RDDt

+(T ) is as larger as possible. Assume that there
is a pendent path of length p > 2 attached at vertex v in T . We can consider a new tree T ′ that has
two pendent paths attached at v with length of 2 and p − 2. The matching number of trees T and T ′ is
the same. Using Corollary 5.5, it follows RDDt

+(T ) < RDDt
+(T

′), a contradiction to the choice of T .
Hence, we can assume all pendent paths have length one or two.

Let v be a vertex of degree k + l + 1 in T . Suppose that w is a parent of v and that there s paths
vx11x12, vx21x22, · · · , vxk1xk2 and t paths vy1, vy2, · · · , vyl of length attached at v. Denote by

T ′ =T − {vxi1xi2|i = 1, 2, · · · , k} − {vyj|j = 1, 2, · · · , l}
+{wxi1xi2|i = 1, 2, · · · , k}+ {wyj|j = 1, 2, · · · , l}

and

T ′′ =T − {vxi1xi2|i = 1, 2, · · · , k} − {vyj|j = 1, 2, · · · , l − 1}
+{wxi1xi2|i = 1, 2, · · · , k}+ {wyj|j = 1, 2, · · · , l − 1}.

In what follows, we will show that using Transformations T ⇒ T ′ and T ⇒ T ′′ the matching number
can be invariant.

First we suppose that T is not the extremal graph. If the vertex w is not perfectly matched in T ,
there exists a matching M of maximum cardinality, such that no edge from M is incident to w. It
follows that β(T ′) = β(G \ {w}) + k + 1 = β(G) + k + 1 = β(T ). By Theorem 5.2, we can get
RDDt

+(T ) < RDDt
+(T

′).

If the vertex w is perfectly matched in T , for each matching M of maximum cardinality, there exists
an edge ww1 from M incident to w. If ww1 = vw, then we have β(T ′) = β(G \ {w}) + k + 1 =

β(G) + k + 1 = β(T ). By Theorem 5.2, we can get RDDt
+(T ) < RDDt

+(T
′), a contradiction. If
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ww1 6= vw, then β(T ′′) = β(G) + k + 1 and RDDt
+(T ) < RDDt

+(T
′′) by Theorem 5.2, again a

contradiction.

By the previous discussion and the choice of T , we obtain that T is isomorphic to T β
n , which is the

uniqure tree with maximum RDDt
+ in T β

n . By direct calculation, we have

RDDt
+(T

β
n ) =(β − 1)

[
1

t+ 1
+

1

t+ 2
+

1

t+ 3
(n− β − 1) +

1

t+ 4
(β − 2)

]

+2(β − 1)

[
2

t+ 1
+

1

t+ 1
(n− β − 1) +

1

t+ 3
(β − 2)

]

+(n− 2β + 1)

[
1

t+ 1
+

1

t+ 2
(n− β − 1) +

1

t+ 3
(β − 1)

]

+(n− β)

[
n− β

t+ 1
+

1

t+ 2
(β − 1)

]

=
(n+ 3β − 4) + (n− β)2

t+ 1
+

n2 − 3n− β2 + 3β

t+ 2

+
(β − 1)(2n− β − 4)

t+ 3
+

(β − 1)(β − 2)

t+ 4

This completes the proof. �

5.3 Graphs with given dominating number

A subset S of V (G) is called a dominating set of G if for every vertex v ∈ V (G) \ S, there exists a
vertex u ∈ S such that v is adjacent to u. A vertex in the dominating set is called a dominating vertex.
For a dominating set S of graph G with v ∈ S, if uv ∈ E(G) with u ∈ V (G) \ S, then u is said to be
dominated by v. The domination number of G, denoted by γ(G), is defined as the minimum cardinality
of dominating sets of G. For convenience, let Dγ

n be the set of all n-vertex trees with domination γ.

In what follows, we are to characterize the trees with the maximum RDDt
+ among n-vertex trees

with domination number γ.

Lemma 5.8. ( [48]) If T ∈ Dγ
n has the maximum RDDt

+, then γ(T ) = β(T ) = γ.

Proof. It was proved in [33] that γ(G) ≤ β(G) holds for any graph. Hence, it is sufficient to show
that γ(T ) ≥ β(T ). Otherwise, by the definition of Dγ

n , we have γ = γ(T ) < β(T ). Assume that
S = {v1, v2, · · · , vγ} is a dominating set of cardinality γ. Then there must exist γ independent edges,
say v1v

′
1, v2v

′
2, · · · , vγv′γ , in T . Let M ′ = {viv′i : i = 1, 2, · · · γ}. If M ′ is contained in a matching M

of maximum cardinality, then there must exist another edge, say w1w2, which is independent of each
edge viv

′
i by γ(T ) < β(T ). Otherwise, note that γ(T ) < β(T ), there exists an M ′-augmenting path

P = u1u2 · · ·u2t+1u2t+2 in T , where u2kt2k+1 = vkv
′
k, k = 1, 2, · · · , t and u2 = v1, u2t+1 = vt. Thus,

for each pair ui, uj ∈ S ∩V (P ), i < j, we have 2 ≤ j− i ≤ 3. Note that the first (resp. last) domination
vertex is u2 (resp. u2γ+1), there must exist a pair ui, uj ∈ S ∩ V (P ) satisfying j − i = 3. Without loss
of generality, we assume that the smallest value of i for which ui, ui+3 ∈ S is i0. Let

M ′′ = {u1u2, u3u4, · · · , ui0−1ui0} ∪ {ui0+3ui0+4, ui0+5ui0+6, · · · , u2t+1u2t+2},
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then M ′′ is a matching of cardinality γ, and each edge of M ′′ contains a vertex from S. It is easy to
check that the edge ui0+1ui0+2 is independent of each edge from M ′′.

Hence, there must exist γ + 1 independent edges v1v
′
1, v2v

′
2, · · · , vγv′γ, w1w2 in T . If w1, w2 are

dominated by the same vertex vi ∈ S, there would be a triangle w1w2vi. This is impossible because of the
fact that T is a tree. Therefore we claim that two vertices w1, w2 are dominated by two different vertices
from S. Without loss of generality, assume that wi is dominated by the vertex vi for i = 1, 2. Now we
construct a new tree T ′ ∈ Dγ

n by Transformation 5.1 of T on the edges v1w1 and v2w2, respectively. It
follows from Theorem 5.2 that RDDt

+(T ) < RDDt
+(T

′), which contradicts to the choice of T . Thus
we complete the proof. �

Combing Theorem 5.7 and Lemma 5.8, the next result follows immediately.

Theorem 5.9. ( [48]) For any tree T ∈ Dγ
n , we have

RDDt
+(T ) ≤

(n+ 3γ − 4) + (n− γ)2

t+ 1
+

n2 − 3n− γ2 + 3γ

t+ 2

+
(γ − 1)(2n− γ − 4)

t+ 3
+

(γ − 1)(γ − 2)

t+ 4

(40)

and the equality holds in (40) if and only if T is isomorphic to T γ
n .

5.4 Graphs with given bipartition

In this subsection, we investigate the property of the reformulated reciprocal sum-degree of trees by
using an auxiliary transformation, which will be listed in the following.

Transformation 5.10. ( [48]) Let uw be a cut edge of a bipartite graph U with δ(w) ≥ 2. Denote by

G the graph obtained from U and the star Sk+2 by identifying u with a pendant vertex of Sk+2 whose

center is v. Let G[v → w; 2] be the graph obtained from G by deleting all edges vz, z ∈ W and adding

all edges wz, z ∈ W , where W = NG(v) \ {u}. In notation,

G[v → w; 2] = G− {vz : z ∈ W}+ {wz : z ∈ W},

we call G ⇒ G[v → w; 2] the θ3-transformation, see Fig 7.

Figure 7. G′ = G[v → w; 2] is obtained from G by θ3-transformation.
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In 2013, Geng et al. [29] used the θ3-transformation to study the eccentric distance sum of trees.
In the same year, Li et al. [49] used this θ3-transformation to discuss the Laplacian permanent of trees
with given bipartition. In [47], the authors explored the property of the reciprocal sum-degree distance
of graphs by using the θ3-transformation. More recently, Li et al. [48] used this Transformation as a
significant tool to study the reformulated reciprocal sum-degree distance of trees.

Theorem 5.11. ( [48]) Let G and G[v → w; 2] be the bipartite graphs with some labeled vertices as in

Transformation 5.10. Then RDDt
+(G) < RDDt

+(G[v → w; 2]).

Proof. For convenience, let G′ = G[v → w; 2], T1 be the component in G−{wu, uv} which contains u,
and A := V (U) \ (V (T1) ∪ {w}). In what follows, we will distinguish the following four possiblities.

• For all vertex x ∈ A, by direct calculation, we have

D̂t(G;x) =
∑

y∈A\{x}

1

dU(x, y) + t
+

1

dU(x,w) + t
+

∑

y∈V (T1)

1

dG(x, y) + t

+
1

dU(x,w) + 2 + t
+

k

dU(x,w) + 3 + t
.

D̂t(G
′;x) =

∑

y∈A\{x}

1

dU(x, y) + t
+

1

dU(x,w) + t
+

∑

y∈V (T1)

1

dG′(x, y) + t

+
1

dU(x,w) + 2 + t
+

k

dU(x,w) + 1 + t
.

Note that
∑

y∈V (T1)
1

dG(x,y)+t
=
∑

y∈V (T1)
1

dG′ (x,y)+t
, hence D̂t(G;x) < D̂t(G

′;x). It is routine to
check that for all vertex x in A, one has δG(x) = δU(x) = δG′(x). Hence,

∑

x∈A
δG(x)D̂t(G;x) <

∑

x∈A
δG′(x)D̂t(G

′;x). (41)

• For each vertex x in V (T1), it is routine to check that δG(x) = δT1(x) = δG′(x) and D̂t(G;x) =

D̂t(G
′;x). Hence,

∑

x∈V (T1)

δG(x)D̂t(G;x) =
∑

x∈V (T1)

δG′(x)D̂t(G
′;x). (42)

• For each vertex uj ∈ X ′ = {u1, u2, · · · , uk}, by direct calculation we have

D̂t(G;uj) =
∑

x∈V (T1)

1

dG(x, v) + 1 + t
+

1

1 + t
++

k − 1

2 + t
+

1

3 + t

+
∑

x∈A

1

dU(x,w) + 3 + t
.
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D̂t(G
′;uj) =

∑

x∈V (T1)

1

dG′(x,w) + 1 + t
+

1

1 + t
++

k − 1

2 + t
+

1

3 + t

+
∑

x∈A

1

dU(x,w) + 1 + t
.

It is routine to check that dG(x, v) = dG′(x,w) for any vertex x ∈ V (T1), hence D̂t(G;uj)

< D̂t(G
′;uj). Note that δG(uj) = δG′(uj) = 1 for any uj ∈ X ′. Hence,

∑

uj∈X′

δG(uj)D̂t(G;uj) <
∑

uj∈X′

δG′(uj)D̂t(G
′;uj). (43)

• For vertex w and v, by direct calculation we have

D̂t(G;w) =
∑

x∈A

1

dU(x,w) + t
+

∑

x∈V (T1)

1

dG(x,w) + t
+

1

2 + t
+

k

3 + t
,

D̂t(G; v) =
∑

x∈A

1

dU(x,w) + 2 + t
+

∑

x∈V (T1)

1

dG(x, v) + t
+

1

2 + t
+

k

1 + t
,

D̂t(G
′;w) =

∑

x∈A

1

dU(x,w) + t
+

∑

x∈V (T1)

1

dG′(x,w) + t
+

1

2 + t
+

k

1 + t
,

D̂t(G
′; v) =

∑

x∈A

1

dU(x,w) + 2 + t
+

∑

x∈V (T1)

1

dG′(x, v) + t
+

1

2 + t
+

k

3 + t
.

It is sufficient to show that Λ5 = δG′(w)D̂t(G
′;w) + δG′(v)D̂t(G

′; v) − δG(w)D̂t(G;w) −
δG(v)D̂t(G; v) > 0. In fact, note that δG(w) = δU(w), δG(v) = k + 1, δG′(w) = δU(w) + k and
δG′(v) = 1. In addition, for each vertex x in T1, dG(x,w) = dG(x, v) = dG′(x,w) = dG′(x, v), hence

Λ5 =k


∑

x∈A

1

dU(x,w) + t
+

∑

x∈V (T1)

1

dG′(x,w) + t
+

1

2 + t




−k


∑

x∈A

1

dU(x,w) + 2 + t
+

∑

x∈V (T1)

1

dG′(x, v) + t
+

1

2 + t




+
k

1 + t
(δU(w) + k)− k

3 + t
δU(w) +

k

3 + t
− k(k + 1)

1 + t

>k(δU(w)− 1)

(
1

t+ 1
− 1

t+ 3

)
> 0.

Hence,

δG(w)D̂t(G;w) + δG(v)D̂t(G; v) < δG′(w)D̂t(G
′;w) + δG′(v)D̂t(G

′; v). (44)

Combing with (41), (42), (43)) and (44) yields RDDt
+(G) < RDDt

+(G
′). �
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For a given n-vertex connected graph G satisfying its vertex set can be partitioned into two subsets
V1 and V2, such that each edge joins a vertex in V1 with a vertex in V2. Suppose that V1 has p vertices
and V2 has q vertices, where p+ q = n. Then we say that G has a (p, q)-bipartition, p ≤ q.

Let T p,q
n the set of all n-vertex trees with a (p, q)-bipartition. In particular, Sn is an element of

T 1,n−1
n , and T 2,n−2

n = {P3(a, b) : a + b = n − 3}, where P3(a, b) is obtained from P3 by attaching a

and b leaves to the endvertices of P3, respectively.

Theorem 5.12. ( [48]) Given positive integers p and q with p ≤ q and p+ q = n.

(a) If p = 2, then we order all the numbers in T 2,q
n as follows:

RDDt
+(P3(0, n− 3)) >RDDt

+(P3(1, n− 4)) > RDDt
+(P3(2, n− 5)) > · · ·

>RDDt
+

(
P3

(⌊
n− 3

2

⌋
,

⌈
n− 3

2

⌉))
.

(b) If p > 2, then for any T ∈ T p,q
n we have

RDDt
+(T ) ≤

n2 + n− 2

t+ 1
+

(n− 1)(n− 2)

t+ 2
+

2− 2n

t+ 3
− 2pq

(
1

t+ 1
− 1

t+ 3

)
.

The equality holds if and only if T is isomorphic to T (p, q), where T (p, q) is a double star with n vertices,

which is obtained from an edge vw by attaching p− 1 (resp. q − 1) pendent edges to v (resp. w).

Proof. By direct calculation, we have

RDDt
+(P3(a− 1, b+ 1))−RDDt

+(P3(a, b))

=
2 + 2b− 2a

t+ 1
+

2 + 2b− 2a

t+ 2
+

2a− 2b− 2

t+ 3
+

2a− 2b− 2

t+ 4

=(2b− 2a+ 2)

(
1

t+ 1
+

1

t+ 2
− 1

t+ 3
− 1

t+ 4

)
> 0.

This implies the proof of (a).

For a given T in T p,q
n , by repeatedly applying Transformation 5.10 to T yields that T (p, q) is the

unique tree in T p,q
n which has the maximum RDDt

+ value. By elementary calculation, we have

RDDt
+(T (p, q)) =(p− 1)

[
1

t+ 1
+

1

t+ 2
(p− 1) +

1

t+ 3
(q − 1)

]

+p

[
p

t+ 1
+

1

t+ 2
(q − 1)

]
+ q

[
q

t+ 1
+

1

t+ 2
(p− 1)

]

+(q − 1)

[
1

t+ 1
+

1

t+ 2
(q − 1) +

1

t+ 3
(p− 1)

]

=
p2 + q2 + p+ q − 2

t+ 1
+

(p+ q − 1)(p+ q − 2)

t+ 2
+

2(p− 1)(q − 1)

t+ 3

=
n2 + n− 2

t+ 1
+

(n− 1)(n− 2)

t+ 2
+

2− 2n

t+ 3
− 2pq

(
1

t+ 1
− 1

t+ 3

)
.

This completes the proof of (b). �
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6. Conclusion

In this chapter we examined various extremal problems related to the reciprocal sum-degree distance
and the reciprocal product-degree distance as well as their generalized versions. We were particularly
interested in the following two problems:

• finding lower and upper sharp bounds for the reciprocal sum-degree distance and the reciprocal
product-degree distance and its congeners, and

• characterizing the graphs for which the reciprocal sum-degree distance (resp. the reciprocal pro-
duct-degree distance) and its congeners assume extremal (minimum or maximum) values.

Researches on these extremal aspects of the theory of the reciprocal sum-degree distance and recip-
rocal product-degree distance started more recently. However, once the non-triviality and mathematical
beauty of the problems encountered, a remarkable activity has begun, resulting in scores of papers pub-
lished in mathematical and chemical journals. Almost most all relevant results were obtained in the last
five years.

Our ambition was to investigate the majority of results concerned with the above stated topics, to
state them in a mathematically rigorous manner, and to provide proofs thereof. We tried to be as up-
dated as possible, which was a near-to-impossible task since new results continue to emerge almost each
month. Anyway, this chapter should offer a nearly complete survey of the extremal aspects of the results
on the reciprocal sum-degree and the reciprocal product-degree distance up to year 2016.

At the very end we would like to state some open problems which-in our opinion-are most interest-
ing from a mathematical point of view. It would be interesting to explore mathematical properties and
possible predictive of the reformulated reciprocal product-degree distance. Another interesting prob-
lem would be to investigate this graph invariant for various nanostructures. Since even the simplest
nanostructures, the C4 nanotubes and nanotori, arise as the Cartesian products of paths and cycles, and
since the Harary-type indices do not allow for nice expressions for such structures, there is not much
hope of deriving explicit formulas of the reformulated reciprocal product-degree distance. However, it
might be possible to extract certain information of the asymptotic behavior of reformulated reciprocal
sum-product distance.

Errors, flaws, omissions are inevitable in a text of this kind. The author will be most grateful to those
who point out such weak points of their investigation, and will appreciate any criticism thereof.
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[45] X. Li, Y. Fan, The connectivity and the Harary index of a graph, Discr. Appl. Math. 181 (2015)
167–173.
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[61] K. Xu, S. Klavžar, K. C. Das, J. Wang, Extremal (n,m)-graphs with respect to distance–degree–
based topological indices, MATCH Commun. Math. Comput. Chem. 72 (2014) 865–880.

[62] K. Xu, K. C. Das, On Harary index of graphs, Discr. Appl. Math. 159 (2011) 1631–1640.



188

[63] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett. 24 (2011)
1026–1030.

[64] K. Xu, Trees with the seven smallest and eight greatest Harary indices, Discr. Appl. Math. 160
(2012) 321–331.

[65] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113–118.

[66] B. Zhou, Upper bounds for the Zagreb indices and the spectral radius of series–parallel graphs, Int.
J. Quantum Chem. 107 (2007) 875–878.



MCM 20
I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.),
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Abstract

The eccentricity εG(vi) of a vertex v in a graph G is the maximum distance from vi to other ver-
tices in G. As a fundamental concept in pure graph theory, the eccentricity has also been frequently
used in chemical graph theory. There is a large family of eccentricity-based topological indices of
(molecular) graphs, such as Zagreb eccentricity indices, eccentric connectivity index (ECI), connec-
tive eccentricity index (CEI) and average eccentricity, etc. In this chapter we present some upper
or lower bounds on these eccentricity-based topological indices and characterize the corresponding
extremal graphs at which the bounds are attained.
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1. Introduction

We only consider finite, undirected, simple and connected graphs throughout this paper. Let G be a
graph with vertex set V (G) = {v1, v2, . . . . . . , vn} and edge set E(G). The degree of vi ∈ V (G), denoted
by degG(vi), is the number of vertices in G adjacent to v. For any two vertices vi, vj in a graph G, the
distance between them, denoted by dG(vi, vj), is the length (i.e., the number of edges) of a shortest path
connecting them in G. Other undefined notations and terminology on the graph theory can be found
in [8].
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For any vertex of graph G, the eccentricity εG(vi) is the maximum distance from vi to other vertices
of G, that is, εG(vi) = max

vj 6=vi
dG(vi, vj). If εG(vi) = dG(vi, vj), then vj is an eccentric vertex of vertex

vi. Moreover, rad(G) = min
vi∈V (G)

{εG(vi)} and diam(G) = max
vi∈V (G)

{εG(vi)} are called the radius and

the diameter of graph G, respectively. The center C(G) and the periphery P (G) of G is the set of
vertices of minimum, respectively maximum, eccentricity in it, their elements are called central, resp.
peripheral, vertices. In particular, two peripheral vertices vi, vj form a diametrical pair in a graph G

if dG(vi, vj) = diam(G). The eccentricity sequence of a graph G is just a set of eccentricities of its
vertices, that is, E(G) = {εG(vi) : vi ∈ V (G)}. If the eccentricity εG(vi) appears li ≥ 1 times in E(G),
we will write εG(vi)(li) in it for short. For any graph G, we denote by G the complement of G. As usual,
let Pn, Cn, Kn be the path graph, cycle graph and complete graph, respectively, on n vertices.

As a special distance of graphs, the eccentricity of a vertex has some important applications in other
scientific branches. In pure graph theory, there are several special eccentricity-based graphs. Any graph
G with C(G) = V (G) is called a self-centered graph [9]. Recently, based on the application of vertex
eccentricity to location theory [10], two novel classes of graphs with specific central structure have been
defined. A graph with |C(G)| = |V (G)| − 2, or |P (G)| = |V (G)| − 1, respectively, is called an almost

self-centered (ASC) graph [7, 33], or almost-peripheral (AP) graph [35], respectively. An ASC (AP,
resp.) graph with radius r is called an r-ASC (r-AP, resp.) graph. A graph G with |C(G)| = |V (G)| − 2

is called a weak almost-peripheral (WAP) graph [55].
In chemical graph theory, various graphical invariants are used for establishing correlations of chemi-

cal structures with various physical properties, chemical reactivity, or biological activity. These graphical
invariants are called topological indices of (molecular) graphs in this field. There is a large family of
distance-based topological indices of (molecular) graphs in chemical graph theory. They include Wiener
index [16, 50] as the well-known and oldest topological index, hyper-Wiener index [32, 43], Harary in-
dex [31, 41, 56], and so on. Moreover, there are some eccentricity-based topological indices in chemical
graph theory. In 2000, Gupta et al. [21] introduced a novel, adjacency-cum-path length based, topo-
logical descriptor named as connective eccentricity index (CEI) when investigating the antihypertensive
activity of derivatives of N-benzylimidazole. And the connective eccentricity index of a (molecular)
graph G is just

ξce(G) =
∑

vi∈V (G)

degG(vi)

εG(vi)
.

Moreover, in [21], they showed that the results obtained using the connective eccentricity index were
better than the corresponding values obtained using Balaban’s mean square distance index [4, 5] and the
accuracy of prediction was found to be about 80 percents in the active range [21]. See [1, 54, 57, 59] for
recent results on the CEI of graphs. Moreover, Sharma et al. [44] introduced the eccentric connectivity

index (ECI) for a graph G, defined below:

ξc(G) =
∑

vi∈V (G)

degG(vi)εG(vi),

which has been employed successfully for the development of numerous mathematical models for the
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prediction of biological activities of diverse nature [20, 44, 46]. Some mathematical and chemical prop-
erties of ECI have been reported in [2, 3, 30, 39, 40, 60, 61].

In analogy with the first and second Zagreb indices [25, 26] of graphs, D. Vukičević and A. Graovac
[49] defined the first and second Zagreb eccentricity Zagreb indices as follows:

E1(G) =
∑

vi∈V (G)

εG(vi)
2, E2(G) =

∑

vivj∈E(G)

εG(vi)εG(vj) .

Some mathematical properties of E1 and E2 can be found in [11, 17, 51]. And the average eccentricity

[10] of an n-vertex graph G is defined as

avec(G) =
1

n

∑

vi∈V (G)

εG(vi) .

Very recently, the present author, Das and Maden [55] introduced a novel eccentricity-based invariant
named as non-self-centrality number of a graph G as follows:

N(G) =
∑

{vi,vj}⊆V (G)

|εG(vi)− εG(vj)| ,

which is used for measuring the non-self-centrality of all non-self-centered graphs. Some nice results on
other attractive distance-based topological indices of graphs can be found in a survey paper [53] and the
references therein.

In this chapter we report some upper and lower bounds on these above eccentricity-based topological

indices (hereafter denoted by EBTI for short). In Section 2, we list some upper and lower bounds on
EBTI of various sets of graphs. In Section 3, several bounds on EBTI are established in terms of other
topological indices.

2. Some bounds on EBTI of graphs from various sets

In this section we propose some upper and lower bounds on EBTI of graphs from many distinct
classes. And the corresponding extremal graphs are also characterized at which the upper (or lower)
bounds on EBTI are attained.

2.1 Trees

As we all know, a tree is a connected acyclic graph, which can be viewed as the simplest case of
connected graphs and so be a starting point when studying on some research topic in graph theory. In this
subsection we focus on the upper and lower bounds on EBTI of general and special trees, respectively.
First we limit our attention into the set of general trees. For n = 2 or 3, there is a single tree Pn of order
n. Therefore we always consider a tree of order n ≥ 4.

In the following five theorems we focus on the upper and lower bounds on EBTI of general trees of
n ≥ 4 with the corresponding extremal trees.
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Theorem 2.1. ( [11]) Let T be a tree of order n ≥ 4. Then

(1) E1(Sn) ≤ E1(T ) ≤ E1(Pn) with the left equality holding if and only if T ∼= Sn and the right

equality holding if and only if T ∼= Pn;

(2) E2(Sn) ≤ E2(T ) ≤ E2(Pn) with the left equality holding if and only if T ∼= Sn and right equality

holding if and only if T ∼= Pn.

Theorem 2.2. ( [29]) Let T be a tree of order n ≥ 4. Then

avec(Sn) ≤ avec(T ) ≤ avec(Pn)

with left equality holding if and only if T ∼= Sn, right holding if and only if T ∼= Pn.

Theorem 2.3. ( [61]) Let T be a tree of order n ≥ 4. Then

ξc(Sn) ≤ ξc(T ) ≤ ξc(Pn)

with left equality holding if and only if T ∼= Sn, right holding if and only if T ∼= Pn.

Theorem 2.4. ( [57, 59]) Let T be a tree of order n ≥ 4. Then

ξce(Pn) ≤ ξce(T ) ≤ ξce(Sn)

with left equality holding if and only if T ∼= Pn and right equality holding if and only if T ∼= Sn.

Theorem 2.5. ( [55]) Let T be a tree of order n ≥ 4. Then

N(Sn) ≤ N(T ) ≤ N(Pn)

with left equality holding if and only if T ∼= Sn, right holding if and only if T ∼= Pn.

Next we turn to the results for special trees. Before doing it, we first introduce some notations. A
dumbbell Dn(a, b) with 1 ≤ a ≤ b is a tree obtained from a path Pn−a−b by attaching a independent
vertices to one pendant vertex of Pn−a−b and b independent vertices to the other pendant vertex. In
particular, for an integer d ≥ 2, a dumbbell Dn(1, n − d) is a just a broom with diameter d and will
be denoted by Bn,d in the following. And volcano graph Vn,d is a tree obtained from a path Pd+1 by
attaching n − d − 1 pendant vertices to a central vertex (for odd d) or two adjacent central vertices (for
even d) of Pd. Note that the tree Vn,d is not unique if d is even with d < n − 2. As two examples,
D10(2, 3) and B11,7 are shown in Figures 1 and 2, respectively. And V10,6, V12,7 are given in Figure 3.

Figure 1. The tree D10(2, 3)
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Figure 2. The tree B11,7

Figure 3. The tree V10,6 (left) and a tree V12,7 (right)

Theorem 2.6. ( [51]) Let T be a tree of order n ≥ 4 and with diameter d > 2. Then

Ei(Vn,d) ≤ Ei(T ) ≤ Ei(Dn(a, b)) for i = 1, 2

with left equality holding if and only if T ∼= Vn,d, and right holding if and only if T ∼= Dn(a, b) with

a+ b = n− d+ 1.

Theorem 2.7. ( [39]) Let T be a tree of order n ≥ 4 and with diameter d > 2. Then

ξc(Vn,d) ≤ ξc(T ) ≤ ξc(Bn,d)

with left equality holding if and only if T ∼= Vn,d, right holding if and only if T ∼= Bn,d.

Theorem 2.8. ( [59]) Let T be a tree of order n ≥ 4 and with diameter d > 2. Then

ξce(Dn(a, b)) ≤ ξce(T )

with equality holding iff T ∼= Dn(a, b) with a+ b = n− d+ 1.

A caterpillar [27], denoted by P n
k+1(a2, a3, . . . , ak) with

k∑
i=2

ai = n − k − 1, is a tree of order n

with diameter k obtained from a path Pk+1 = v1v2 · · · vk+1 by attaching ai ≥ 0 pendant vertices to
the vertex vi for i = 2, 3, . . . , k. If k is even, a2 + ak + a k

2
+1 = n − k − 1 with a2, ak > 0 and

|a2 + ak − a k
2
+1| ≤ 2, then P n

k+1(a2, a3, . . . , ak) is called a balanced caterpillar and denoted by BCn,k.
When k is odd, the balanced caterpillar can be defined in parallel but two central vertices v k+1

2
and v k+3

2

in Pk+1 with |a2 + ak − a k+1
2

− a k+3
2
| ≤ 2 must be considered in the process. AS an example, some

balanced caterpillar BC12,7 is shown in Figure 4.

Figure 4. Some tree BC12,7
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Theorem 2.9. ( [55]) Let T be a tree of order n and with diameter d. Then

N(T ) ≤ N(T ∗)

with equality holding if and only if T ∼= T ∗ where T ∗ is isomorphic to some BCn,d.

Next we turn to the determination of upper and lower bounds on EBTI of trees with a given matching
number. And Sn,β is a tree obtained from star Sn−β+1 by attaching a pendant edge to each β− 1 pendant
vertices in Sn−β+1. The Volkmann tree [19] V Tn,∆ is obtained in the following way:

Starting with the root having ∆ children. Every vertex different from the root, which is not in one of
the last two levels, has exactly ∆ − 1 children. In the last level, while not all vertices need to exist, the
existing vertices fill the level consecutively. Thus, at most one vertex on the level second to last has its
degree different from ∆ and 1. Some mathematical and chemical properties of Volkmann trees can be
found in [36].

As two examples, the trees S10,4 and V T22,4 are shown in Figures 5 and 6, respectively.

Figure 5. The tree S10,4

Level 0

Level 1

Level 2

Level 3

Figure 6. The tree V T22,4

Theorem 2.10. ( [51]) Let T be a tree of order n ≥ 4 and matching number β ≥ 2. Then

Ei(T ) ≥ Ei(Sn,β) where i = 1, 2

with equality holding if and only if T ∼= Sn,β .

Theorem 2.11. ( [54]) Let T be a tree of order n ≥ 4 and matching number β ≥ 2. Then

ξc(Sn,β) ≤ ξc(T ) ≤ ξc(Dn(a, b))

with left equality holding if and only if T ∼= Sn,β , right holding if and only if T ∼= Dn(a, b) with

a+ b = n− 2β + 1.
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Theorem 2.12. ( [54]) Let T be a tree of order n ≥ 4 and matching number β ≥ 2. Then

ξce(Dn(a, b)) ≤ ξce(T ) ≤ ξce(Sn,β)

with left equality holding if and only if T ∼= Dn(a, b) where a + b = n − 2β + 1, right holding if and

only if T ∼= Sn,β .

Theorem 2.13. ( [30]) Let T be a tree of order n ≥ 4 and with maximum degree ∆ > 2. Then

ξc(V Tn,∆) ≤ ξc(T ) ≤ ξc(Bn,n−∆)

with left equality holding if and only if T ∼= V Tn,∆, right holding if and only if T ∼= Bn,n−∆.

Theorem 2.14. ( [29]) Let T be a tree of order n ≥ 4 and with maximum degree ∆ > 2. Then

avec(T ) ≤ avec(Bn,n−∆)

with equality holding if and only if T ∼= Bn,n−∆.

Theorem 2.15. ( [17]) Let T be a tree of order n ≥ 4 and with maximum degree ∆ > 2. Then

Ei(T ) ≤ Ei(Bn,n−∆) for i = 1, 2

with equality holding if and only if T ∼= Bn,n−∆.

2.2 General graphs

In this subsection we report some upper or lower bounds on EBTI of general graphs. Recall that
an (n,m)-graph is a connected graph of order n and with m edges. In particular, an (n, n)-graph is a
unicyclic graph of order n, an (n, n + 1)-graph is a bicyclic graph with n vertices. Clearly a unicyclic
graph has n ≥ 3 vertices, and a unicyclic graph of order 3 is just a triangle C3. And a bicyclic graph has
at least 4 vertices.

Theorem 2.16. ( [17]) Let G be a unicyclic graph of order n ≥ 4. Then

Ei(G) ≥ Ei(S
+
n ) for i = 1, 2

with the equality holding if and only if G ∼= S+
n where and hereafter S+

n is a graph obtained by adding

one edge to the star Sn.

Denote by B∗
n the set of two bicyclic graphs of order n obtained by two edges to the star Sn.

Theorem 2.17. ( [17]) Let G be a bicyclic graph of order n ≥ 4. Then

Ei(G) ≥ Ei(G
∗) for i = 1, 2

with the equality holding if and only if G∗ ∈ B∗
n.
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Theorem 2.18. ( [61]) Let G be a unicyclic graph of order n. Then

ξc(G) ≥ ξc(S+
n )

with the equality holding if and only if G ∼= S+
n .

Theorem 2.19. ( [61]) Let G be a bicyclic graph of order n. Then

ξc(G) ≥ ξc(G∗)

with the equality holding if and only if G∗ ∈ B∗
n.

Theorem 2.20. ( [59]) Let G be a unicyclic graph of order n. Then

ξce(C3(n− 3)) ≤ ξce(G) ≤ ξce(S+
n )

with left equality holding if and only if G ∼= C3(n−3) where C3(n−3) is a graph obtained by attaching

a pendant path of length n− 3 to one vertex of C3, and right holding if and only if G ∼= S+
n .

Let DB∗
n(a, b) be a set of two unicyclic graphs which are obtained from DBn(a, b) by inserting an

edge between two pendant vertices adjacent to the vertex of degree a+ 1 and b+ 1, respectively.

Theorem 2.21. ( [59]) Let G be a unicyclic graph of order n ≥ 5 and with diameter d ≥ 3. Then

ξce(G∗) ≤ ξce(G)

with left equality holding if and only if G∗ ∈ DB∗
n(a, b).

Moreover, the upper bounds on CEI with the corresponding extremal graphs are determined in [59]
among all unicyclic graphs of order n ≥ 5 and with diameter d ≥ 3.

Theorem 2.22. ( [54]) Let G be a unicyclic graph of order n and with matching number β ≥ 2. Then

ξce(G) ≤ ξce(F1(n, β))

with the equality holding if and only if G ∼= F1(n, β) where F1(n, β) is a graph obtained by attaching

n− 2β + 1 pendant edges and β − 2 pendant paths of length 2 to one vertex of cycle C3.

Theorem 2.23. ( [51]) Let G be a connected graph of order n ≥ 2 and with m edges, radius r and

diameter d. Then

(1) nr2 ≤ E1(G) ≤ nd2

(2) mr2 ≤ E2(G) ≤ md2

with any equality holding if and only if G is a self-centered graph.
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Theorem 2.24. ( [61]) Let G be a connected graph of order n ≥ 4. Then

ξc(G) ≥ ξc(Sn)

with the equality holding if and only if G ∼= Sn.

Theorem 2.25. ( [61]) Let G be a connected graph with m edges, radius r and diameter d. Then

2mr ≤ ξc(G) ≤ 2md

with any equality holding if and only if G is a self-centered graph.

Theorem 2.26. ( [55]) Let G be a connected graph of order n ≥ 3. Then

N(G0) ≤ N(G) ≤ N(Pn)

with the left equality holding if and only if G ∼= G0 where G0 is an AP graph, and right holding if and

only if G ∼= Pn.

For a vertex v in a connected graph G, the proximity π(v) is the average distance from v to all other
vertices in G, that is, π(v) = 1

n−1

∑
u∈V (G)\{v} dG(u, v). And the proximity and the remoteness of a

connected graph G are defined, respectively, as follows:

π(G) = min
v∈V (G)

π(v), ρ(G) = max
v∈V (G)

π(v).

Let

f(n) =





3n+1
4

n−1
n

− n+1
4
, if n is odd ;

n−1
2

− n
4n−4

, if n is even .

Theorem 2.27. ( [38]) Let G be a connected graph of order n ≥ 3. Then

avec(G) ≤ π(G) + f(n)

with equality holding if and only if G ∼= Pn.

Let K1
2,a−2 be a connected graph obtained from K2,a−2 with the vertices of degree a − 2 being

adjacent. And G1 is obtained by attaching a pendant path of length bd
2
c to each vertex of degree n − d

in K1
2,n−d−1. Also K2

3,a−2 be a connected graph of order a+ 1 obtained from K2,a−2 with the vertices of
degree a − 2 being adjacent to a new vertex. And G2 is obtained by attaching a pendant path of length
d
2
− 1 to each vertex of degree n− d in K2

3,n−d+1.

Figure 7. One example for G1 with n = 10 and d = 7
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Figure 8. One example for G2 with n = 11 and d = 8

Now we define two sets of graphs as follows.
Γ1 = {G : G has diameter d, V (G) = V (G1), E(G1) ⊆ E(G)}.
Γ2 = {G : G has diameter d, V (G) = V (G2), E(G2) ⊆ E(G)}.

Theorem 2.28. ( [11]) Let G be a connected graph of order n and diameter d. Then

Ei(G) ≥ E(G∗) for i = 1, 2

with equality holding if and only if G ∼= G∗ where G∗ is a path Pn or belongs to Γ1 or Γ2.

It is interesting that the below is just a same result as the case of trees, although in it we consider the
set of general graphs.

Theorem 2.29. ( [40]) Let G be a connected graph of order n and diameter d. Then

ξc(G) ≥ ξc(Vn,d)

with equality holding if and only if G ∼= Vn,d.

Moreover, some various bounds on ξc are obtained [60] based on the different values of m among all
connected graphs of order n and with m edges diameter d.

A connected graph G is called a cactus if each block of G is either an edge or a cycle. Denote by Ck
n

a graph obtained by inserting k independent edges into the star Sn. In the following theorem the upper
bounds on ξce is obtained among all cacti of order n and with k cycles.

Theorem 2.30. ( [57]) Let G be a cactus of order n ≥ 5 and with k cycles. Then

ξce(G) ≤ ξce(Ck
n)

with equality holding if and only if G ∼= Ck
n.

Now we end this subsection with the following two results on the upper bound on the average eccen-
tricity in terms of independence number and clique number. Denote

g(n) =





3n2−2n−1
4n

+ n+1
2
, if n is odd ;

3n2−4n−4
4n

+ n+2
2
, if n is even .

Theorem 2.31. ( [29]) Let G be a connected graph of order n ≥ 4. Then

avec(G) ≤ g(n)− α(G)

where α(G) is the independence number of G. And the equality holds if and only if G ∼= Pn for odd n

and G ∼= Bn,n−2 for even n.
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Theorem 2.32. ( [29]) Let G be a connected graph of order n ≥ 4 with clique number k. Then

avec(G) ≤ avec(Kin,k)

k

where Kin,k is a kite graph obtained by attaching a pendant path of length n − k to one vertex of a

complete graph Kk. And the equality holds if G ∼= Kin,k.

3. Some bounds on EBTI in terms of other topological indices

In this section we present some upper and lower bounds on EBTI in terms of other topological
indices, mainly including vertex-degree-based ones, general distance-based ones.

3.1 For vertex–degree–based topological indices

For a (molecular) graph G, the first Zagreb index M1(G) and the second Zagreb index M2(G) are,
respectively, defined [25, 26] as follows:

M1 = M1(G) =
∑

v∈V (G)

degG(v)
2, M2 = M2(G) =

∑

uv∈E(G)

degG(u) degG(v) .

Please see [52] for some recent results on Zagreb indices and [24] for a survey of vertex-degree-based
topological indices of graphs.

In the following two results some upper bounds of Ei for i = 1, 2 are proposed, respectively, in terms
of the first and the second Zagreb indices of graphs.

Theorem 3.1. ( [11]) Let G be a connected graph of order n and with m edges. Then

E1(G) ≤ M1(G)− 4mn+ n3 .

The equality holds if and only if G ∼= G0 where G0 is P4 or Kn, or an (n− 1, n− 2)-semiregular graph.

Theorem 3.2. ( [11]) Let G be a connected graph of order n and with m edges. Then

E2(G) ≤ M2(G)− nM1(G) +mn2 .

The equality holds if and only if G ∼= G0 where G0 is P4 or Kn, or an (n− 1, n− 2)-semiregular graph.

A connected graph G with maximum degree ∆(G) ≤ 4 is called a molecular graph. In particular, a
tree T with ∆(T ) ≤ 4 is called a chemical tree. Next we will list several results on the bounds on ξc of
some specific graphs, including molecular graphs, chemical trees, and general ones, in terms of Mi for
i = 1, 2.

Theorem 3.3. ( [12]) Let G be a connected molecular graph of order n and with diameter d ≥ 7. Then

ξc(G) > M1(G) .
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Theorem 3.4. ( [28]) Let G be a connected graph of order n and with diameter d such that d ≥
max{7, 2∆(G) + 1}. Then

ξc(G) > M1(G).

Also in [28], three sufficient conditions are given for the graphs G with ξc(G) ≤ Mi(G) for i = 1, 2.

Theorem 3.5. ( [28]) Let G be a connected graph of order n ≥ 7 and with minimum degree δ ≥ n
2
− 1.

Then

ξc(G) ≤ Mi(G) with i = 1, 2 .

Theorem 3.6. ( [28]) Let G be a connected graph of order n and with diameter d > 3. If dG(u)+dG(v) ≥
n− 1 for any edge uv ∈ E(G), then

ξc(G) ≤ Mi(G) with i = 1, 2.

Theorem 3.7. ( [28]) Let G be a connected graph of order n ≥ 3 and with average degree d(G) and

diameter d. If d(G) ≥ d, then

ξc(G) ≤ Mi(G) with i = 1, 2.

Theorem 3.8. ( [61]) Let G be a connected graph of order n ≥ 3 and with m edges. Then

ξc(G) ≤ 2mn−M1(G)

with equality holding if and only if G is isomorphic to P4, or Kn or a graph obtained from Kn by k

independent edges with k = 1, 2, . . . , bn
2
c.

Theorem 3.9. ( [12]) Let G be a chemical tree of order n. Then

ξc(T ) < M1(T )

for T ∼= S4, S5, or one of the following trees T ∗ and T ∗∗ shown in Figure 9. Otherwise, we have

ξc(T ) ≥ M1(T )

with equality holding if and only if T ∼= S2, or T ∼= S3, or T ∼= T0 as shown in Figure 9.

T0 T ∗ T ∗∗

Figure 9. The trees T0, T ∗ and T ∗∗

For a (molecular) graph G, the Randić index R(G) is defined [42] as follows:

R(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

.

In the two theorems below some bounds on the average eccentricity of graphs are given in terms of
Randić index.
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Theorem 3.10. ( [37]) Let G be a connected graph of order n ≥ 7. Then

R(G) + avec(G) ≥
√
n− 1 + 2− 1

n

with equality holding if and only if G ∼= Sn.

Theorem 3.11. ( [37]) Let G be a connected graph of order n ≥ 7. Then

R(G) · avec(G) ≥





n
2
, 3 ≤ n ≤ 13 ;

√
n− 1(2− 1

n
), n > 13 .

with equality holding if and only if G ∼= Kn if 3 ≤ n ≤ 13, and G ∼= Sn if n > 13.

3.2 For (general) distance–based topological indices

For a (molecular) graph G, as an oldest topological index, the Wiener index W (G) is defined [50]
as follows:

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

Please see [16] for the mathematical properties and applications of the Wiener index of trees.

Theorem 3.12. ( [13]) Let T be a tree of order n > 1. Then W (T ) < ξc(T ) for T ∼= Pk with k =

2, 3, . . . , 6 or D5(2, 1). Otherwise, we have ξc(T ) ≤ W (T ) with equality holding if and only if T ∼= S4.

For an edge e = uv ∈ E(G) of a graph G, we denote by nu(e) the number of vertices in G with a
smaller distance to u than to v. And nv(e) can be similarly defined. As a generalization of Wiener index,
Gutman [23] introduced a graph invariant, named as Szeged index, of a graph G as follows:

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e).

Denote by T (1, 2, 2) a tree obtained by attaching a pendant vertex to the central vertex of P5.

Theorem 3.13. ( [14]) Let T be a tree of order n > 1. Then

Sz(T ) ≥ ξc(T ) + 3

if T does not belong to the following set:

G∗ =
{
P2, P3, P4, P5, P6, P7, S4, D5(2, 1), D6(2, 1), T (1, 2, 2)

}
.

In the following theorem two more general results on the comparison between Sz and ξc are posed
for the bipartite graphs.

Theorem 3.14. ( [14]) Let G be a bipartite graph of order n > 1. Then Sz(G) < ξc(G) if G is

isomorphic to one of the trees: Pk with k = 2, 3, 4, 5, 6, D5(2, 1). Otherwise, we have Sz(G) ≥ ξc(G)

with equality holding if and only if G ∼= C4 or G ∼= S4.
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Theorem 3.15. ( [14]) Let T be a bipartite graph of order n > 1. Then

Sz(G) ≥ ξc(G) + 3

if G does not belong to the following set G∗⋃{C4} where G∗ is just the set defined in Theorem 3.13.

In the following three theorems some comparative results are given between ξc and ξce of graphs.
Together with these results the corresponding extremal results are characterized which are just some
special eccentricity-based graphs, such as self-centered graphs or ASC ones.

Theorem 3.16. ( [55]) Let G be a connected graph of order n ≥ 3 with m edges and radius r, diameter

d. Then

ξce(G) ξc(G)− 4m2 ≤ (d− r)2

2 d r
(4m2 −M1(G)),

with the equality holding iff G is a self-centered graph.

Theorem 3.17. ( [55]) Let G be a connected graph of order n ≥ 3 with m edges and radius r, diameter

d. Then

ξc(G) + r d ξce(G) ≤ 2m (r + d) + ∆(G)(d− r)

with equality holding if and only if G is a self-centered graph.

Theorem 3.18. ( [55]) Let G be a connected non-self-centered graph of order n with minimum degree δ

and radius r. Then

ξc(G)− r2 ξce(G) ≥ 4δ − 2δ

r + 1

with equality holding if and only if G is an ASC graph with two non-central vertices having minimum

degree δ.
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1. Introduction

This chapter is concerned with the so called eccentric distance sum (EDS) of graphs. Back in 2002,
when Gupta, Singh and Madan [17] introduced the eccentric distance sum, this novel graph invariant
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attracts more and more researchers’ attention. One gauge that such gradual rising interest on the study
of EDS must be powered by some fundamental properties of the EDS parameter.

1.1 Background

In this subsection, we present the related background for introducing the concept for eccentric distance
sum of graphs.

A single number that can be used to characterize some property of the graph of a molecule is called
a topological index, or graph invariant. Topological index is a graph theoretic property that is preserved
by isomorphism. The chemical information derived through topological index has been found usefully
in chemical documentation, isomer discrimination, structure property correlations, etc; see [1].

For quite some time there has been rising interest in the field of computational chemistry in topolog-
ical indices. The interest in topological indices is mainly related to their use in nonempirical quantitative
structure-property relationships and quantitative structure-activity relationships.

Among various indices, the Wiener index has been one of the most widely used descriptors in quan-
titative structure activity relationships. Many recently established topological indices such as degree

distance index, eccentric connectivity index and so on are used as molecular descriptors.

The Wiener index is defined as the sum of all distances between unordered pairs of vertices

W (G) =
∑

{u,v}⊆VG

dG(u, v).

It is considered as one of the most used topological index with high correlation with many physical and
chemical properties of a molecule (modeled by a graph). For the results on the Wiener index one may
be referred to the survey [7] and the recently published paper [27].

The degree distance index DD(G) was introduced by Dobrynin and Kochetova [8] and Gutman [18]
as graph-theoretical descriptor for characterizing alkanes; it can be considered as a weighted version of
the Wiener index

DD(G) =
∑

{u,v}⊆VG

(dG(u) + dG(v))dG(u, v),

where the summation goes over all pairs of vertices in G. In particular, when G is a tree on n vertices,
DD(G) = 4W (G)− n(n− 1) (see [20, 25]).

Sharma, Goswami and Madan [37] introduced a distance–based molecular structure descriptor, ec-

centric connectivity index (ECI) defined as

ξc(G) =
∑

v∈VG

εG(v)dG(v).

The index ξc(G) was successfully used for mathematical models of biological activities of diverse nature
[10,16]. For the study of its mathematical properties one may be referred to [23,24,32] and the references
there in.
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It is sometimes interesting to consider the sum of eccentricities of all vertices of a given graph G,
which was first proposed by Dankelmann, Goddard and Swart in 2004 (see [5]). We call this quantity
the total eccentricity of the graph G and denoted it by

ζ(G) =
∑

v∈VG

εG(v).

Recently, a novel graph invariant, i.e., the eccentric distance sum (EDS), was introduced by Gupta,
Singh and Madan [17]. It was defined as

ξd(G) =
∑

{u,v}⊆VG

(εG(v) + εG(u))dG(u, v) =
∑

v∈VG

εG(v)DG(v),

where DG(v) =
∑

x∈VG
d(x, v).

On the one hand, the eccentric distance sum offers a vast potential for structure activity/property
relationships; On the other hand it can provide valuable leads for the development of safe and potent
therapeutic agents of diverse nature. Comparatively, the eccentric distance sum exhibits much better
correlation and lesser average errors than the Wiener index. The excellent prediction of the physical
properties by the eccentric distance sum can be attributed to probable contribution of distance sum in
addition to eccentricity. The physical properties are significantly responsible for the biological activity
of a chemical compound. One may be referred to [17] for more details.

1.2 Some notations, terminologies and definitions

In this subsection, unless otherwise stated, we follow the traditional notations and terminologies (see,
for instance, [3]). Some necessary definitions are provided.

We consider only simple connected graphs G = (VG, EG), where VG is the vertex set and EG is the
edge set. We call n = |VG| the order of G and m = |EG| the size of G. Let G denote the complement
of G. The distance, dG(u, v), between two vertices u, v of G is the length of a shortest u-v path in G.

The eccentricity εG(v) of a vertex v is the distance between v and a furthest vertex from v. The diameter

diam(G) of G is defined as the maximum of the eccentricities of vertices of G, whereas the radius of G
is the minimum of the eccentricities of vertices of G.

Let G = (VG, EG) be a graph. Then G − v, G − uv denote the graph obtained from G by deleting
vertex v ∈ VG, or edge uv ∈ EG, respectively (this notation is naturally extended if more than one vertex
or edge is deleted). Similarly, G+uv is obtained from G by adding an edge uv /∈ EG. Denote by Pn, Sn

and Kn, the path, the star, and the complete graph on n vertices, respectively.
For a vertex subset S of VG, denoted by G[S] the subgraph induced by S. Let NG(v) denote the

set of vertices adjacent to v. NG[v] = NG(v) ∪ {v}. The degree dG(v) of a vertex v is equal to
|NG(v)|. The number ∆(G) := max{dG(v)|v ∈ VG} is the maximum degree of G. The number
δ(G) := min{dG(v)|v ∈ VG} is the minimum degree of G. We call u a leaf (or pendant vertex) of G if
dG(u) = 1. For convenience, let Gn,m be the class of all n-vertex connected graphs with m edges.

A vertex cut of a connected graph G is a set S ⊆ VG such that G−S has more than one components.
The connectivity of G, written κ(G), is the minimum size of a vertex set S such that G−S is disconnected



210

or has only one vertex. A graph is k-connected if its connectivity is at least k. G is 1-connected if and
only if it is connected; equivalently, κ(G) = 0 if and only if it is disconnected. Similarly, an edge cut

of a connected graph G is a set E ′ ⊆ EG such that G − E ′ has more than one components. The edge

connectivity of G, written λ(G), is the minimum size of an edge cut.

A subset S of VG is called a dominating set of G if for every vertex v ∈ VG \ S, there exists a vertex
u ∈ S such that u is adjacent to v. The domination number of G, denoted by γ(G), is defined as the
minimum cardinality of dominating sets of G. For a connected graph G of order n, Ore [35] obtained
that γ(G) 6 n

2
. And the equality case was characterized independently in [13, 39].

A subset M of EG is called a matching of G if no two edges of M are adjacent in G. Let M be
a matching of G. The vertex v in G is M -saturated if v is incident with an edge in M ; otherwise, v
is M -unsaturated. A perfect matching M of G means that each vertex of G is M -saturated; clearly,
every perfect matching is maximum. The matching number of G, written as µ(G), is the cardinality of a
maximum matching of G. If µ(G) = k, then we also call such maximal matching as a k-matching. It is
easy to prove by induction that a perfect matching of a tree is unique when it exists.

A subset S of VG is called an independent set of G if no two vertices of S are adjacent in G. The
independence number of G, denoted by α(G), is defined as the maximum cardinality of independent sets
of G. It is known that for a bipartite graph G of order n with δ(G) > 0, then α(G) + µ(G) = n.

A tree is a connected graph having no cycles. Let Pl(a, b) be an n-vertex tree obtained by attaching a

and b leaves to the two end-vertices of Pl = v1v2 . . . vl, (l > 2), respectively. Here, a+b = n−l, a, b > 1.
A spider is a tree with at most one vertex of degree more than 2. Let S(a1, a2, . . . , ak) be a spider with
k paths P 1, P 2, . . . , P k satisfying the length of P i is ai (i = 1, 2, . . . , k), and

∑k
i=1 ai = n − 1. Call

S(a1, a2, . . . , ak) a balanced spider if | ai − aj |6 1 for 1 6 i, j 6 k.

A bipartite graph G is a simple graph with n vertices, whose vertex set VG can be partitioned into
two disjoint subsets V1 and V2 such that every edge of G joins a vertex of V1 with a vertex of V2. Suppose
that V1 has p vertices and V2 has q vertices, where p+ q = n. Then we say that G has a (p, q)-bipartition

(p 6 q). A bipartite graph in which every two vertices from different partition classes are adjacent is
called complete, which is denoted by Kn1,n2 , where n1 = |V1|, n2 = |V2|.

The join G1⊕G2 of two vertex disjoint graphs G1 and G2 is the graph consisting of the union G1∪G2,

together with all edges of the type xy, where x ∈ VG1 and y ∈ VG2 . For k > 3 vertex-disjoint graphs
G1, G2, . . . , Gk, the sequential join G1 ⊕ G2 ⊕ · · · ⊕ Gk is the graph (G1 ⊕ G2) ∪ (G2 ⊕ G3) ∪ · · · ∪
(Gk−1 ⊕Gk). The sequential join of k disjoint copies of a graph G will be denoted by [k]G, the union of
k disjoint copies of G will be denoted by kG, while [s]G1 ⊕ G2 ⊕ [t]G3 will denote the sequential join
G1 ⊕G1 ⊕ · · · ⊕G1︸ ︷︷ ︸

s

⊕G2 ⊕G3 ⊕G3 ⊕ · · · ⊕G3︸ ︷︷ ︸
t

.

The rest of this chapter is organized as follows. In Section 2, we present some graph transformations.
In Section 3, we provide several extremal graphs w.r.t. EDS among some classes of graphs including
general graphs, trees, bipartite graphs, unicyclic graphs, triangle-free graphs, planar graphs and outer-
planar graphs. In Section 4, we provide an overview of different bounds on EDS in terms of various
invariants such that sizes, vertex degrees, (edge) connectivity, matching number, independence number,
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domination number, number of pendants, (p, q)-bipartition and so on. In the last section, we offer some
open problems and conjectures for readers.

Further on, we need the following lemma.

Lemma 1.1 ( [40]). Let G be a connected graph of order n and G � Kn. Then for each edge e 6∈ EG,

ξd(G) > ξd(G+ e).

2. Some useful transformations

In this section, we will introduce several useful transformations as follows. We mainly study the effect
of each of these transformations on the eccentric distance sum invariant.

Let T be an arbitrary tree rooted at a center vertex and let v be a vertex of degree m + 1 (m > 2).
Suppose that w is adjacent to v with εT (v) > εT (w) and that T1, T2, . . . , Tm are subtrees under v with
root vertices v1, v2, . . . , vm such that the tree Tm is actually a path. Let T ′ = T−{vv1, vv2, . . . , vvm−1}+
{wv1, wv2, . . . , wvm−1}. We say that T ′ is a ρ-transformation of T and denote it by T ′ = ρ(T, v) (see
Fig. 1).

Figure 1. ρ-Transformation

Theorem 2.1 ( [15]). Let T and T ′ be the trees defined as above, one has ξd(T ) > ξd(T ′). The equality

holds if and only if εT (v) = εT (w) and T [S] is one of the longest paths in T , where S = VG0∪VTm∪{v}.

Theorem 2.2 ( [15]). Let T, T ′ be the two trees as depicted in Fig. 2. Suppose that P = v0v1 . . . vi . . . vr

. . . vd is one of the longest paths contained in an n-vertex tree T with |VT1 | 6 |VTd−1
| and r = min{i :

|VTi
| > 1, i = 2, 3, . . . , d − 1}; see Fig. 2. Let T ′ = T − {vru : u ∈ NT (vr) \ {vr−1, vr+1}} + {v1u :

u ∈ NT (vr) \ {vr−1, vr+1}}. Then we have ξd(T ) < ξd(T ′).

Figure 2. Trees T and T ′.

By Theorem 2.2, the following theorem holds.
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Theorem 2.3 ( [31]). Suppose that P = v0v1 . . . vi . . . vr . . . vd is one of the longest paths contained in

an n-vertex tree T with dT (v1) 6 dT (vd−1) and r = min{i : |VTi
| > 3, i = 2, 3, . . . , d − 1}. Let v′

be an adjacent vertex of v1 other than v2 and T ′′ = T − {vru|u ∈ NT (vr) \ {vr, vr+1}} + {v′u|u ∈
NT (vr) \ {vr, vr+1}}. Then we have ξd(T ) < ξd(T ′′).

Theorem 2.4 ( [15]). Given an n-vertex tree T with wu, uv ∈ ET , dT (w) > 2, and each member in

NT (v)\{u} = {v1, v2, . . . , vt} is a leaf, t > 1. Let T ∗ = T−{vv1, vv2, . . . , vvt}+{wv1, wv2, . . . , wvt};
see Fig. 3. Then ξd(T ) > ξd(T ∗).

We call the transformation in Theorem 2.4 as Transformation I.

Figure 3. Trees T and T ∗.

Theorem 2.5 ( [40]). Suppose t > 1 is an integer. Let u be a vertex of a connected graph G0 with at

least two vertices. Let G1 be the graph obtained by identifying u and a pendant vertex of a star St+2, G2

the graph obtained by identifying u and the center of the star St+2. Then ξd(G2) < ξd(G1).

We call the transformation in Theorem 2.5 as Transformation II.

Theorem 2.6 ( [26]). Let w be a vertex of a nontrivial connected graph G. For nonnegative integers

p and q, let G(p, q) denote the graph obtained from G by attaching to vertex w pendant paths P =

wv1v2 . . . vp and Q = wu1u2 . . . uq of lengths p and q, respectively. Let G(p+ q, 0) = G(p, q)− wu1 +

vpu1. If εG(w) > p > q > 1, then ξd(G(p, q)) < ξd(G(p+ q, 0)).

Theorem 2.7 ( [22]). Suppose H is a complete graph on at least s (> 2) vertices and v1, . . . , vs are

distinct vertices of H . Let G1 be the graph obtained from H by attaching a nontrivial connected graph

Hi to vi for i = 1, . . . , s, respectively. Let G2 be the graph obtained from H by attaching all the above

nontrivial connected graphs H1, . . . , Hs to a vertex, say v1, of H . Then ξd(G1) > ξd(G2).

Theorem 2.8 ( [22]). Suppose H1 and H2 are two vertex-disjoint connected graphs of order at least 2.

Take a vertex u from H1 and a vertex v from H2, respectively. Let G3 be the graph obtained by connecting

u and v by an edge uv and G4 be the graph by identifying u with v and introducing a pendant edge uw

(or vw) with pendant vertex w, respectively. Then ξd(G3) > ξd(G4).

Let T be a tree of order n > 3 and e = uv be a non-pendant edge. Suppose that T − e = T1 ∪ T2

with u ∈ VT1 and v ∈ VT2 . Now we construct a new tree T0 obtained by identifying the vertex u of
T1 with vertex v of T2 and attaching a leaf to the u (= v). Then we say that T0 is obtained by running
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edge-growing transformation of T (on the edge e = uv), or e.g.t of T (on the edge e = uv) for short; see
Fig. 4. By Theorem 2.8, ξd(T0) < ξd(T ).

Figure 4. Two trees T and T0.

3. Extremal graphs with respect to EDS

In this section, we survey the results on the extremal graphs w.r.t. EDS among some classes of graphs,
which include general graphs, trees, bipartite graphs, unicyclic graphs, triangle-free graphs, planar
graphs and outerplanar graphs.

3.1 General graphs and bipartite graphs

By Lemma 1.1, the following results follow directly.

Theorem 3.1. Let G be a connected graph of order n. Then ξd(G) > ξd(Kn) with equality if and only

if G ∼= Kn.

Theorem 3.2 ( [29]). Let G be a bipartite graph with VG = (U,W ) satisfying |U | = n1 > |W | = n2.

(i) If n1 = n2 = 1, then ξd(G) = 2 and the graph is only K2.

(ii) If n1 > 2, n2 = 1, then ξd(G) = 4n2
1 − n1 and the graph is only Kn1,1.

(iii) If n2 > 1, then ξd(G) > 4n2
1 + 4n2

2 + 4n1n2 − 4n1 − 4n2 with equality if and only if G ∼= Kn1,n2 .

3.2 Trees

Yu, Feng, Illić [40] characterized the n-vertex tree with the minimal EDS. Ilić, Yu and Feng [26] proved
that the path Pn is the unique extremal tree of order n having the maximal EDS. Zhang and Li [41]
determined the n-vertex trees with the second-maximal, third-maximal and fourth-maximal EDS, re-
spectively. Li et al. [30] determined the trees with the third and fourth minimal EDS among the n-vertex
trees.

Let C(a1, a2, . . . , ad−1) be a caterpillar obtained from a path Pd+1 = v0v1 . . . vd by attaching ai

pendant edges to vertex vi, i = 1, 2, . . . , d − 1. Clearly, C(a1, a2, . . . , ad−1) has diameter d and n =

d+1+
∑d−1

i=1 ai. For simplicity, let Cn,d := C(0, . . . , 0, abd/2c, 0, . . . , 0) and C ′
n,d := C(0, . . . , 0, abd/2c−

1, 1, 0, . . . , 0), where abd/2c = n− d− 1.
Let T̂n,i be the tree obtained from Pn−1 = v0v1 . . . vn−2 by attaching a pendant vertex vn−1 to vi,

where 1 6 i 6 b(n− 2)/2c. Let Ln,k be the n-vertex tree obtained from the star K1,n−k−1 by attaching
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k pendant edges to one of pendant vertices of K1,n−k−1, where k ∈ {1, 2, . . . , bn
2
c − 1}. Obviously,

Ln,1 = Cn,3 and Ln,2 = C ′
n,3.

Theorem 3.3 ( [26, 40]). Let T be a tree of order n. Then ξd(Sn) 6 ξd(T ) 6 ξd(Pn). The left equality

holds if and only if T ∼= Sn, whereas the right equality holds if and only if T ∼= Pn.

Combining with Lemma 1.1, Theorems 3.1 and 3.3, the next corollary follows immediately.

Corollary 3.4. Let G be a connected graph of order n. Then ξd(Kn) 6 ξd(G) 6 ξd(Pn). The left

equality holds if and only if G ∼= Kn, and the right equality holds if and only if G ∼= Pn.

Theorem 3.5 ( [41]). If n > 8, then T̂n,1, T̂n,2 and T̂n,3 are the unique trees with the second-maximal,

third-maximal, and fourth-maximal eccentric distance sum among the trees on n vertices.

Theorem 3.6 ( [30]). Among trees on n vertices, C ′
n,3 has the third minimal eccentric distance sum,

whereas Ln,3 has the fourth minimal eccentric distance sum.

3.3 Unicyclic graphs

Yu, Feng, Ilić [40] characterized the graphs among n-vertex unicyclic graphs with given girth having the
minimal and second minimal EDS, respectively. Zhang and Li [41] characterized the extremal unicyclic
graphs on n > 8 vertices with the maximal, second maximal and third maximal EDS, respectively.

Let Un(k) be the set of n-vertex unicyclic graphs of order n with girth k and Un be the set of
all unicyclic graphs of order n. We denote by Hn,k the unicyclic graph obtained from Ck by adding
n − k pendant vertices to a vertex of Ck. Let H(n, k;n1, n2, . . . , nk) be a unicyclic graph on n vertices
obtained from cycle Ck = v1v2 . . . vk with ni pendant vertices attached at vi (i = 1, 2, . . . , k). Clearly,
n−k =

∑k
i=1 ni. Let H ′

n,k(3 6 k 6 n−2) be a graph obtained from cycle Ck = v1v2 . . . vk by attaching
n− k − 1 pendant vertices and one pendant vertex at v1 and v2, respectively.

Theorem 3.7 ( [40]). Let G ∈ Un(k) be a unicyclic graph of order n > 5. Then

ξd(G) >
{

−1
8
k4 + n−1

4
k3 + 7−3n

4
k2 + (n2 − 7n

2
+ 1)k + 2n2 − n if k is even,

−1
8
k4 + 2n−1

8
k3 + 13−8n

8
k2 + (n2 − 9n

4
+ 1

8
)k + n2 − 1

2
if k is odd

with equality if and only if G ∼= Hn,k.

Theorem 3.8 ( [40]). Let G be a unicyclic graph of order n > 5. Then

ξd(G) > 4n2 − 9n+ 1

with equality if and only if G ∼= Hn,3.

Theorem 3.9. Among all n-vertex (n > 5) unicyclic graphs with girth k, H ′
n,k has the second minimal

eccentric distance sum,

ξd(H ′
n,k) =





−1
8
k4 + n−1

4
k3 + 2−3n

4
k2 + (n2 − 2n− 2)k + 2n2 + n− 2 if k is even,

6n2 − 11n− 15 if k = 3,

−1
8
k4 + 2n−1

8
k3 + 3−8n

8
k2 + (n2 − 3

4
n− 11

8
)k + n2 + 1

2
n− 7

4
if k is odd and k > 5.
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Theorem 3.10 ( [40]). Let G ∈ Un (6= Hn,3) be a unicyclic graph on n > 5 vertices.

(a) If n = 6, then ξd(G) > 133 with equality if and only if G ∼= H6,5;

(b) If n > 7, then ξd(G) > 6n2 − 11n− 16 with equality if and only if G ∼= Hn,4.

Let Un be the graph obtained from a path Pn−1 = v0v1 . . . vn−3vn−2 and a vertex vn−1 by adding two
edges vn−1vn−2 and vn−1vn−3. Then let Qn = Un − vn−1vn−3 + vn−1vn−4 and Bn = Un − vn−1vn−2 +

vn−1vn−4.

Theorem 3.11 ( [41]). Let G be in Un \ {Un, Qn, Bn} with n > 8. Then ξd(G) < ξd(Qn) < ξd(Bn) <

ξd(Un).

3.4 Triangle–free graphs

Li, Yu and Sun [29] determined the graphs with the smallest EDS among the n-vertex triangle-free
graphs.

Lemma 3.12 ( [3]). Let G be a connected graph with |EG| > 1
4
|VG|2. Then G contains at least one

triangle.

Lemma 3.13 ( [28]). Among {Kn1,n2 : n1+n2 = n, n1 > 1, n2 > 1} with n > 4, one has ξd(K1,n−1) >

ξd(K2,n−2) > · · · > ξd(Kbn
2
c,dn

2
e).

Theorem 3.14 ( [28]). Let G be a connected triangle-free graph of order n > 4. Then

ξd(G) > 4n(n− 1)− 4bn2/4c. (1)

The equality holds if and only if G ∼= Kdn
2
e,bn

2
c.

Proof. Let G be a triangle-free graph of order n with the minimum EDS. If there exists a vertex u ∈ VG

such that εG(u) = 1, then dG(u) = n− 1. Hence, we have G ∼= K1,n−1.
In what follows, we consider that the eccentricity of each vertex in VG is greater than one. It is easy

to see that, for each vertex x of G, one has dG(x) 6 n− 2. Hence, for x ∈ VG, we have εG(x) > 2 and

DG(x) =
∑

u∈NG(x)

dG(u, x) +
∑

u∈VG\NG[x]

dG(u, x) > dG(x) + 2(n− 1− dG(x)) = 2n− 2− dG(x) (2)

where the inequality in (2) follows from the fact that the distance between x and the vertex which is not
adjacent to x is at least two. Together with the definition of the EDS, we have

ξd(G) =
∑

x∈VG

εG(x)DG(x)

>
∑

x∈VG

2(2n− 2− dG(x)) (3)

= 4n(n− 1)− 4|EG|
> 4n(n− 1)− 4bn2/4c, (4)
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where the inequality (3) follows by (2) and the inequality (4) follows by Lemma 3.12.
Hence, we have ξd(G) > 4n(n − 1) − 4bn2/4c with equality if and only if εG(x) = 2 for each

vertex x in VG and |EG| = bn2/4c. In order to complete the proof, it suffices to identify all the n-vertex
triangle-free graphs with εG(x) = 2 for each x ∈ VG and |EG| = bn2/4c attaining the minimum EDS
value 4n(n− 1)− 4bn2/4c.

According to Turán Theorem, Kdn
2
e,bn

2
c is the unique triangle-free graph with n vertices and bn2/4c

edges. So G attains the minimum EDS value 4n(n− 1)− 4bn2/4c if and only if G ∼= Kdn
2
e,bn

2
c.

From our proof, we obtain that G ∼= K1,n−1 if there exists a vertex u in VG such that ε(u) = 1 and
G ∼= Kdn

2
e,bn

2
c if ε(u) > 1 for all u in VG. Hence, by Lemma 3.13, we obtain that Kdn

2
e,bn

2
c is the unique

n-vertex triangle-free graph which makes the equality in (1) hold, as desired.

3.5 (Outerplanar) planar graphs

Li and Wu [28] determined the graph with the smallest EDS among the (outerplanar) planar graphs.
Recall that Gn,m is the class of all connected n-vertex graphs with m edges.

Lemma 3.15 ( [28]). Let G1, G2 be in Gn,m with ∆(G1) = n − 1 and ∆(G2) < n − 1. Then ξd(G1) <

ξd(G2).

Theorem 3.16 ( [28]). Let G be a planar graph on n (n > 6) vertices, then ξd(G) > 4n2 − 18n + 26

with equality if and only if G ∼= K2 ⊕ Pn−2.

Proof. Choose G, a planar graph of order n, such that its EDS is as small as possible. Since the EDS
decreases by adding edges to the graph preserving that the resultant graph is still planar, G must be a
maximal planar graph, which means that there are 3n− 6 edges in G.

We claim that G has at most two vertices of degree n − 1, otherwise as |EG| = 3|VG| − 6, we have
G ∼= K3 ⊕ (n − 3)K1, which implies that G is not a planar graph, a contradiction. By Lemma 3.15, G
must have at least one vertex with degree n− 1. Hence, we proceed by distinguishing the following two
cases.

Case 1. G contains just one vertex of degree n− 1, say w.

By the definition of the EDS, one has

ξd(G) = εG(w)DG(w) +
∑

v∈VG\{w}
εG(v)DG(v)

> n− 1 +
∑

v∈VG\{w}
2(2n− 2− dG(v))

= 4(n− 1)2 + 3(n− 1)− 4m

= 4n2 − 17n+ 25.

Case 2. G has exactly two vertices, say w1, w2, of degree n− 1.
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By the definition of the EDS, one has

ξd(G) = εG(w1)DG(w1) + εG(w2)DG(w2) +
∑

v∈VG\{w1,w2}
εG(v)DG(v)

> 2(n− 1) +
∑

v∈VG\{w1,w2}
2(2n− 2− dG(v))

= 4(n− 1)(n− 2) + 6(n− 1)− 4m

= 4n2 − 18n+ 26.

It is easy to check that 4n2−18n+26 < 4n2−17n+25. Hence, ξd(G) > 4n2−18n+26 with equality
if and only if G ∼= K2 ⊕ Pn−2.

Theorem 3.17 ( [28]). Let G be an outerplanar graph on n (n > 6) vertices, then ξd(G) > 4n2−13n+13

with equality if and only if G ∼= K1 ⊕ Pn−1.

4. Relationship between the EDS invariant and some other graph
invariants

In this section we establish the relationship between the EDS invariant and some other graph invariants,
such as the number of edges, degree sequence, (edge) connectivity, matching number, independence
number, domination number, diameter, number of pendants, (p, q)-bipartition and so on.

4.1 Bounds on EDS involving the number of edges

Li and Wu [29] characterized the n-vertex connected graphs of size m having the minimum EDS.

For any integer m with n− 1 6 m 6 n(n−1)
2

− 1, there must exist some k ∈ {1, 2, . . . , n− 2} such
that nk − k(k+1)

2
6 m 6 n(k + 1) − (k+1)(k+2)

2
− 1. For convenience, assume nk − k(k+1)

2
6 m 6

n(k + 1)− (k+1)(k+2)
2

− 1 for some k ∈ {1, 2, . . . , n− 2}. Then let

Gk
n,m =

{
G ∈ Gn,m|G = H ⊕Kk, |VH | = n− k, |EH | = m− nk +

k2

2
+

k

2

}

be the set of graphs each of which contains exactly k vertices of degree n− 1.

Theorem 4.1 ( [28]). Let G be a graph in Gn,m with nk − k(k+1)
2

6 m 6 n(k + 1)− (k+1)(k+2)
2

− 1 for

some k ∈ {1, 2, . . . , n− 2}. Then ξd(G) > 4n2 − 4n− kn+ k − 4m with equality if and only if G is in

Gk
n,m.

Proof. Let G be a graph with the minimal EDS in Gn,m, where nk− k(k+1)
2

6 m 6 n(k+1)− (k+1)(k+2)
2

−
1 for some fixed k ∈ {1, 2, . . . , n− 2}. By Lemma 3.15, G contains at least one vertex of degree n− 1.

We are to show that the graph G contains at most k vertices of degree n− 1. Suppose that G contains at
least k+1 vertices of degree n−1. For convenience, let A = {u ∈ VG|dG(u) = n−1}. Then |A| > k+1
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and it is easy to see that for u ∈ VG \A, one has dG(u) > k + 1. Therefore, by Handshaking lemma, we
have

m =
1

2

∑

u∈VG

dG(u) =
1

2


∑

u∈A
dG(u) +

∑

u∈VG\A
dG(u)




> 1

2
[|A|(n− 1) + (n− |A|)(k + 1)]

> 1

2
n(k + 1) +

1

2
(k + 1)(n− k − 2) (5)

= n(k + 1)− (k + 1)(k + 2)

2

> n(k + 1)− (k + 1)(k + 2)

2
− 1,

a contradiction to the assumption that m 6 n(k+1)− (k+1)(k+2)
2

−1, where the inequality in (5) follows
by |A| > k + 1.

Now suppose that G is a graph in Gn,m with t vertices of degree n − 1, where 1 6 t 6 k. Hence,
|A| = t. Based on the structure of G, we have εG(v) = 1, DG(v) = n − 1 for any v ∈ A; εG(v) =

2, DG(v) = 2n− 2− dG(v) for any v ∈ VG \ A. By the definition of the EDS, we have

ξd(G) =
∑

v∈A
εG(v)DG(v) +

∑

v∈VG\A
εG(v)DG(v)

= t(n− 1) +
∑

v∈VG\A
2(2n− 2− dG(v))

= t(n− 1) + 4(n− t)(n− 1)−
∑

v∈VG\A
2dG1(v)

= 4n2 − 4n− t(n− 1)− 4m.

Obviously, we can view ξd(G) = 4n2 − 4n− t(n− 1)− 4m as a real decreasing function in t with
1 6 t 6 k. Then G attains the minimum value on ξd(G) only when t = k. In this case, G has exactly k

vertices of degree n− 1. Hence, G ∈ Gk
n,m.

This completes the proof.

Now we characterize the extremal graphs obtained the minimum EDS with respect to trees, unicyclic
graphs, bicyclic graphs and tricyclic graphs, respectively. The following corollaries follow directly by
Theorem 4.1.

Corollary 4.2 ( [28, 40]). If G is a tree in Gn,n−1, then ξd(G) > 4n2 − 9n + 5 with equality if and only

if G ∼= K1,n−1.
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Figure 5. Graphs H ′, G′ and G′′.

Corollary 4.3 ( [28, 40]). If G is a unicyclic graph in Gn,n, then ξd(G) > 4n2 − 9n + 1 with equality if

and only if G ∼= H ′, where H ′ is depicted in Fig. 5.

Corollary 4.4 ( [28]). If G is a bicyclic graph in Gn,n+1, then ξd(G) > 4n2− 9n− 3 with equality if and

only if G ∈ {G′, G′′}, where G′, G′′ are depicted in Fig. 5.

Figure 6. Tricyclic graphs G1, G2, G3, G4, G5 with the minimum EDS.

Corollary 4.5 ( [28]). If G is a tricyclic graph in Gn,n+2, then ξd(G) > 4n2 − 9n − 7 with equality if

and only if G ∈ {G1, G2, G3, G4, G5}, where G1, G2, G3, G4, G5 are depicted in Fig. 6.

4.2 Bounds on EDS involving the vertex degrees

Let d1 > d2 > · · · > dn denote the non-increasing sequence of vertex degrees. Recall that the largest and
the smallest vertex degrees are denoted, respectively, as ∆ = d1 and δ = dn. Hua, Zhang and Xu [22]
gave the upper bound for EDS of connected graphs in terms of degree sequence. Mukungunugwa and
Mukwembi [33] determined the asymptotic upper bounds for EDS of graphs according to its order and
minimum degree. Miao et al. [31] determined the trees having the maximum EDS among the n-vertex
trees with maximum degree ∆. For convenience, let T n,∆ be the set of all n-vertex trees with the
maximum degree ∆.

Note that dG(u, v) 6 εG(v) 6 n− dG(v) for any vertex u, v ∈ VG. Thus,

Theorem 4.6 ( [22]). Let G be a connected graph on n > 2 vertices with degree sequence (d1, d2, . . . ,

dn). Then

ξd(G) 6 (n− 1)
n∑

i=1

(n− di)
2

with equality if and only if d1 = d2 = · · · = dn = n− 1, that is, G ∼= Kn.

From Theorem 4.6, the following consequence follows immediately.
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Corollary 4.7 ( [22]). Let G be a connected graph on n > 2 vertices with minimum degree δ. Then

ξd(G) 6 n(n− 1)(n− δ)2

with equality if and only if δ = n− 1, that is, G ∼= Kn.

Theorem 4.8 ( [33]). Let G be a connected graph of order n and minimum degree δ > 2. Then

ξd(G) 6 3 · 52
25 · (δ + 1)2

n4 +O(n3).

Moreover, for a fixed δ, this bound is asymptotically sharp.

Theorem 4.9 ( [31]). Among T n,∆ (3 6 ∆ 6 n − 2), S(a1, 1, . . . , 1) maximizes the EDS where

a1 = n−∆.

4.3 Bounds on EDS involving the (edge) connectivity

Hua, Zhang and Xu [22] characterized the graphs with the minimum EDS among all the graphs on n

vertices with edge-connectivity λ. Ilić, Yu and Feng [26] established the sharp lower bound on the EDS
among all connected graphs on n vertices with a given connectivity. Li and Wu [28] considered the
sharp upper bound on the EDS of graphs with even connectivity. Li, Wu and Sun [29] identified all the
extremal graphs having the minimal EDS in the class of all connected n-vertex bipartite graphs with a
given connectivity.

Theorem 4.10 ( [22]). Let G be a graph on n vertices with edge-connectivity λ. Then

ξd(G) > 2n2 − λn+ 2n− 3λ− 4

with equality if and only if G ∼= Kλ ⊕ (K1 ∪Kn−λ−1).

Theorem 4.11 ( [26]). Let G be a connected graph of order n with connectivity κ. Then

ξd(G) > 2n2 − κn+ 2n− 3κ− 4

with equality if and only if G ∼= Kκ ⊕ (K1 ∪Kn−κ−1).

Let Gk
n be a graph of order n obtained from a cycle Cn by adding edges between vertices with

distance no more than k/2 on this n-vertex cycle, where k is even. For example, graphs G4
8 and G6

8 are
depicted in Fig. 7.

Figure 7. Graphs G4
8 and G6

8.
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Theorem 4.12 ( [28]). Let G be a k-connected graph on n vertices with n > k + 1. If k is even, then

ξd(G) 6 n

(
n+

k

2
− 1

)⌊
n+ k − 2

k

⌋2
− kn

2

⌊
n+ k − 2

k

⌋3
.

Moreover, the bound is best possible when the graph is Gk
n.

Proof. Choose any vertex v ∈ VG and let ε be the eccentricity of v. Let Vi = {x : dG(v, x) = i} and put
ai = |Vi| for i ∈ {0, 1, 2, . . . , ε}. We can see that ai > k for every i = 1, 2, . . . , ε− 1. As we have

DG(v) = 1a1 + 2a2 + · · ·+ εaε,

we need to maximize the last sum under the constraints

a1 + a2 + · · ·+ aε = n− 1, a1, a2, . . . , aε−1 > k, aε > 1.

Thus, we have

DG(v) = 1a1 + 2a2 + · · ·+ εaε 6 (1 + 2 + · · ·+ ε− 1)k + ε(n− 1− k(ε− 1)) (6)

= (n+
k

2
− 1)ε− k

2
ε2,

where the equality in (6) holds if and only if a1 = a2 = · · · = aε−1 = k, aε = n− 1− k(ε− 1) > 1.

From the above discussion, we obtain

ξd(G) =
∑

x∈VG

εG(x)DG(x)

6
∑

x∈VG

ε

[
(n+

k

2
− 1)ε− k

2
ε2
]

(7)

= n(n+
k

2
− 1)ε2 − kn

2
ε3,

where the inequality of (7) follows by (6).

Let f = n(n+ k
2
− 1)x2 − kn

2
x3 be a real function in x. By a direct derivation on f , we have

f ′(x) = nx

[
2(n+

k

2
− 1)− 3k

2
x

]
.

It is easy to see that f is decreasing when x 6 0 or x > 4n+2k−4
3k

and increasing when 0 6 x 6 4n+2k−4
3k

.

As 1 6 ε 6 n+k−2
k

and 4n+2k−4
3k

> n+k−2
k

, we have

ξd(G) 6 n(n+
k

2
− 1)

⌊
n+ k − 2

k

⌋2
− kn

2

⌊
n+ k − 2

k

⌋3
, (8)

where the equality of (8) holds if and only if a1 = a2 = · · · = aε−1 = k, ε = bn+k−2
k

c for each vertex of
G, that is, G ∼= Gk

n.
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Next, we consider the extremal bipartite graphs with a given vertex connectivity. We define a bipartite
graph Os∨1(Kn1,n2∪Km1,m2), where ∪ is the union of two graphs, Os (s > 1) is an empty graph of order
s and ∨1 is a graph operation that joins all the vertices in Os to the vertices belonging to the partitions
of cardinality n1 in Kn1,n2 and m1 in Km1,m2 , respectively. In the rest of this subsection, K1 may be
regarded as K1,0.

Lemma 4.13 ( [29]). If 3p < 7q + 6s + 1 and p > s, then ξd(Os ∨1 (K1 ∪ Kp,q)) > ξd(Os ∨1 (K1 ∪
Kp+1,q−1)).

Lemma 4.14 ( [29]). If p > q > 1, then ξd(Os ∨1 (K1 ∪Kq,p)) > ξd(Os ∨1 (K1 ∪Kp,q)) with equality

if and only if p = q.

Lemma 4.15 ( [29]). If 3p > 7q + 6s + 11 and p > s, q > 1, then ξd(Os ∨1 (K1 ∪Kp,q)) > ξd(Os ∨1

(K1 ∪Kp−1,q+1)).

Lemma 4.16 ( [29]). If 2 6 s 6 bn−12
8

c, then ξd(Ks,n−s) > ξd(Os ∨1 (K1 ∪Kn−s−2,1)).

For convenience, let C s
n be the class of connected n-vertex bipartite graphs with connectivity s.

Lemma 4.17 ( [29]). If G ∈ C s
n and U is a vertex-cut of order s in G such that G−U has two nontrivial

components, then G cannot be the graph with the minimal EDS among C s
n .

Theorem 4.18 ( [29]). Let G be in C s
n with vertex-cut U satisfying |U | = s and having the minimal EDS.

(i) If all the components of G− U are singletons and n−12
8

6 s 6 bn
2
c, then G ∼= Ks,n−s.

(ii) If G−U contains a non-trivial component, then G ∼= Os ∨1 (K1 ∪Kp,q) for some p and q, where

p+ q = n− s− 1. In particular,

(a) 2 6 s < n−12
8

and p < 7n−s−6
10

, one has G ∼= G∗
1;

(b) 2 6 s < n−12
8

and 7n−s−6
10

6 p 6 7n−s+4
10

, one has G ∼= G∗
1 or G∗

2 if 10|(7n − s − 6) and

G ∼= G∗
2 if 10 - (7n− s− 6);

(c) For 2 6 s < n−12
8

and p > 7n−s+4
10

, one has G ∼= G∗
2;

(d) For n−12
8

6 s < bn
2
c, one has G ∼= G∗

1 or G∗
2,

Figure 8. Graphs G∗
1, G

∗
2 used in Theorem 4.18.

where G∗
1 and G∗

2 are depicted in Fig. 8.



223

4.4 Bounds involving the matching number

Ilić, Yu and Feng [26] determined the graphs with the minimum EDS with given matching number. Li et
al. [30] characterized the trees with the minimum and second minimum EDS among all the n-vertex trees
with given matching number. Miao et al. [31] determined the trees having the maximum EDS among the
n-vertex trees with given matching number. Li, Wu and Sun [29] characterized the sharp lower bound
on the EDS in the class of all connected bipartite graphs with given matching number.

We denote by Tn,µ the tree obtained from the star graph Sn−µ+1 by attaching a pendant edge to each
of certain µ − 1 non-central vertices of Sn−µ+1. It is easy to see that Tn,µ contains a µ-matching. If
n = 2µ, then it has a perfect matching. We denote by T ′

2µ,µ the tree obtained from T2µ−2,µ−1 by attaching
a P3 to a vertex of degree 2 in T2µ−2,µ−1. Graphs Tn,µ and T ′

2µ,µ are depicted in Fig. 9.

Figure 9. Graphs Tn,µ and T ′
2µ,µ with some vertices labeled.

Theorem 4.19 ( [26]). Let G be a connected graph of order n with matching number µ, 2 6 µ 6 bn
2
c.

Let b = 1
20
(9 + 5n+

√
(9 + 5n)2 + 40(1− 5n)).

(i) If µ = bn
2
c, then ξd(G) > n(n− 1) with equality if and only if G ∼= Kn;

(ii) If b < µ 6 bn
2
c − 1, then ξd(G) > 4n2 − 9n − 8µ2 + 12µ + 1 with equality if and only if

G ∼= K1 ⊕ (K2µ−1 ∪Kn−2µ);

(iii) If µ = b, then ξd(G) > 4n2 − 9n− 8µ2 + 12µ+ 1 = 4n2 − 5nµ− 4n+ 2µ2 + 3µ with equality

if and only if G ∼= K1 ⊕ (K2µ−1 ∪Kn−2µ), or G ∼= Kµ ⊕Kn−µ;

(iv) If 2 6 µ < b, then ξd(G) > 4n2−5nµ−4n+2µ2+3µ with equality if and only if G ∼= Kµ⊕Kn−µ.

Lemma 4.20 ( [19]). Let T be a tree with n (n > 2) vertices and with a perfect matching. Then T has

at least two pendant vertices such that they are adjacent to vertices of degree 2, respectively.

Lemma 4.21 ( [19]). Let T be an n-vertex tree with a µ-matching, and n = 2µ + 1. Then T has a

pendant vertex which is adjacent to a vertex of degree 2.

Lemma 4.22 ( [4, 19]). Let T be an n-vertex tree with a µ-matching where n > 2µ. Then there is a

µ-matching M and a pendant vertex v such that M does not saturate v.

Theorem 4.23 ( [30]). Let T ∈ T2µ,µ. Then ξd(T ) > 43µ2 − 72µ+ 34. The equality holds if and only if

T ∼= T2µ,µ, where T2µ,µ is depicted in Fig. 9.

Theorem 4.24 ( [30]). Let T be the tree in T2µ,µ \{T2µ,µ}. Then ξd(T ) > 55µ2−66µ−52. The equality

holds if and only if T ∼= T ′
2µ,µ, where T ′

2µ,µ is depicted in Fig. 9.
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Theorem 4.25 ( [30]). Let T be an n-vertex (n > 2µ) tree with a µ-matching. Then

ξd(T ) > 6n2 + µ2 + 9µn− 22n− 28µ+ 34

and the equality holds if and only if T ∼= Tn,µ, where Tn,µ is depicted in Fig. 9.

Theorem 4.26 ( [30]). Let T be the tree in Tn,µ \ {Tn,µ} (n > 2µ > 6). Then

ξd(T ) > 6n2 + µ2 + 9µn− 13n− 26µ− 9

and the equality holds if and only if T ∼= T ′
n,µ, where T ′

n,µ = Tn,µ − uq + pq and Tn,µ is depicted in Fig.

9.

Theorem 4.27 ( [31]). Among all the trees of order n with matching number µ, the tree Pl(a, b) has the

maximum EDS, where l = 2µ− 1 and 0 6 b− a 6 1.

Let A µ
n be the class of all connected bipartite graphs of order n with matching number µ.

Theorem 4.28 ( [29]). Let G = (U,W ) ∈ A µ
n .

(i) If µ = 1, then ξd(G) = ξd(K1,n−1) = 4n2 − 9n+ 5;

(ii) If µ > 2, then ξd(G) > 4n2 + 4µ2 − 4nµ− 4n with equality if and only if G ∼= Kµ,n−µ.

4.5 Bounds on EDS involving the independence number

Ilić, Yu and Feng [26] characterized the graphs having the minimum EDS of order n with the indepen-
dence number α. Miao et al. [31] determined the trees having the maximum and minimum EDS among
the n-vertex trees with independence number α.

Theorem 4.29 ( [26]). Let G be a connected graph of order n with independence number α. Then

ξd(G) > n2 + (α− 1)n+ 2α2 − 3α

with equality if and only if G ∼= Kα ⊕Kn−α.

Theorem 4.30 ( [31]). Among all the trees of order n and with independence number α, the tree Tn,n−α

has the minimum EDS.

Theorem 4.31 ( [31]). Among all trees of order n and with independence number α, the tree Pl(a, b)

has the maximum EDS, where l = 2(n− α)− 1 and 0 6 b− a 6 1.

Combining with Theorems 4.30 and 4.31, we have the following corollary.

Corollary 4.32. Let G be a connected graph of order n with independence number α. Then

ξd(Kα ⊕Kn−α) 6 ξd(G) 6 ξd(Pl(a, b)).

The left equality attains if and only if G ∼= Kα ⊕ Kn−α, and the right equality attains if and only if

G ∼= Pl(a, b).
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4.6 Bounds on EDS involving the domination number

Geng, Li and Zhang [15] characterized the tree among n-vertex trees with domination number γ having
the minimum EDS and they also determined the graph among n-vertex trees with domination number γ
satisfying n = kγ having the maximum EDS, k = 2, n/3, n/2. Miao et al. [31] characterized the tree
having the maximum EDS among n-vertex trees with domination number γ = 3.

For convenience, let Tn,γ be the set of all n-vertex trees with domination number γ.

Lemma 4.33 ( [15]). If T ′ ∈ Tn,γ has the minimum EDS, then we have γ(T ′) = β(T ′) = γ.

Combining Theorem 4.25 and Lemma 4.33, the following is obvious.

Theorem 4.34 ( [15]). For any tree T ∈ Tn,γ , we have ξd(T ) > 6n2 + γ2 +9γn− 22n− 28γ +34. The

equality holds if and only if T ∼= Tn,γ .

Lemma 4.35 ( [11]). Let T be a tree of order n. Then W (Sn) 6 W (T ) 6 W (Pn). The left equality

holds if and only if T ∼= Sn, and the right equality holds if and only if T ∼= Pn.

The corona of two graphs G1 and G2, introduced in [14], is a new graph G1 ◦G2 obtained from one
copy of G1 and |VG1| copies of G2 such that the ith vertex of G1 is adjacent to every vertex in the ith

copy of G2. As an example, the corona G ◦K1 is a graph obtained from attaching a leaf to each vertex
of G. In particular, for a positive integer p, we denote by G(p) the graph obtained by attaching p leaves
to every vertex of G. Note that G(p) has (p+ 1)n vertices and G ◦K1 = G(1).

Lemma 4.36 ( [15]). Let T be a tree of order n and T (m) be the graph as defined above. Then ξd(S
(m)
n ) 6

ξd(T (m)) 6 ξd(P
(m)
n ). The left equality holds if and only if T ∼= Sn, and the right equality holds if and

only if T ∼= Pn.

Lemma 4.37 ( [13, 39]). If n = 2γ, then a tree T belongs to Tn,γ if and only if there exists a tree H of

order γ such that T = H ◦K1.

Theorem 4.38 ( [15]). Among all the trees in Tn,n
2
, the tree Pn

2
◦K1 has the maximum EDS.

Proof. By Lemma 4.37, any tree in Tn,n
2

must be of the form H ◦K1 where H is a tree of order n
2
= γ.

Taking m = 1 in Lemma 4.36 implies the result immediately.

Theorem 4.39 ( [15]). Among all the trees in Tn,dn
3
e with n > 4, the tree Pn has the maximum EDS.

Lemma 4.40 ( [15]). ξd(Pl(1, n− l − 1)) < ξd(Pl(2, n− l − 2)) < · · · < ξd(Pl(bn−l
2
c, dn−l

2
e)).

Theorem 4.41 ( [15]). Among all the trees in Tn,2 with n > 4, the tree P4(bn−4
2
c, dn−4

2
e) has the maxi-

mum EDS.

Proof. In view of Theorem 4.39, the result holds for n = 4, 5, 6. So in what follows, we only consider
the case for n > 7. Assume that T1 ∈ Tn,2 has the maximum EDS and S = {w1, w2} is a dominating set
of T1. Now we show the following two claims:
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Claim 1. w1 is not adjacent to w2 .

Proof of Claim 1. If not, then T1 must be of the form P2(a, b) with a+ b = n−2 and a 6 b. By Lemma
4.40, we have b− a 6 1. That is to say, T1

∼= P2(bn−2
2
c, dn−2

2
e). Note that n−2

2
> 5

2
> 2. After running

the converse of e.g.t. on the edge w1w2 of T1, we obtain a new tree T2
∼= P3(bn−2

2
c, dn−2

2
e − 1) which

still belongs to Tn,2. By Theorem 2.8, we have ξd(T2) > ξd(T1), which contradicts the choice of T1.

Claim 2. dT1(w1, w2) = 3.

Proof of Claim 2. From Claim 1, we have dT1(w1, w2) > 2. If dT1(w1, w2) > 4, then there exists at
least one vertex x on the shortest path between w1 and w2 such that x can not be dominated by the two
vertices w1 and w2. This contradicts the fact that T1 ∈ Tn,2. Then we get 2 6 dT1(w1, w2) 6 3. If
dT1(w1, w2) = 2, then we find that T1

∼= P3(bn−3
2
c, dn−3

2
e) by Lemma 4.40. Assume that the common

neighbor of w1 and w2 is w0. Note that n−3
2

> 2 > 1. By running the converse of e.g.t. on the edge w0w1

or w0w2, in view of Theorem 2.8, we get a new tree of the form P4(a, b) with a + b = n − 4, which is
still in Tn,2 but has a larger EDS. This is impossible because of the maximality of ξd(T1), as desired.

By Claims 1 and 2, T1 must be of the form P4(a, b) with a+b = n−4. By Lemma 4.40, this theorem
follows immediately.

Theorem 4.42 ( [31]). Among Tn,3 with n > 10, P7(bn−7
2
c, dn−7

2
e) maximizes the EDS.

4.7 Bounds on EDS involving the diameter

Let T d
n be the set of all n-vertex trees of diameter d. Yu, Feng and Illić [40] that Cn,d is unique tree in

T d
n with the minimum EDS. As a consequence, they determined the n-vertex trees with minimum and

second minimum EDS. Li et al. [30] characterized the extremal trees with the second minimum EDS
among the n-vertex trees of a given diameter. Li and Wu [28] characterized the n-vertex graphs with
diameter d having minimum EDS. Li, Wu and Sun [29] considered the same problem in the class of all
the connected bipartite graphs of odd diameter d.

Given a positive integer t, let Cd(t) be the tree obtained from Cn−t,d and St+1 by identifying a pendant
vertex, say u, in the neighborhood of vbd/2c with the center of the star St+1.

Theorem 4.43 ( [40]). Among trees on n vertices and diameter d, caterpillar Cn,d has the minimal

eccentric distance sum1,

ξd(Cn,d) =

{
− 7

96
d4 + (n

3
− 17

24
)d3 + (n

4
+ 7

24
)d2 + (n2 − 23

6
n+ 23

6
)d+ 2n2 − 5n+ 3, if d is even;

− 7
96
d4 + (n

3
− 5

6
)d3 + (3n

8
+ 11

48
)d2 + (n2 − 29

6
n+ 29

6
)d+ 3n2 − 55

8
n+ 123

32
, if d is odd.

Theorem 4.44 ( [30]). C ′
n,d (d > 3) has the second minimal eccentric distance sum in T d

n ,

ξd(C ′
n,d) =

{
− 7

96
d4 + (n

3
− 17

24
)d3 + (n

4
− 11

24
)d2 + (n2 − 17

6
n− 2

3
)d+ 2n2 − 4, if d is even;

− 7
96
d4 + (n

3
− 5

6
)d3 + (3n

8
− 37

48
)d2 + (n2 − 23

6
n− 1

6
)d+ 3n2 − 31

8
n− 69

32
, if d is odd.

1The value of ξd(Cn,d) in [40] is not correct. Here, we give the correct version.
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Next, we characterize the n-vertex graphs with diameter d having the minimum EDS. Clearly, Kn

(resp. Pn) is the unique graph of diameter 1 (resp. n − 1). Hence, we consider in what follows that
2 6 d 6 n− 2. In particular, if d is odd, let

G d
n := {Gn,d|Gn,d = [(d−1)/2]K1⊕Kn1+1⊕Kn2+1⊕[(d−1)/2]K1, n1 > 0, n2 > 0, n1+n2 = n−d−1}.

A bug Bugp,q1,q2 is a graph obtained from a complete graph Kp by deleting an edge uv and attaching
paths Pq1 and Pq2 at u and v, respectively. It is obvious that the number of vertices of Bugp,q1,q2 is
p+ q1 + q2 − 2. For example, Bug6,3,3 is depicted in Fig. 10.

Figure 10. Bug6,3,3.

Theorem 4.45 ( [28]). Let G be an n-vertex graph of diameter d with the minimal EDS, 2 6 d 6 n− 2.

Then G ∼= Bugn−d+2, d
2
, d
2

if d is even, and G is in G d
n otherwise.

Proof. Choose G among the n-vertex graphs with diameter d such that its EDS is as small as possi-
ble. Let x0 be a vertex of G with the maximal eccentricity d, then there exists a vertex xd such that
dG(x0, xd) = d. For convenience, let P := x0x1 . . . xd be a path of length d in G connecting x0 and xd.

Denote by Li the set of vertices at distance i from x0 for i ∈ {0, 1, . . . , d}. It is routine to check that
L0 ∪ L1 ∪ · · · ∪ Ld is the vertex partition of VG. We proceed by considering the following two facts. By
Lemma 1.1, the first fact is obvious.

Fact 1. G[Li] (resp. G[Lj−1 ∪ Lj]) induces a complete graph for i = 0, 1, . . . , d (resp. j = 1, 2, . . . , d).

Fact 2. Consider the vertex partition VG = L0 ∪ L1 ∪ · · · ∪ Ld of G.

(i) For even d, if d = 2, then |L0| = |L2| = 1 and |L1| = n − 2; if d > 4, then |L0| = |L1| = · · · =
|L d

2
−1| = |L d

2
+1| = · · · = |Ld−1| = |Ld| = 1, |L d

2
| = n− d.

(ii) For odd d, one has |L0| = |L1| = · · · = |L d−3
2
| = |L d+3

2
| = · · · = |Ld−1| = |Ld| = 1, and

|L d−1
2
|+ |L d+1

2
| = n− d+ 1.

Proof of Fact 2. (i) It is routine to check that |L0| = |Ld| = 1. Hence, if d = 2, then |L1| = n − 2. In
what follows we only show that |L1| = 1 for diameter d > 4 holds.

In fact, if |L1| > 2, then choose u ∈ L1 \ {x1} and let G′ = G − ux0 + {ux : x ∈ L3}. Then,
L0 ∪ (L1 \ {u}) ∪ (L2 ∪ {u}) ∪ L3 ∪ · · · ∪ Ld is the vertex partition of VG′ . By Fact 1 and the choice of
G, we know that G′[Li] for i ∈ {0, 1, . . . d} and G′[Li−1 ∪ Li] for i ∈ {1, 2, . . . , d} induce a complete
subgraph.
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By the structure of G and G′, we obtain that εG(u) = d− 1, εG′(u) = d− 2, and εG(x) = εG′(x) for
all x ∈ VG \ {u}. And we have

DG(x0) = DG′(x0)− 1, DG(u) = DG′(u)− 1 +
d∑

i=3

|Li|,

DG(x) = DG′(x), for each x ∈ (L1 \ {u}) ∪ L2,

DG(x) = DG′(x) + 1, for each x ∈ L3 ∪ . . . ∪ Ld.

Hence, by the definition of the EDS, we have

ξd(G)− ξd(G′) =
∑

x∈VG

εG(x)DG(x)−
∑

x∈VG′

εG′(x)DG′(x)

= εG(x0)(DG(x0)−DG′(x0)) +
∑

x∈L1\{u}∪L2

εG(x)(DG(x)−DG′(x))

+εG(u)DG(u)− εG′(u)DG′(u) +
∑

x∈L3∪···∪Ld

εG(x)(DG(x)−DG′(x))

> −d+ 0 + (d− 2)

(
−1 +

d∑

i=3

|Li|
)

+
∑

x∈L3∪···∪Ld

εG(x) (9)

= (d− 2)

(
d∑

i=3

|Li| − 1

)
+

∑

x∈L3∪···∪Ld−1

εG(x) > 0 , (10)

where the inequality in (9) follows by εG(u) = d − 1 > εG′(u) = d − 2, whereas the inequality
in (10) holds by d > 4, |Li| > 1 for i ∈ {3, 4, . . . , d} and εG(x) > 2 for any x ∈ L3 ∪ · · · ∪ Ld.

Hence, ξd(G) > ξd(G′), a contradiction. Therefore, |L1| = 1. By a similar discussion, we may also
show that |L2| = · · · = |L d

2
−1| = |L d

2
+1| = · · · = |Ld−1| = 1, we omit the procedure here. As

|L0| = |L1| = · · · = |L d
2
−1| = |L d

2
+1| = · · · = |Ld−1| = |Ld| = 1, it is easy to see that |L d

2
| = n− d.

(ii) This is proved by an argument analogous to that used in (i), which is omitted here. Hence,
G ∈ G d

n .

Now we come back to show our results.
If d is even, by Facts 1 and 2(i), we know that G is just the bug Bugn−d+2, d

2
, d
2
, as desired. If d is odd,

by Facts 1 and 2(ii), the graph G is in the set G d
n . In what follows, we shall show that each graph in G d

n

attains the minimum EDS by proving ξd(G1) = ξd(G2) for any graphs G1, G2 in G d
n .

Let G1 and G2 be graphs in G d
n , where G1 = [d−1

2
]K1⊕Kn1+1⊕Kn2+1⊕[d−1

2
]K1 and G2 = [d−1

2
]K1⊕

Kn3+1⊕K1⊕ [d−1
2
]K1, satisfying n1 > 0, n2 > 0, n3 > 0. It is easy to see that n3 = n1+n2 = n−d−1.

Let {x0} ∪ {x1} ∪ · · · ∪ {x d−3
2
} ∪ L d−1

2
∪ L d+1

2
∪ {x d+3

2
} ∪ · · · ∪ {xd} be the vertex partition of VG1 as

previously discussed. Then G2 can be obtained from G1 by the following graph transformation:

G2 = G1 − {ux d+3
2

: u ∈ L d+1
2

\ {x d+1
2
}}+ {ux d−3

2
: u ∈ L d+1

2
\ {x d+1

2
}}.

Then {x0}∪{x1}∪· · ·∪{x d−3
2
}∪ (L d−1

2
∪ (L d+1

2
\{x d+1

2
}))∪{x d+1

2
}∪{x d+3

2
}∪· · ·∪{xd} is the vertex

partition of VG2 . Compared the structure of G1 with G2, one has εG1(x) = εG2(x), for each x ∈ VG1 .
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Furthermore,

DG1(x) = DG2(x) + n2, for each x ∈ {x0} ∪ · · · ∪ {x d−3
2
},

DG1(x) = DG2(x)− n2, for each x ∈ {x d+3
2
} ∪ · · · ∪ {xd},

which depends on the equation n1 + n2 = n3. By direct calculation, one has DG1(x) = n + d2−2d−3
4

,

DG2(x) = n+ d2−2d−3
4

for each x ∈ L d−1
2

∪ L d−1
2
. Thus, DG1(x) = DG2(x) for each x ∈ L d−1

2
∪ L d+1

2
.

By the definition of the EDS, one has

ξd(G1)− ξd(G2) =
∑

x∈L0∪···∪L d−3
2

(εG1(x)DG1(x)− εG2(x)DG2(x)) +
∑

x∈L d+3
2

∪···∪Ld

(εG1(x)DG1(x)

−εG2(x)DG2(x)) +
∑

x∈L d−1
2

εG1(x)DG1(x) +
∑

x∈L d+1
2

εG1(x)DG1(x)

−
∑

x∈L d−1
2

εG2(x)DG2(x)−
∑

x∈L d+1
2

εG2(x)DG2(x)

=




∑

x∈L0∪...∪L d−3
2

εG1(x) · n2 +
∑

x∈L d+3
2

∪···∪Ld

εG1(x) · (−n2)




+
d+ 1

2
·
(
n+

d2 − 2d− 3

4

)
· ((n1 + 1) + (n2 + 1)− (n3 + 1)− 1) = 0 .

Hence, ξd(G1) = ξd(G2), which means that every graph in G d
n attains the minimum EDS for odd d, as

desired.

This completes the proof.

Let Bd
n be the class of all connected bipartite graphs of order n with diameter d. Now we consider the

graphs in Bd
n having the minimum EDS for odd d. For each member in Bd

n, assume that P = v0v1 . . . vd

is one of its longest paths. Then for any G = (VG, EG) in Bd
n, there is a partition V0, V1, . . . , Vd of VG

such that |V0| = 1 with d(v0, v) = i for each vertex v ∈ Vi (i = 0, 1, 2, . . . , d). We call Vi a block of VG.
Two blocks Vi, Vj of VG are adjacent if |i− j| = 1.

Lemma 4.46 ( [36]). For any graph G ∈ Bd
n with the above partition of VG, G[Vi] induces an empty

graph (i.e., containing no edge) for each i ∈ {0, 1, . . . , d}.

Given integers n, d with 3 6 d 6 n− 1, define a path-complete bipartite graph as follows:

G(n, d) =

[
d− 1

2

]
K1 ⊕Kn1 ⊕Kn2 ⊕

[
d− 1

2

]
K1,

where n1 = bn−d+1
2

c and n2 = dn−d+1
2

e.

Theorem 4.47 ( [29]). Let G be the graph in Bd
n with the minimum EDS for odd d > 3. Then G ∼=

G(n, d), where G(n, d) is defined as above.
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4.8 Bounds on EDS involving the number of pendant vertices

Let T k
n be the set of all n-vertex trees with k leaves. Geng, Li and Zhang [15] determined the trees with

the minimum and the maximum EDS among the n-vertex trees each of which contains k leaves. Hua,
Zhang and Xu [22] characterized the graph with k pendant edges having the minimum EDS. Note that
there is just one tree for k = n− 1 or 2, hence in what follows we consider 3 6 k 6 n− 2.

Theorem 4.48 ( [15]). Among T k
n , the balanced spider S(dn− 1

k
e, . . . , dn− 1

k
e

︸ ︷︷ ︸
r

, bn− 1

k
c, . . . , bn− 1

k
c

︸ ︷︷ ︸
k−r

)

minimizes the EDS, where n− 1 ≡ r (mod k).

Theorem 4.49 ( [15]). Let T be an n-vertex tree with k leaves, then ξd(T ) 6 ξd(Pn−k(bk
2
c, dk

2
e)) with

equality if and only if T ∼= Pn−k(bk
2
c, dk

2
e).

Proof. Let T ∗ be the n-vertex tree with k leaves which has the maximal EDS, then T ∗ is of the form
Pn−k(a, b), where a+b = k. Otherwise, by Theorem 2.2 there exists another n-vertex tree with k leaves,
say T̂ , such that ξd(T ∗) < ξd(T̂ ), a contradiction. By Lemma 4.40, among {Pn−k(a, b) : a + b =

k, a, b > 1}, only Pn−k(bk
2
c, dk

2
e) has the largest EDS. This completes the proof.

For 1 6 k 6 n− 1 (k 6= n− 2), we let Kk
n be the graph obtained by attaching k pendant edges to a

vertex of complete graph Kn−k. For the sake of consistency, if k = 0, we let K0
n = Kn.

Theorem 4.50 ( [22]). Let G be a connected graph on n vertices with k cut edges. Then

ξd(G) > 2n2 + (4k − 3)n− 2k2 − 6k + 1

with equality if and only if G ∼= Kk
n.

Theorem 4.51 ( [22]). Let G be a connected graph on n vertices with k pendant edges. Then

ξd(G) > 2n2 + (4k − 3)n− 2k2 − 6k + 1

with equality if and only if G ∼= Kk
n.

4.9 Bounds on EDS involving the (p, q)-bipartition

Let T p,q
n be the set of all n-vertex trees, each of which has a (p, q)-bipartition (p + q = n). Geng, Li

and Zhang [15] determined the trees with the first, second and third minimum EDS in T p,q
n . Note that

T 1,n−1
n contains just Sn, whereas T 2,n−2

n = {P3(a, b), a+ b = n− 3}.
By Lemmas 4.40 and Theorem 2.8, we have ξd(P3(0, n−3)) < ξd(P3(1, n−4)) < ξd(P3(2, n−5)) <

ξd(P3(3, n− 6)) < . . . < ξd(P3(bn−3
2
c, dn−3

2
e)). Hence in what follows we consider p > 3.

Note that, in Theorem 2.4, if T is in T p,q
n , it is easy to see that T ∗ is also in T p,q

n . Furthermore,
diam(T ∗) 6 diam(T ). Applying Transformation I repeatedly yields the following theorem.

Theorem 4.52 ( [15]). The tree T (p, q) is the unique tree in T p,q
n which has the minimum EDS, where

T (p, q) is depicted in Fig. 11.
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Next, we determine the unique tree with the second minimum EDS in T p,q
n . Let A = {Ts : 1 6

s 6 p−1
2
}⋃{T ′

t : 1 6 t 6 q−1
2
}, where Ts and T ′

t are depicted in Fig. 11.

Theorem 4.53 ( [15]). Among T p,q
n , T1 is the unique tree with the second minimum EDS for 3 6 p 6 q.

Proof. Choose T ∈ T p,q
n \ {T (p, q)} such that its EDS is as small as possible. Note that Transformation

II strictly decreases the EDS of trees. It is easy to see that applying Transformation II once to T , the
resultant graph is just T (p, q). Together with the definition of A we know the tree among T p,q

n with the
second minimal EDS must be in A .

Figure 11. Trees T (p, q), Ts and T ′
t

By the definition of EDS, we have

ξd(Ts) =4(p− s− 1)(1 + 2(p− s− 1) + 3(q − 1) + 4s) + 3(p− s+ 2(q − 1) + 3s)

+ 2(q + 2(p− 1)) + 3(q − 2)(1 + 2(q − 1) + 3(p− 1)) + 3(s+ 1 + 2(q − 1)

+ 3(p− s− 1)) + 4s(1 + 2s+ 3(q − 1) + 4(p− s− 1))

=6n2 + 9np− 7p2 − 22n− 4p+ 16ps− 16s2 − 16s+ 18 = f(s).

By direct verification, it follows f ′(s) = 16p− 32s− 16 = 16(p− 1− 2s) > 0, which implies f(s) is
an increasing function in s with 1 6 s 6 p−1

2
. Hence, we have

ξd(T1) < ξd(T2) < · · · < ξd(Tb p−1
2

c). (11)

Similarly, we have

ξd(T ′
t) =4(q − t− 1)(1 + 2(q − t− 1) + 3(p− 1) + 4t) + 3(q − t+ 2(p− 1) + 3t)

+ 2(p+ 2(q − 1)) + 3(p− 2)(1 + 2(p− 1) + 3(q − 1)) + 3(t+ 1 + 2(p− 1)

+ 3(q − t− 1)) + 4t(1 + 2t+ 3(p− 1) + 4(q − t− 1))

=6n2 + 9nq − 7q2 − 22n− 4q + 16qt− 16t2 − 16t+ 18 = g(t).

By direct verification, it follows g′(t) = 16q − 32t − 16 = 16(q − 1 − 2t) > 0, which implies g(t)
is an increasing function in t with 1 6 t 6 q−1

2
. Hence,

ξd(T ′
1) < ξd(T ′

2) < · · · < ξd(T ′
b q−1

2
c). (12)
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In order to characterize the tree with second minimal EDS in A , in view of (11) and (12) it suffices
to compare the EDS of T1 with that of T ′

1. On the one hand, if p = q we have T1
∼= T ′

1, our result holds
in this case. On the other hand, if p < q, by direct computing we have

ξd(T1) = 6n2 + 9np− 7p2 − 22n+ 12p− 14, ξd(T ′
1) = 6n2 + 9nq − 7q2 − 22n+ 12q − 14.

This gives that ξd(T1)− ξd(T ′
1) = 2(n+ 6)(p− q) < 0, i.e., ξd(T1) < ξd(T ′

1), as desired.

Figure 12. Trees T2, T
′
1, T̂s, T̃t and ~Tr.

Finally, we determine the tree with the third minimum EDS in T p,q
n . Let B = {T2, T

′
1}
⋃{T̂s : 1 6

s 6 p− 3}⋃{T̃t : 1 6 t 6 p− 3}⋃{~Tr : 1 6 r 6 q − 3}, where T2, T
′
1, T̂s, T̃t and ~Tr are depicted in

Fig. 12.

Theorem 4.54 ( [15]). Among T p,q
n with 4 6 p < q.

(i) If n > p− 3 +
√
p2 + 9p− 23, then T2 is the unique tree with the third minimum EDS;

(ii) If n < p− 3 +
√
p2 + 9p− 23, then T ′

1 is the unique tree with the third minimum EDS.

4.10 Bounds involving other graph invariants

Hua, Xu and Wen [21] obtained the sharp lower bound on the EDS of n-vertex cacti. The sharp lower
bounds for EDS of connected graphs in terms of Wiener index and Harary index are established in [22].
Ilić et al., [26] established various lower and upper bounds for EDS in terms of other graph invariants
including the Wiener index, the degree distance, eccentric connectivity index, chromatic number and
clique number.

A cactus is a connected graph, each of whose blocks is either a cycle or an edge. It is obvious that if
a cactus has no cycles, then it is just a tree, and if a cactus has exactly one cycle, then it is just a unicyclic
graph. Let Catn,k be the cactus obtained by introducing k independent edges among pendant vertices of
Sn.

Theorem 4.55 ( [21]). Let G be a cactus with n > 4 and k > 0 cycles. Then ξd(G) > 4n2−9n−4k+5

with equality if and only if G ∼= Catn,k.
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Theorem 4.56 ( [22]). Let G be a connected graph on n > 2 vertices. Then

ξd(G) > 4

n(n− 1)
(W (G))2

with equality if and only if G ∼= Kn.

Recall that the Harary index [6, 12, 42] is defined as H(G) =
∑

u,v∈VG

1
dG(u,v)

. By the definition of
H(G), we have W (G) > H(G), with equality if and only if G ∼= Kn. Combining the fact and Theorem
4.56, the next corollary follows directly.

Corollary 4.57 ( [22]). Let G be a connected graph on n > 2 vertices. Then

ξd(G) > 4

n(n− 1)
(H(G))2

with equality if and only if G ∼= Kn.

Using simple inequality r(G) 6 εG(v) 6 d(G) and
∑

v∈VG
DG(v) = 2W (G), Illić, Yu and Feng [26]

obtained the following result.

Theorem 4.58 ( [26]). Let G be a connected graph with radius r(G) and diameter d(G). Then

2W (G) · r(G) 6 ξd(G) 6 2W (G) · d(G)

with equality if and only if G is a self-centered graph.

Let Kn − ke be the graph formed by deleting k (k = 1, 2, . . . , bn
2
c) independent edges from the

complete graph Kn. It is easily seen that εG(v) 6 n− dG(v).

Theorem 4.59 ( [26]). Let G be a connected graph on n > 3 vertices. Then

ξd(G) 6 2n ·W (G)−DD(G)

with equality if and only if G ∼= Kn − ke for k = 0, 1, . . . , bn
2
c or G ∼= P4.

Note that the relation DG(v) > dG(v) and the equality holds if and only if εG(v) = 1 and dG(v) =

n− 1. Hence, the next result follows.

Theorem 4.60 ( [26]). Let G be a connected graph on n > 3 vertices. Then ξc(G) > ξd(Kn) with

equality if and only if G ∼= Kn.

Let Tn,k be the Turán graph which is a complete k-partite graph on n vertices whose partite sets differ
in size by at most one. The famous graph appears in many extremal graph theory problems [2, 34, 38].

Theorem 4.61 ( [26]). Let G be a connected graph of order n with chromatic number χ. Assume that

n = χs+ r with 0 6 r < χ. Then

ξd(G) > 2(n2 + (n+ r − χ)s− n)

with equality if and only if G ∼= Tn,χ.
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The clique number of a graph G is the size of a maximal complete subgraph of G and it is denoted
as ω(G). The kite K(n, k) is obtained from a complete Kk and a path Pn−k+1, by joining one of the
end vertices of Pn−k+1 to one vertex of Kk (see Fig. 13). An asymptotically sharp upper bound for the
eccentric connectivity index is derived independently in [9, 32], with the extremal graph K(n, bn/3c).
Furthermore, it is shown that the eccentric connectivity index grows no faster than a cubic polynomial
in the number of vertices. Motivated by these facts, Yu, Feng and Illić [26] characterized the n-vertex
graph with clique number having the maximum EDS.

Figure 13. The Kite K(12, 8).

Theorem 4.62 ( [26]). Let G be a connected graph of order n with clique number ω. Then

ξd(G) 6 ξd(K(n, ω))

with equality if and only if G ∼= K(n, ω).

5. Conclusion

We conclude with several open problems and conjectures.

Problem 5.1. How to determine the sharp upper bound on EDS of several graphs including bipartite

graphs, triangle-free graphs, planar graphs and outerplanar graphs?

Problem 5.2. How to determine the graph with maximal EDS among n-vertex graphs with a given

edge-connectivity?

Problem 5.3 ( [28]). Let G be a k-connected graph on n vertices with n > k + 1. If k is odd, how to

determine the sharp upper bound on the EDS of G?

Problem 5.4 ( [29]). How to determine the graph with minimum EDS among n-vertex bipartite graphs

with a given even diameter?

Problem 5.5 ( [29]). How to determine the graph with minimum EDS among n-vertex bipartite graphs

with a given radius?

Problem 5.6 ( [29]). How to determine the graph with minimum EDS among n-vertex bipartite graphs

with a given edge-connectivity?
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Problem 5.7. How to determine the tree with the minimum EDS in T p,q
n ?

Problem 5.8. Let G be a connected triangle-free graph on n > 5 vertices. If Ḡ is connected, how to

determine the sharp upper bound on the Nordhaus–Gaddum type relations for the EDS of G?

Figure 14. Trees T ∗ with n = 22 and ∆ = 4.

Conjecture 5.9 ( [31]). Among T n,∆, T ∗ minimizes the EDS, where T ∗ is a Volkmann tree. When

n = 22, ∆ = 4, T ∗ is depicted in Fig. 14.

Conjecture 5.10 ( [31]). Among Tn,γ with 4 6 γ 6 n
3
, Pα(bn−α

2
c, dn−α

2
e) maximizes the EDS, where

α = 3(γ − 1) + 1.
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[24] A. Ilić, I. Gutman, Eccentric connectivity index of chemical trees, MATCH Commun. Math. Com-
put. Chem. 65 (2011) 731–744.
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1. Introduction

Our main concern are hexagonal systems, natural graph representations of benzenoid hydrocarbons
which are of great importance in organic chemistry. For the definition of hexagonal systems and de-
tails of their theory we refer to [13]. We denote by HSh the set of hexagonal systems with h hexagons.
The hexagons of a hexagonal system can be classified according to the number and position of edges
shared with the adjacent hexagons. Figure 1 shows the 12 different types of hexagons that can occur in
a hexagonal system.

When going along the perimeter of a hexagonal system, then certain features may be encountered,
called [13] fissure, bay, cove, and fjord (see Figure 1). These, respectively, correspond to vertex degree
sequences

(2, 3, 2) , (2, 3, 3, 2) , (2, 3, 3, 3, 2) , (2, 3, 3, 3, 3, 2) (1)
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The number of fissures, bays, coves, and fjords of a hexagonal system H are denoted by f =

f (H) , B = B (H) , C = C (H) , and F = F (H), respectively. The parameter

r = r (H) = f +B + C + F

was introduced in [20], and is called the number of inlets of H .

Figure 1. Types of hexagons in a hexagonal system. Some structural features on the perimeter.

Lemma 1.1. [20] Let H be a hexagonal system with n vertices, h hexagons, r inlets and mij edges
between vertices of degree i and degree j. Then

m22 = n− 2h− r + 2 (2)
m23 = 2r (3)
m33 = 3h− r − 3 . (4)

Proof. Relation (3) follows directly from the definition of an inlet, namely an inlet corresponds to a
sequence of vertices on the perimeter, of which the first and the last are 2-vertices and all other are
3-vertices. From the fact that the number of 3-vertices in H is

n3 = 2(h− 1)

it follows
m23 + 2m33 = 3n3 = 6h− 6

which combined with (3) results in (4). In hexagonal systems, m22 +m23 +m33 is just the total number
of edges, m , known to conform to the relation

m = n+ h− 1 .

Substituting the relations (3) and (4) into

m22 +m23 +m33 = n+ h− 1

one readily obtains (2).

Another quantity much studied in the theory of hexagonal systems [13] is the number of bay regions
b = b (H) defined as

b = B + 2C + 3F.

It is easy to recognize that b counts the number of edges on the perimeter, connecting two vertices of
degree 3. These two quantities are related as follows :
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Lemma 1.2. [2] Let H be a hexagonal system with h hexagons, r inlets, b number of bay regions and

ni internal vertices. Then

r = 2 (h− 1)− (b+ ni) (5)

Proof. It is well-known [13] that
m23 = 4h− 4− 2b− 2ni.

From (3) we know that m23 = 2r which yields (5).

The number of bay regions b and the number of inlets r are two parameters related in a simple
manner to the structure of a hexagonal system, which play a significant role in theory of vertex-degree-
based topological indices (molecular descriptors). Recall that a vertex-degree-based topological index,
denoted by TI , is defined from a set of nonnegative real numbers {ϕij}, where 1 ≤ i ≤ j ≤ n− 1, as

TI (G) =
∑

1≤i≤j≤n−1

mijϕij (6)

where G is a graph (i.e. undirected graph) with n vertices and mij = mij (G) the number of ij-edges,
i.e. the number of edges in G with end vertices of degree i and j ( [10], [14], [15], [17], [24]). When
ϕij = 1√

ij
we obtain the Randić index ( [28]), one of the most widely used in applications to physical

and chemical properties ( [7], [18], [19], [29]). Due to the success of the Randić index many other
topological indices appeared in the mathematical-chemistry literature, which are particular cases of the
formula given in (6). For instance, the second Zagreb index is obtained by setting ϕij = ij [11], in the
atom-bond connectivity index ϕij =

√
i+j−2

ij
[8], in the geometric-arithmetic index ϕij =

2
√
ij

i+j
[30], in

the sum-connectivity index ϕij = 1√
i+j

[32], in the augmented Zagreb index ϕij = (ij)3

(i+j−2)3
[9] and in

the harmonic index ϕij =
2

i+j
[31], just to mention the most important ones.

Since any hexagonal system has only vertices of degree 2 and 3, the general expression for its vertex-
degree-based topological index reads

TI (H) = m22ϕ22 +m23ϕ23 +m33ϕ33. (7)

From the relations (2), (3),(4) and the well-known relation [13]

n = 4h+ 2− ni

we deduce from (7) that for every S, U ∈ HSh

TI (S)− TI (U) = q [r (S)− r (U)] + ϕ22 [ni (U)− ni (S)] (8)

where
q = 2ϕ23 − ϕ22 − ϕ33. (9)

By (5) we can also express the variation of TI in terms of the number of bay regions

TI (S)− TI (U) = q [b (U)− b (S)] + (q + ϕ22) [ni (U)− ni (S)] (10)
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It becomes clear from the expressions (8) and (10) that the extremal values of TI depend on the extremal
values of r, b and ni.

Our main interest in this chapter is to find extremal values of the parameters r and b over significant
classes of hexagonal systems, such as catacondensed hexagonal systems, pericondensed hexagonal sys-
tems, or convex hexagonal systems, and then use relations (8) and (10) to deduce extremal values of a
vertex-degree-based topological index TI over such classes.

2. Extremal values of r and b over catacondensed
hexagonal systems

Recall that W is a catacondensed hexagonal system if ni (W ) = 0, or equivalently, if W only has
A2, A3, L1 and L2 hexagons. We denote by a2 (W ) , a3 (W ) , l1 (W ) and l2 (W ) the number of A2, A3, L1

and L2 hexagons the hexagonal system W has, respectively. If it’s clear from the context we just write
a2, a3, l1 and l2. We will denote by CHSh the set of catacondensed hexagonal systems with h hexagons.

Lemma 2.1. [26] Let W ∈ CHSh. Then

m22 = a2 + 3a3 + 6

m23 = 4 (h− 1)− 2a2 − 6a3

m33 = h− 1 + 3a3 + a2

Proof. The following relations are well-known [12]

m22 = a2 + 3a3 + 6

m23 = 4l1 + 4l2 + 2a2 − 2a3 − 4 (11)

m33 = l1 + l2 + 2a2 + 4a3 − 1

Since
l1 = a3 + 2

h = l1 + l2 + a2 + a3
(12)

we deduce

l2 = h− l1 − a2 − a3

= h− (a3 + 2)− a2 − a3

= h− 2a3 − a2 − 2

Now substituting the expressions

l1 = a3 + 2

l2 = h− 2a3 − a2 − 2

in (11) gives the result.
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Figure 2. Catacondensed hexagonal system Eh when h is even (on the left) and when h is odd (on
the right).

Lemma 2.2. [26] Let h ≥ 3 and W ∈ CHSh. Then

0 ≤ a3 (W ) ≤
⌊
1

2
(h− 2)

⌋

Moreover, equality on the left is attained in hexagonal chains and the equality on the right is attained in

Eh (See Figure 2).

Proof. From the relations given in (12) we deduce

a3 =
1

2
(h− (a2 + l2 + 2)) (13)

If h is even then it follows from (13)
a3 ≤

1

2
(h− 2)

since a2 + l2 ≥ 0. If h is odd then again by (13) a2 + l2 ≥ 1, since a2 + l2 = 0 implies that a3 is not an
integer, a contradiction. Hence

a3 ≤
1

2
(h− 3)

The equality on the left is clear for hexagonal chains. On the other hand, note that a2 (Eh) = 0 =

l2 (Eh) if h is even, a2 (Eh) = 1 and l2 (Eh) = 0 if h is odd. It follows from (13) that

a3 (Eh) =

{
1
2
(h− 2) if h is even

1
2
(h− 3) if h is odd

Consider the subset CHSh,p of CHSh defined by

CHSh,p = {W ∈ CHSh : a3 (W ) = p}
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Lemma 2.3. [26] Let h ≥ 3 and 0 ≤ p ≤
⌊
1
2
(h− 2)

⌋
. If W ∈ CHSh,p then

0 ≤ a2 (W ) ≤ h− 2 (p+ 1) .

Proof. From relations (12) and the fact that l2 ≥ 0 we deduce

a2 = h− 2p− l2 − 2 ≤ h− 2 (p+ 1) .

Now we can find the minimal value of r over CHSh.

Theorem 2.4. [21] Let h ≥ 3 and W ∈ CHSh. Then
⌈
h

2
+ 1

⌉
≤ r (W ) ≤ 2 (h− 1) .

Proof. For the upper bound we use (5) and the fact that ni (W ) = 0 to deduce

r (W ) = 2 (h− 1)− b (W ) ≤ 2 (h− 1)

since b ≥ 0. For the lower bound by Lemmas 2.1, 2.3 and 2.2:

m23 (W ) = 4 (h− 1)− 2a2 − 6a3

≥ 4 (h− 1)− 2 (h− 2 (a3 + 1))− 6a3

= 2h− 2a3 ≥ 2h− 2

(⌊
1

2
(h− 2)

⌋)

= 2

⌈
h

2
+ 1

⌉
.

It follows from (3) that r (W ) ≥
⌈
h
2
+ 1
⌉
.

Note that r (Eh) =
⌈
h
2
+ 1
⌉

and r (Lh) = 2 (h− 1) (see Figure 3). Hence Theorem 2.4 states
that Eh and Lh have the minimal and maximal number of inlets, respectively, among all catacondensed
hexagonal systems with h hexagons.

Figure 3. Linear hexagonal system Lh.

The extremal values of b over CHSh can be easily deduced from Theorem 2.4.
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Theorem 2.5. Let h ≥ 3 and W ∈ CHSh. Then

0 ≤ b (W ) ≤
⌈
3

2
h− 7

2

⌉
.

Proof. By (5) and the fact that ni (W ) = 0 we deduce

b (W ) = 2 (h− 1)− r (W )

It follows from Theorem 2.4 that

0 ≤ b (W ) ≤ 2 (h− 1)−
⌈
h

2
+ 1

⌉
=

⌈
3

2
h− 7

2

⌉
.

Since b (Eh) =
⌈
3
2
h− 7

2

⌉
and b (Lh) = 0, Theorem 2.5 states that Eh and Lh have maximal and

minimal number of regions, respectively, among all catacondensed hexagonal systems with h hexagons.

From Theorems 2.4 or 2.5 we can easily deduce the extremal values of a vertex-degree-based topo-
logical index TI over CHSh. Recall that q is given by formula (9).

Theorem 2.6. Let TI be a vertex-degree topological index of the form (7). Then

1. If q = 0 then TI is constant over CHSh;

2. If q > 0 then Lh (resp. Eh) attains the maximal (resp. minimal) value of TI over CHSh;

3. If q < 0 then Eh (resp. Lh) attains the maximal (resp. minimal) value of TI over CHSh.

Proof. From (8)

TI (S)− TI (U) = q [r (S)− r (U)] ,

for all S, U ∈ CHSh. The result follows from Theorem 2.4.

The results of Theorem 2.6 were obtained in [23] using linearizing and unbranching operations in
catacondensed hexagonal systems.

3. Convex hexagonal systems with maximal number
of internal vertices

We already know by Harary-Harborth’s paper [16] that the spiral hexagonal system Sh (see Figure 4) has
the maximal value of internal vertices, among all hexagonal systems with h hexagons. More precisely,

ni (H) ≤ 2h+ 1−
⌈√

12h− 3
⌉
= ni (Sh) (14)

for every H ∈ HSh.
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Figure 4. Spiral hexagonal system Sh

Looking at the expression (10), the following question arises naturally: are there convex hexagonal
systems W ∈ HSh such that

ni (W ) = 2h+ 1−
⌈√

12h− 3
⌉
? (15)

When this occurs then we have the following result.

Theorem 3.1. [25] Let W be a convex hexagonal system with h hexagons which satisfies (15). If

−ϕ22 ≤ q ≤ 0 then W has minimal TI-value among all hexagonal systems with h hexagons.

Proof. It follows from (10) that for every S ∈ HSh

TI(S)− TI(W ) = q [−b (S)] + [ϕ22 + q]
[(

2h+ 1−
⌈√

12h− 3
⌉)

− ni (S)
]

In particular if −ϕ22 ≤ q ≤ 0, then TI(S)− TI(W ) ≥ 0 by (15) and (14).

Remark 3.2. As we can see in Table 1, all topological indices listed in the introduction except the atom-

bond-connectivity index satisfy the condition −ϕ22 ≤ q ≤ 0. So for all these indices, the minimal

TI-value is attained in W.

ij 1√
ij

2
√
ij

i+j
2

i+j
1√
i+j

(ij)3

(i+j−2)3

√
i+j−2

ij

q -1 -.0168 -.0404 -.0333 -.0138 -3.3906 .0404
ϕ22 4 .5 1 .5 .5 8 0.70

Table 1. Values of q and ϕ22 for well-known VDB topological indices.

Note that in general the spiral hexagonal system Sh satisfies

b (Sh) = 0 or b (Sh) = 1.

When h = 3k2 − 3k + 1, where k is a positive integer, then W = Sh is convex and satisfies (15). Are
there other values of h possible? We will now determine necessary and sufficient conditions for the
existence of convex hexagonal systems with maximal number of internal vertices. A convex hexagonal
system can be expressed as

H (a1, a2, a3, a4, a5, a6)
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for positive integers a1, a2, a3, a4, a5, a6 (see Figure 5).

Figure 5. The general form of a convex hexagonal system.

However, these parameters are not all mutually independent. From the fact that the sides 1 and 4 are
parallel, it follows that condition (17) must be obeyed. In a fully analogous manner we arrive also at (16)
and (18):

a1 + a2 = a4 + a5 (16)

a2 + a3 = a5 + a6 (17)

a3 + a4 = a6 + a1 (18)

Of these relations only two are linearly independent, e.g., (16) and (17), and then the values of a5 and a6

can be expressed in terms of a1, a2, a3, a4 :

a5 = a1 + a2 − a4 (19)

a6 = a3 + a4 − a1 (20)

We thus arrive at the following:

Theorem 3.3. [2] Let H = H (a1, a2, a3, a4, a5, a6) be a convex hexagonal system (see Figure 5).

Four parameters among a1, a2, a3, a4, a5, a6 fully determine H . Of these four parameters only two can

correspond to opposite sides of H . In particular, the structure of H is fully determined by a1, a2, a3, a4.

From Figure 5 one may get the impression that the shape of any convex hexagonal system has six
sides. Some noteworthy special cases need to be pointed out. These are depicted in Figure 6.
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Figure 6. Special cases of convex hexagonal systems H = H (a1, a2, a3, a4, a5, a6), when some of
the parameters ai are equal to unity. Pentagon-shaped P (a1 = 1, a2, a3, a4, a6 > 1),
quadrangle-shaped Q1 (a2 = a5 = 1, a1 = a4, a3 = a6) and Q2 (a2 = a5 = 1, a2 = a6),
triangle-shaped T (a1 = a3 = a5 = 1, a2 = a4 = a6), and linear L (a2 = a3 = a5 =
a6 = 1, a1 = a4).

In view of Theorem 3.3 we may ask how the basic structural parameters of a convex hexagonal
system are determined by the parameters a1, a2, a3, a4. A partial answer to this question is given in
Theorem 3.4.

Theorem 3.4. [2] Let H = H (a1, a2, a3, a4, a5, a6) be a convex hexagonal system (see Figure 5). Let

r (H) , h (H) , and ni (H) be the number of inlets, hexagons, and internal vertices of H . Then

r (H) = a1 + 2a2 + 2a3 + a4 − 6 (21)

h (H) = a1a3 + a1a4 + a2a3 + a2a4 − a2 − a3

−1

2
a1 (a1 + 1)− 1

2
a4 (a4 + 1) + 1 (22)

ni (H) = 2 (a1a3 + a1a4 + a2a3 + a2a4)

−a1 (a1 + 2)− a4 (a4 + 2)− 4 (a2 + a3) + 6. (23)

Proof. Eq. (21) follows from the fact that the i-th side of H has ai − 1 inlets. Therefore

r (H) = a1 + a2 + a3 + a4 + a5 + a6 − 6.

Eq. (21) is then obtained by taking into the relations (19) and (20).

Eq. (22) is deduced by counting the hexagons in the auxiliary hexagonal system depicted in Figure 7
and subtracting the number of shaded hexagons. By taking into account that a triangle-shaped hexagonal
system (T in Figure 6) of size k(k−1)

2
hexagons, and using the relations (19) and (20), after a lengthy

calculation we arrive at Eq. (22).

Eq. (23) is deduced in an analogous manner as Eq. (22), bearing in mind that a triangle-shaped
hexagonal of size k has (k − 1)2 internal vertices.
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Figure 7. An auxiliary triangle-shaped hexagonal system used in the proof of Theorem 3.4.

Now we give a characterization of convex hexagonal systems with maximal number of internal ver-
tices.

Theorem 3.5. [25] Let h be a positive integer. The following conditions are equivalent:

1. There exists a hexagonal system W with h hexagons satisfying (15);

2. There exist a set of positive integers a1, a2, a3, a4 which are solution of the system of equations

h = a1a3 + a1a4 + a2a3 + a2a4 − a2 − a3

− 1
2
a1 (a1 + 1)− 1

2
a4 (a4 + 1) + 1

⌈√
12h− 3

⌉
= a1 + 2a2 + 2a3 + a4 − 3





(24)

Proof. 1. ⇒ 2. Assume that W is a convex hexagonal system with h hexagons, satisfying (15). Let
a1, a2, a3, a4, a5, a6 be positive integers such that W = H (a1, a2, a3, a4, a5, a6).

We know from Theorem 3.4 that

h = a1a3 + a1a4 + a2a3 + a2a4 − a2 − a3

− 1

2
a1 (a1 + 1)− 1

2
a4 (a4 + 1) + 1

ni (W ) = 2 (a1a3 + a1a4 + a2a3 + a2a4)− a1 (a1 + 2) (25)

− a4 (a4 + 2)− 4 (a2 + a3) + 6 .

Substituting these expressions of h and ni(W ) back into (15) yields
⌈√

12h− 3
⌉
= a1 + 2a2 + 2a3 + a4 − 3 .
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2.⇒ 1. Conversely, if the set of positive integers a1, a2, a3, a4 is a solution of the system of equations
(24), consider the convex hexagonal system Z = H (a1, a2, a3, a4, a5, a6), where a5 and a6 are given by
(19) and (20). Again by Theorem 3.4, we have expressions for h and ni(Z) as in (25). Consequently,

2h+ 1− ni(Z) = a1 + 2a2 + 2a3 + a4 − 3 =
⌈√

12h− 3
⌉
.

Solving for ni(Z) in this relation, we deduce that

ni(Z) = 2h+ 1−
⌈√

12h− 3
⌉
.

We now show that not for every positive integer h there is a solution for the system of equations (24).
This is a consequence of our next result.

Theorem 3.6. [25] Let h be a positive integer. If the set of positive integers {a1, a2, a3, a4} is a solution

of the system of equations (24), then there exists a solution to the Diophantine equation

21x2 + 3y2 + z2 = 28H (26)

where H =
⌈√

12h− 3
⌉2 − (12h− 3).

Proof. Substituting

a2 =
1

2

⌈√
12h− 3

⌉
− a3 −

1

2
a4 −

1

2
a1 +

3

2
(27)

in the first equation of (24) we deduce that

h =
3

2
a3 +

3

2
a4 −

1

2

⌈√
12h− 3

⌉
− 1

2
a21 − a23 − a24 +

1

2
a1 a3 +

1

2
a1 a4 −

3

2
a3 a4

+
1

2
a3

⌈√
12h− 3

⌉
+

1

2
a4

⌈√
12h− 3

⌉
− 1

2

and solving for a4 in this equation it follows that

a4 =
1

4
a1 −

3

4
a3 +

1

4

⌈√
12h− 3

⌉
+

3

4
± 1

4

√
P (a1, a3) (28)

where

P (a1, a3) = −7a21 + 2a1 a3 + 2a1

⌈√
12h− 3

⌉
+ 6a1 − 7a23 + 2a3

⌈√
12h− 3

⌉
+

6a3 +
⌈√

12h− 3
⌉2

− 2
⌈√

12h− 3
⌉
− 16h+ 1 .

Since
√
P (a1, a3) ∈ Z, we may assume that P (a1, a3) = x2 for some x ∈ N. Solving for a1 we get

a1 =
1

7
a3 +

1

7

⌈√
12h− 3

⌉
+

3

7
± 1

7

√
Q (a3) (29)

where

Q (a3) = −7x2 − 48a23 + 16a3

⌈√
12h− 3

⌉
+ 48a3 + 8

⌈√
12h− 3

⌉2

− 8
⌈√

12h− 3
⌉
− 112h+ 16 .
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Since
√
Q (a3) ∈ Z, there exists an integer y ∈ N such that Q (a3) = y2. Now we solve for a3 to obtain

a3 =
1

6

⌈√
12h− 3

⌉
+

1

2
± 1

12

√
R (30)

where

R = −21x2 − 3y2 + 28

(⌈√
12h− 3

⌉2
− (12h− 3)

)
. (31)

Similarly
√
R ∈ Z and so R = z2 for z ∈ N. Hence

z2 = −21x2 − 3y2 + 28

(⌈√
12h− 3

⌉2
− (12h− 3)

)

and we are done.

Theorem 3.6 gives a method to find values of h for which there are no convex hexagonal systems
which satisfy (15).

Example 3.7. Let h be a positive integer and H as in the hypothesis of Theorem 3.6. If 28H−21x2−3y2

is not the square of an integer for every (x, y) ∈ N× N satisfying

0 ≤ x ≤
√

28H

21
and 0 ≤ y ≤

√
28H − 21x2

3
(32)

then there are no convex hexagonal systems with h hexagons satisfying (15). Using a computer is easy

to check that the first values of h are the following:

121 163 211 235 265 292 325 355 391 424
463 499 541 580 625 667 706 715 760 802
811 859 904 913 955 964 1012 1021 1066 1075
1126 1135 1183 1192 1246 1255 1306 1315 1372 1381

(33)

On the other hand, for those values of h where the Diophantine equation (26) has a solution, we were

able to find convex hexagonal systems with maximal number of vertices, using the proof of Theorem 3.6

as follows: starting from a solution x, y, z of (26), we compute R, a3, a1, a4 and a2, in this order, from

relations (31), (30), (29), (28), and (27), respectively. Then a5 and a6 are computed using equations (19)

and (20). It turns out that W = H (a1, a2, a3, a4, a5, a6) is a convex hexagonal system satisfying (15).

For instance,

h = 120 h = 5306 h = 10000
H (7, 6, 8, 6, 7, 7) H (39, 43, 42, 47, 35, 50) H (63, 60, 54, 59, 64, 50)

Now we return to the study of vertex-degree-based topological indices of hexagonal systems. If the
system of equations (24) has a solution for a positive integer h, then there exists a convex hexagonal
system W such that (15) holds, which implies by Theorem 3.1 that W has a minimal TI-value when
−ϕ22 ≤ q ≤ 0. So a question arises naturally: if (24) has no solution for certain h, which is the minimal
TI-value in the set of all hexagonal systems with h hexagons?
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Theorem 3.8. [25] Let h be a positive integer and assume that the system of equations (24) has no

solution. If −ϕ22

2
≤ q ≤ 0, then the spiral hexagonal system Sh has minimal TI-value over the set of all

hexagonal systems with h hexagons.

Proof. Since (24) has no solution, b(Sh) = 1. Let S be a hexagonal system with h hexagons. From (10)

TI(S)− TI(Sh) = q [1− b(S)] + [ϕ22 + q] [ni(Sh)− ni(S)] . (34)

We consider two cases. If b(S) = 0, then ni(Sh)− ni(S) ≥ 1 since (24) has no solution. Consequently
from (34) and the fact that −ϕ22

2
≤ q ≤ 0 we deduce

TI(S)− TI(Sh) = q + [ϕ22 + q] [ni(Sh)− ni(S)]

≥ q + [ϕ22 + q] = 2q + ϕ22 ≥ 0 .

Otherwise b(S) ≥ 1 which implies 1− b(S) ≤ 0. Since ni (Sh)− ni (S) ≥ 0 by (14) then again by (34)
and −ϕ22

2
≤ q ≤ 0 it follows that

TI (S)− TI(Sh) = q [1− b(S)] + [ϕ22 + q] [ni(Sh)− ni(S)] ≥ 0 .

Thus Sh has minimal TI-value among all hexagonal systems with h hexagons.

Example 3.9. For every value of h given in Example 3.7 (33), the spiral hexagonal system Sh has

minimal TI-value over HSh.

Remark 3.10. We can easily see that all topological indices listed in the introduction except the atom-

bond-connectivity index satisfy the condition −ϕ22

2
≤ q ≤ 0 (see Table 1).

4. Extremal values of b over hexagonal systems

For every positive integer h we can easily construct convex hexagonal systems with h hexagons (for
instance, the linear hexagonal chain Lh). These have obviously minimal number of bay regions in HSh.
So we now consider the problem of maximal number of bay regions in HSh.

Recall that every hexagonal system with h ≥ 2 hexagons is obtained from a hexagonal system with
h − 1 hexagons by adding a hexagon of type L1 (one-contact addition), or P2 (two-contact addition),
or L3 (three-contact addition), or P4 (four-contact addition) or L5 (five-contact-addition) (see [13]). In
particular, every hexagonal system has one of the mentioned hexagons: L1, P2, L3, P4 and L5. The proof
of our next result is based on this observation.

Another well-known relation [13] we will use frequently from now on is

m22 (H) = b (H) + 6. (35)

Theorem 4.1. [4] [6] Let H ∈ HSh with h ≥ 2. Then

b(H) ≤
⌈
3

2
h− 7

2

⌉
.
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Proof. The proof is by induction on h. It is easy to check the result for h = 2, 3, 4. Let h ≥ 5 and
assume that the result is true for any hexagonal system with less than h hexagons. Let H be a hexagonal
system with h hexagons. We consider several cases:

1. H contains a L3, P4 or L5 hexagon, or a P2 hexagon of the form depicted in Figure 8. In this
case we will show that there exists a (sub)hexagonal system H1 with h − 1 hexagons such that
b(H) ≤ b(H1) + 1. If this is so then by induction we easily obtain

b(H) ≤ b(H1) + 1 ≤
⌈
3

2
(h− 1)− 7

2

⌉
+ 1 ≤

⌈
3

2
h− 7

2

⌉
.

Note that in each case, splitting H into the dark shadowed (sub)hexagonal system H1 of h − 1

hexagons and the corresponding hexagon L3, P4, L5 or P2, we obtain at least five new 2-2-edges.
Hence

m22(H) ≤ m22(H1) + 6− 5 = m22(H1) + 1,

and from relation (35) we deduce
b(H) ≤ b(H1) + 1.

Figure 8. Hexagonal systems used in the proof of Theorem 4.1, case 1.

2. H contains a P2 hexagon of the form depicted in Figure 9. In this case we will show that there
exist (sub)hexagonal systems H1 and H2 of H , with h1 ≥ 2 and h2 ≥ 2 hexagons respectively,
such that h = h1 + h2 and b(H) ≤ b(H1) + b(H2) + 3. Then by induction

b(H) ≤ b(H1) + b(H2) + 3 ≤
⌈
3

2
h1 −

7

2

⌉
+

⌈
3

2
h2 −

7

2

⌉
+ 3 ≤

⌈
3

2
h− 7

2

⌉
.

Splitting H into the two hexagonal systems H1 and H2, where H1 is the dark shadowed (sub)he-
xagonal system, we obtain at least three new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,
b (H) ≤ b (H1) + b (H2) + 3.

Figure 9. Hexagonal systems used in the proof of Theorem 4.1, case 2.
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3. H contains a L1 hexagon and the hexagon adjacent to it is not A3. In this case we show that there
exist two (sub)hexagonal systems H1 and H2 of H , with h1 ≥ 2 and h2 ≥ 2 hexagons respectively,
such that h = h1 + h2 and b(H) ≤ b(H1) + b(H2) + 3 and the result follows as in part 2 of this
theorem.

Let X be the hexagon adjacent to the L1 hexagon in H . Then X must be L2, A2, P3 or L4 (see
Figure 10). In each case, we split H into the two hexagonal systems H1 and H2, where H1 is
the dark shadowed (sub)hexagonal system, obtaining at least three new 2-2-edges in H1 and H2.
Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,
b (H) ≤ b (H1) + b (H2) + 3.

Figure 10. Hexagonal systems used in the proof of Theorem 4.1, case 3.

4. H contains a A3 hexagon and X is one of the hexagons next to it which is not A3 nor L1. Then
we will show that there exist (sub)systems H1 and H2 of H , with h1 ≥ 2 and h2 ≥ 2 hexagons
respectively, such that h = h1 + h2 and b(H) ≤ b(H1) + b(H2) + 3 The result would follow as in
part 2 of this theorem.

Clearly X must be a L2, L4, A2 or P3 hexagon (see Figure 11). In each case, we split system H

into the two (sub)hexagonal systems H1 and H2, where H1 is the dark shadowed (sub)hexagonal
system, obtaining at least three new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,
b (H) ≤ b (H1) + b (H2) + 3.

Figure 11. Hexagonal systems used in the proof of Theorem 4.1, case 4.

5. Finally, all hexagons in H are L1 or A3. Then H is a catacondensed hexagonal system and the
result follows by Theorem 2.5.
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5. Extremal values of r over hexagonal systems

We first find the hexagonal system with maximal number of inlets.

Lemma 5.1. [2] Let H be a hexagonal system with h hexagons and r inlets, then r ≤ 2 (h− 1).

Proof. By (5)
r = 2 (h− 1)− (b+ ni) ≤ 2 (h− 1)

since b+ ni ≥ 0.

Note that r (Lh) = 2 (h− 1), where Lh is the linear hexagonal chain with h hexagons (see Figure
3). Hence Lemma 5.1 states that the linear hexagonal chain has the maximal number of inlets among all
hexagonal systems with h hexagons.

Now we can determine extremal values of a vertex-degree-based topological index TI over HSh.

Theorem 5.2. Let TI be a vertex-degree topological index of the form (7) and q as in formula (9). Then

1. If q = 0 then the catacondensed hexagonal systems (resp. spiral hexagonal systems) have maximal

(resp. minimal) TI-value over HSh;

2. If q > 0 then the linear hexagonal chain has maximal TI-value over HSh;

3. If q ≤ −ϕ22 then the linear hexagonal chain has minimal TI-value over HSh.

Proof. Let H be a hexagonal system with h hexagons.
1. Assume that q = 0 and let Sh be the spiral hexagonal system with h hexagons. Then by (8) and

(14)
TI (Sh)− TI (H) = ϕ22 [ni (H)− ni (Sh)] ≤ 0.

Consequently Sh has minimal TI-value. If V is a catacondensed hexagonal system then ni (V ) = 0

which implies
TI (V )− TI (H) = ϕ22 [ni (H)] ≥ 0

and so V has maximal TI-value.
2. Suppose that q > 0. We know from Lemma 5.1 that r (H) ≤ r (Lh) = 2 (h− 1). Since

ni (Lh) = 0 and ni (H) ≥ 0 it follows from (10) that

TI (Lh)− TI (H) = q [b (H)− b (Lh)] + (q + ϕ22) [ni (H)− ni (Lh)]

= q [b (H)] + (q + ϕ22) [ni (H)] ≥ 0

Thus Lh has maximal TI-value.
3. Suppose that q ≤ −ϕ22. From (10) we deduce

TI (Lh)− TI (H) = q [b (H)− b (Lh)] + (q + ϕ22) [ni (H)− ni (Lh)]

= q [b (H)] + (q + ϕ22) [ni (H)] ≤ 0.

Thus Lh has minimal TI value.
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Next we determine the minimal value of r over HSh. For each H ∈ HSh, consider the set A(H) of
all hexagonal systems with h+ 1 hexagons that contains H:

A(H) = {H ′ ∈ HSh+1 : H ⊂ H ′}.

Definition 5.3. Let H ∈ HSh. We say that H is an inlet-increasing hexagonal system if r(H) < r(H ′)

for every H ′ ∈ A(H).

The hexagonal system H1 in Figure 12 is inlet-increasing since A(H1) = {H ′
1, H

′′
2}, r(H1) = 3

and r(H ′
1) = r(H ′′

1 ) = 4. On the other hand, the hexagonal system H2 in the same figure is not inlet-
increasing since H ′

2 ∈ A(H2) and r(H2) > r(H ′
2).

Figure 12. Inlet-increasing and not inlet-increasing hexagonal systems.

Let a(H) be the number of adjacent inlets of H (i.e. pair of inlets that have a common vertex of
degree 2) introduced in [22]. Next we describe the inlets of an inlet-increasing hexagonal system.

Proposition 5.4. [5] Let H be an inlet-increasing hexagonal system. Then H has no fjords and a(H) =

0.

Proof. Let H be an inlet-increasing hexagonal system with h hexagons and r inlets.

1. Suppose H has a fjord formed by the perimetral path a, x1, x2, x3, x4, x5, x6, b with degree se-
quence (da, 2, 3, 3, 3, 3, 2, db) where da and db are the degrees of the vertices a and b respec-
tively. Adding the edge x1x6 we obtain a new hexagonal system H ′ ∈ A(H) with r(H ′) = r

if da = db = 2, or r(H ′) = r − 1 if da 6= db or r(H ′) = r − 2 if da = db = 3 (see Figure 13).
Since H is inlet-increasing we get a contradiction.



257

Figure 13. Figure used in the proof of Proposition 5.4 part 1.

2. Suppose a(H) > 0. Since H has no fjords, we have to consider the following cases:

Case 1: H has two adjacent fissures with a common vertex u. Then H has a perimetral path
a, x1, x2, u, y1, y2 with degree sequence (da, 2, 3, 2, 3, 2). Adding a hexagon with edges x1x2 and
x2u we obtain a new hexagonal system H ′ ∈ A(H) with r(H ′) = r if da = 2 or r(H ′) = r − 1 if
da = 3 (see Figure 14). This contradicts the fact that H is inlet-increasing.

Figure 14. Figure used in the proof of Proposition 5.4 part 2, Case 1.

Case 2: A fissure and a bay of H are adjacent with a common vertex u. Then H has a perimetral
path a, x1, x2, u, y1, y2, y3 with degree sequence (da, 2, 3, 2, 3, 3, 2). Adding a hexagon with edges
x1x2 and x2u we obtain a new hexagonal system H ′ ∈ A(H) with r(H ′) = r if da = 2 or
r(H ′) = r − 1 if da = 3 (see Figure 15). This contradicts the fact that H is inlet-increasing.

Figure 15. Figure used in the proof of Proposition 5.4 part 2, Case 2.
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Case 3: A fissure and a cove of H are adjacent with a common vertex u. Then H has a perimetral
path a, x1, x2, u, y1, y2, y3, y4 with degree sequence (da, 2, 3, 2, 3, 3, 3, 2). Adding a hexagon with
edges x1x2 and x2u we obtain a new hexagonal system H ′ ∈ A(H) with r(H ′) = r if da = 2 or
r(H ′) = r − 1 if da = 3 (see Figure 16). This contradicts the fact that H is inlet-increasing.

Figure 16. Figure used in the proof of Proposition 5.4 part 2, Case 3.

Case 4: H has two adjacent bays with a common vertex u. Then H has a perimetral path
a, x1, x2, x3, u, y1, y2, y3 with degree sequence (da, 2, 3, 3, 2, 3, 3, 2). Adding a hexagon with edges
x1x2, x2x3 and x3u we obtain a new hexagonal system H ′ ∈ A(H) with r(H ′) = r if da = 2 or
r(H ′) = r − 1 if da = 3 (see Figure 16). This contradicts the fact that H is inlet-increasing.

Figure 17. Figure used in the proof of Proposition 5.4 part 2, Case 4.

Case 5: A bay and a cove of H are adjacent with a common vertex u. Then H has a perimetral path
a, x1, x2, x3, u, y1, y2, y3, y4 with degree sequence (da, 2, 3, 3, 2, 3, 3, 3, 2). Adding a hexagon with
edges x1x2, x2x3 and x3u we obtain a new hexagonal system H ′ ∈ A(H) with r(H ′) = r if da = 2

or r(H ′) = r − 1 if da = 3 (see Figure 18). This contradicts the fact that H is inlet-increasing.

Figure 18. Figure used in the proof of Proposition 5.4 part 2, Case 5.
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Figure 19. Figure used in the proof of Proposition 5.4 part 2, Case 6.

Case 6: H has two adjacent coves with a common vertex u. Then H has a perimetral path
a, x1, x2, x3, x4, u, y1, y2, y3, y4 with degree sequence (da, 2, 3, 3, 3, 2, 3, 3, 3, 2). Adding a hexagon
with edges x1x2, x2x3, x3x4 and x4u we obtain a new hexagonal system H ′ ∈ A(H) with
r(H ′) = r if da = 2 or r(H ′) = r − 1 if da = 3 (see Figure 19). This contradicts the fact
that H is inlet-increasing.

Proposition 5.5. [5] Let H be an inlet-increasing hexagonal system with h hexagons and r inlets. Then

there exists a convex hexagonal system H ′ that contains H such that

r′ = r(H ′) ≤ 2r (36)

h′ = h(H ′) = h+ r′ − r (37)

Proof. By Proposition 5.4, the inlets of the maximal hexagonal system H are fissures, bays and coves
and there are no adjacent inlets. We construct a new hexagonal system H ′ in the following way:

To each bay in H , with perimetral path a, x1, x2, x3, x4, b and degree sequence (2, 2, 3, 3, 2, 2) we
add a hexagon with edges x1x2, x2x3, x3x4 (see Figure 20).

To each cove in H , with perimetral path a, x1, x2, x3, x4, x5, b and degree sequence (2, 2, 3, 3, 3, 2, 2)
we add a hexagon with edges x1x2, x2x3, x3x4, x4x5 (see Figure 20).

Figure 20. A inlet-increasing hexagonal system and its corresponding convex hexagonal system.
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Note that the obtained hexagonal system H ′ has no bay regions so it is a convex hexagonal system.
Moreover, for each bay and each cove we add one hexagon and obtain two fissures in H ′, then

r′ = f(H) + 2B(H) + 2C(H) = r +B(H) + C(H) ≤ 2r

h′ = h+B(H) + C(H) = h+ r +B(H) + C(H)− r = h+ r′ − r

Next we find the lower bound on the number of inlets for the inlet-increasing hexagonal systems.

Proposition 5.6. [5] Let H be an inlet-increasing hexagonal system with h hexagons and r inlets. Then

r ≥
⌈√

3(h− 1)
⌉

Proof. Let H be an inlet-increasing hexagonal system with h hexagons and r inlets. Let H ′ = H ′(a1, a2,

a3, a4) be a convex hexagonal system obtained from H as described in Proposition 5.5. We use the
method of Lagrange multipliers to find the maximal value of the function h′(a1, a2, a3, a4), determined
by equation (22), imposing the condition (21).

The maximal value of the function h′(a1, a2, a3, a4) is attained for

a1 = a2 = a3 = a4 =
r′

6
+ 1

and
h′

max = 3

(
r′

6
+ 1

)(
r′

6

)
+ 1.

Using relations (36) and (37) in Proposition 5.5 we obtain:

h = h′ − r′ + r ≤ h′
max − r′ + r

= 3

(
r′

6
+ 1

)(
r′

6

)
+ 1− r′ + r =

r′

12
(r′ − 6) + 1 + r

≤ r2

3
+ 1

which implies
r ≥

⌈√
3(h− 1)

⌉
.

In order to extend Proposition 5.6 for general hexagonal systems we need the following lemma.

Lemma 5.7. Let H ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hi ⊂ · · · be a sequence of hexagonal systems such that

H ∈ HSh, Hi ∈ HShi
for all i = 1, 2, 3 . . . and h < h1 < h2 < · · · < hi < · · · . Then

lim
i→∞

r(Hi) = +∞.
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Proof. Let H ∈ HSh with n∗
2 (resp. n∗

3) external vertices of degree 2 (resp. 3) . It is well known [13]
that

n∗
2 = 2h+ 4− ni

n∗
3 = 2h− 2− ni

where ni is the number of internal vertices. It follows that

n∗
2 ≥

⌈√
12h− 3

⌉
+ 3

n∗
3 ≥

⌈√
12h− 3

⌉
− 3

since ni ≤ 2h + 1 −
⌈√

12h− 3
⌉

by (14). Hence the number of external vertices of degree 2 and 3
in the perimeter of a hexagonal system approaches infinity as h approaches infinity. Since there are at
most four consecutive vertices of degree 2 in the perimeter, the number of inlets r = 2m23 (see (3)), also
approaches infinity.

Theorem 5.8. [5] Let H be a hexagonal system with h hexagons and r inlets. Then

r ≥
⌈√

3(h− 1)
⌉
.

Proof. If H is an inlet-increasing hexagonal system, by Proposition 5.6 we are done. Otherwise we will
show that there exists an inlet-increasing hexagonal system Hs ∈ HSh+s such that r = r(H) ≥ r(Hs).

In fact, if H is not inlet-increasing there exists H1 ∈ A(H) such that r ≥ r(H1). If H1 is not
inlet-increasing there exists H2 ∈ A(H1) such that r ≥ r(H1) ≥ r(H2).

Continuing this process we construct a sequence

H = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hi ⊂ · · ·

such that Hi ∈ A(Hi−1) and

r = r(H) ≥ r(H1) ≥ r(H2) ≥ · · · ≥ r(Hi) ≥ · · ·

Note that the sequence {r(Hi)}i is bounded by r. Consequently by Lemma 5.7, the sequence is finite.
In other words, there exists Hs ∈ A(Hs−1) such that Hs is inlet-increasing and r = r(H) ≥ r(H1) ≥
· · · ≥ r(Hs). Hence, by Proposition 5.6

r = r(H) ≥ r(Hs) ≥
√
3(h+ s− 1) ≥

√
3(h− 1)

which implies

r ≥
⌈√

3(h− 1)
⌉
.



262

Let Sh′ be the spiral hexagonal system with h′ hexagons. The number of internal vertices n′
i =

ni (Sh′), the number of bay regions b′ = (Sh′) and the number of inlets r′ = r (Sh′) satisfy the following
relations:

n′
i = n′

i(Sh′) = 2h′ + 1 +
⌈√

12h′ − 3
⌉

(38)

b′ = b′(Sh′) ∈ {0, 1} (39)

r′ = r′(Sh′) =
⌈√

12h′ − 3
⌉
− 3− b′ (40)

Now we introduce a parametrization of the spiral hexagonal system Sh′ that will be useful in the
sequel. Let h′ ≥ 7 and k be the greatest integer such that 3k(k − 1) + 1 ≤ h′ < 3k(k + 1) + 1. Since
0 ≤ h′ − 3k(k − 1)− 1 < 6k, let

q′ =

⌊
h′ − 3k(k − 1)− 1

k

⌋

l′ = h′ − 3k(k − 1)− 1− q′k.

Then h′ has a unique representation of the form

h′ = h′(k, q′, l′) = 3k(k − 1) + 1 + q′k + l′ (41)

where k = 2, 3, . . ., q′ ∈ {0, 1, 2, 3, 4, 5} and l′ = 0, 1, . . . , k − 1. From the construction of Sh′ we
conclude that k is the number of complete loops in Sh′ , q′ is the side of the spiral to which belongs the
last hexagon in Sh′ and l′ is the number of the last hexagon in the side q. In Figure 21 the spiral system
Sh′ for every value of h′ = h′(2, q′, l′) are depicted.

Figure 21. Spiral systems Sh′ for every value of h′ = h′(2, q′, l′).
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Next we obtain the number of bay regions, the number of inlets and the number of hexagons in the
perimeter of Sh′ in terms of the introduced parameters k, q′ and l′.

Proposition 5.9. [5] Let h′ = h′(k, q′, l′) of the form (41) and h′
e be the number of hexagons in the

perimeter of Sh′ . Then

b′ = b′(Sh′) =





0 if l′ = 0, q′ = 0
0 if l′ = k − 1, q′ < 5
1 otherwise

r′ = r′(Sh′) =





6k − 6 if l′ = 0, q′ = 0
6k − 5 + q′ if l′ = k − 1, q′ < 5
6k − 6 + q′ otherwise

h′
e = h′

e(Sh′) =

{
6k − 6 if l = 0, q′ = 0
6k − 5 + q′ otherwise

Proof. Since

12h′2 − 36k + 12q′k + 12l′ + 9

we have:
If q′ = 0 and l′ = 0 then 12h′2. Consequently,

⌈√
12h′ − 3

⌉
= 6k − 3.

If q′ = 0 and 0 < l′ ≤ k − 1 we have

12h′2,

12h′2 − 24k − 3 < (6k − 2)2.

Consequently,
⌈√

12h′ − 3
⌉
= 6k − 3.

If 0 < q′ ≤ 5 and 0 ≤ l′ ≤ k − 1 we have

12h′2 − 36k + 12q′k + 9 = (6k − 3 + q′2 + 9− (3− q′2 > (6k − 3 + q′2,

12h′2 − 36k + 12q′k + 12k − 3 < (6k − 2 + q′2.

Consequently,
⌈√

12h′ − 3
⌉
= 6k − 2 + q′.

It follows that ⌈√
12h′ − 3

⌉
=

{
6k − 3 if l′ = 0, q′ = 0
6k − 2 + q′ otherwise (42)

Note that b′ = b(Sh′) = 0 if and only if ni(Sh′+1) = ni(Sh′) + 1. From (38) this fact occurs if and
only if ⌈√

12h′ − 3
⌉
+ 1 =

⌈√
12(h′ + 1)− 3

⌉
.

From (42) we obtain the expression for b′ in terms of k and q′. From (40) and the fact that h′
e = r′ + b′

we obtain the expressions for r′ and h′
e in terms of k and q′.

Theorem 5.10. [5] For any h ≥ 4 there exists a hexagonal system Bh such that r(Bh) =
⌈√

3(h− 1)
⌉

.
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Proof. Let h ≥ 4 and k be the greatest integer such that 3(k − 1)2 + 1 ≤ h < 3k2 + 1. Since
0 ≤ h− 3(k − 1)2 − 1 < 3(2k − 1), let

q =

⌊
h− 3(k − 1)2 − 1

2k − 1

⌋

l = h− 3(k − 1)2 − 1− q(2k − 1).

Then h has a unique representation of the form

h = h(k, q, l) = 3(k − 1)2 + 1 + q(2k − 1) + l (43)

where k = 3, 4, . . ., q ∈ {0, 1, 2} and l = 0, 1, . . . , 2k − 2.
In order to construct a system Bh with minimal number of inlets for each h ≥ 4, we take the spiral

system Sh′ , with an appropriate value of h′ = h′(k, q′, l′) of the form (41), and remove alternately bh′
e/2c

hexagons from the perimeter of Sh′ , starting from the last hexagon and moving in opposite direction with
respect to the construction of the spiral systems described in Figure 4. Consider the following cases:

• h = h(k, 0, 0) = 3(k − 1)2 + 1.

Let h′ = h′(k, 0, 0) = 3k(k − 1) + 1. By Proposition 5.9, h′
e = r′ = 6k − 6 and Sh′ has no bay

regions. Note that when we remove from Sh′ each one of the 3k − 3 hexagons, we reduce by one
the number of inlets of Sh′ . Note that

h′(k, 0, 0)−
⌊
he

2

⌋
= 3(k − 1)2 + 1 = h(k, 0, 0)

r =
r′

2
= 3(k − 1)

• h = h(k, q, l) where (q, l) 6= (0, 0), q ∈ {0, 1, 2} and l = 0, . . . k − 2.

Let h′ = h′(k, q′, l′) where q′ = 2q and l′ = l. By Proposition 5.9, h′
e = 6k − 5 + 2q and Sh′

has one bay region next to the last hexagon in Sh′ . When we remove the last hexagon in Sh′ , the
number of inlets does not change, while when we remove each one of the remained

⌊
h′
e

2

⌋
− 1

hexagons, the number of inlets of Sh′ reduces by one. Note that

h′(k, q′, l′)−
⌊
he

2

⌋
= 3k(k − 1) + 2qk + l − [3(k − 1) + q]

= 3(k − 1)2 + 1 + q(2k − 1) + l = h (k, q, l)

r = r′ −
(⌊

he

2

⌋
− 1

)
= 6k − 6 + 2q + 1− [3(k − 1) + q]

= 3k − 2 + q

• h = h(k, q, l) where q ∈ {0, 1, 2} and l = k − 1, . . . 2k − 3.

Let h′ = h′(k, q′, l′) where q′ = 2q + 1 and l′ = l − k + 1. By Proposition 5.9, h′
e = 6k − 4 + 2q

and Sh′ has one bay region next to the last hexagon in Sh′ . When we remove the last hexagon in



265

Sh′ the number of inlets does not change, while when we remove each one of the remained he

2
− 1

hexagons, the number of inlets of Sh′ reduces by one. Note that

h′(k, q′, l′)− he

2
= 3k(k − 1) + 1 + (2q + 1)k + l − k + 1− [3k − 2 + q]

= 3(k − 1)2 + 1 + q(2k − 1) + l = h(k, q, l)

r = r′ −
(
he

2
− 1

)
= 6k − 6 + (2q + 1) + 1− [3k − 2 + q]

= 3k − 2 + q

• h = h(k, q, l) where q ∈ {0, 1, 2} and l = 2k − 2.

Let h′ = h′(k, q′, l′) where q′ = 2q + 1 and l′ = k − 1. By Proposition 5.9, h′
e = 6k − 4 + 2q.

Note that

h′(k, q′, l′)− he

2
= 3k(k − 1) + 1 + (2q + 1)k + k − 1− [3k − 2 + q]

= 3(k − 1)2 + 1 + q(2k − 1) + l = h(k, q, l)

If q′ = 2q + 1 = 5 then Sh′ has one bay region next to the last hexagon in Sh′ . When we remove
the last hexagon in Sh′ the number of inlets does not change, while when we remove each one of
the remained he

2
− 1 hexagons, the number of inlets of Sh′ reduces by one. Then

r = r′ −
(
he

2
− 1

)
= 6k − 6 + 2q + 1 + 1− [3k − 2 + q]

= 3k − 2 + q

If q′ = 2q+1 < 5 then Sh′ has no bay regions. When we remove each one of the he

2
hexagons, the

number of inlets of Sh′ reduces by one. Then

r = r′ − he

2
= 6k − 5 + 2q + 1− [3k − 2 + q]

= 3k − 2 + q

In both cases we obtain r = 3k − 2 + q.

For each value of h = h(k, q, l) we constructed a hexagonal system Bh such that r = r(Bh) = 3k−3

if (q, l) = (0, 0) and r = r(Bh) = 3k − 2 + q otherwise. In Figure 22 the hexagonal systems Bh for
every value of h = h(2, q, l) are depicted. Now we show that r =

⌈√
3(h− 1)

⌉
.
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Figure 22. Hexagonal systems Bh for every value of h = h(2, q, l).

If (q, l) = (0, 0) we have 3(h− 1) = 9(k − 1)2 and
√
3(h− 1) = 3(k − 1) = r.

If (q, l) 6= (0, 0), since l ≤ 2k − 2 and q ∈ {0, 1, 2} we have

3(h− 1) = 9(k − 1)2 + 3q(2k − 1) + 3l ≤ 9k2 − 6k(2− q) + 3− 3q

= (3k − 2 + q)2 + 3− (2− q)2 − 3q < (3k − 2 + q)2 .

On the other hand, if q = 0 then l > 0 and

3(h− 1) = 9(k − 1)2 + 3l > 9(k − 1)2.

If q 6= 0 then l ≥ 0 and

3(h− 1) = 9(k − 1)2 + 3q(2k − 1) + 3l ≥ 9k2 − 6k(3− q) + 9− 3q

= (3k − 3 + q)2 + 9− (3− q)2 − 3q > (3k − 3 + q)2 .

It means that if (q, l) 6= (0, 0) then

(3k − 3 + q)2 < 3(h− 1) < (3k − 2 + q)2.

We conclude that ⌈√
3(h− 1)

⌉
= 3k − 2 + q = r.

Note that the hexagonal system Bh, when h = h (p− 1, 0, 0) where p isan even integer such that
p ≥ 4, coincide with the systems Bp,p−2 obtained in [3].

From Theorems 5.8 and 5.10 we obtain the following result.
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Corollary 5.1. [5] The system Bh is a hexagonal system with minimal number of inlets in HSh for

every value of h ≥ 4.

6. Extremal values of r and b over pericondensed
hexagonal systems

Recall that H is a pericondensed hexagonal system if ni (H) ≥ 1. We will denote by PHSh the set
of pericondensed hexagonal systems with h hexagons. We first determine the extremal values of r over
PHSh.

Figure 23. Hexagonal system Bh with minimal number of inlets over HSh.

It was shown in Section 5 that the hexagonal system Bh (see Figure 23) has
⌈√

3 (h− 1)
⌉

inlets and
this is the minimal number of inlets among all hexagonal systems in HSh. Since Bh is a pericondensed
hexagonal system, then Bh attains the minimal number of inlets in PHSh.

We need the following result to find the hexagonal system with maximal number of inlets in PHSh.

Lemma 6.1. Let H ∈ HSh and h ≥ 4. If ni(H) = 1 then b(H) ≥ 1.

Proof. If ni(H) = 1 then H has a subhexagonal system of the form depicted in Figure 31 (a), where
no hexagon can be adjacent to the fissures. Since h ≥ 4, there must be an hexagon adjacent to any of
the edges that are not part of the fissures, and this hexagon will transform one of the fissures into a bay.
Hence, b (H) ≥ 1.

We now show that the pericondensed hexagonal system Mh depicted in Figure 24 has the maximal
number of inlets in PHSh.

Theorem 6.2. Let h ≥ 4. Then for all P ∈ PHSh

⌈√
3 (h− 1)

⌉
= r (Bh) ≤ r (P ) ≤ r (Mh) = 2 (h− 2) .

Proof. We only have to prove the upper bound. Let P ∈ PHSh and assume that ni (P ) ≥ 2. Then
b (P ) + ni (P ) ≥ 2 and so by (5)

r (P ) = 2 (h− 1)− (b (P ) + ni (P ))

≤ 2 (h− 1)− 2 = 2 (h− 2)

If ni (P ) = 1 then b (P ) ≥ 1 by Lemma 6.1. Hence b (P ) + ni (P ) ≥ 2 and again r (P ) ≤ 2 (h− 2).
Finally, it is easy to show that r (Mh) = 2 (h− 2).
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Figure 24. Hexagonal systems Mh with maximal number of inlets over PHSh.

Now we look at the bounds for b over PHSh. For every positive integer h we can easily construct
convex pericondensed hexagonal systems as we can see in Figure 25. These have obviously minimal
number of bay regions in PHSh.

h odd h even

Figure 25. Convex pericondensed hexagonal systems.

So now we are interested in finding the maximal number of bay regions among all hexagonal systems
in PHSh. As in the proof of Theorem 4.1, we use the fact that every hexagonal system has a hexagon
of the form L1, P2, L3, P4 or L5.

Theorem 6.3. [6] Let H ∈ PHSh with h ≥ 4. Then

b(H) ≤
⌈
3

2
h− 11

2

⌉
.

Proof. The proof is by induction on h. It is easy to check the result for h = 4, 5, 6. Let h ≥ 7 and
assume that the result is true for any pericondensed hexagonal system with less than h hexagons. Let H
be a pericondensed hexagonal system with h hexagons. First assume that ni(H) ≥ 5.

1. H contains a L3, P4 or L5 hexagon, or a P2 hexagon of the form depicted in Figure 8. Then by
part 1 of the proof of Theorem 4.1, there exists a (sub)hexagonal system H1 with h− 1 hexagons
such that b(H) ≤ b(H1)+ 1. Moreover, since ni(H) ≥ 5, H1 ∈ PHSh−1. Hence by induction we
deduce

b(H) ≤ b(H1) + 1 ≤
⌈
3

2
(h− 1)− 11

2

⌉
+ 1 ≤

⌈
3

2
h− 11

2

⌉
.

2. H satisfies any of the cases 2, 3 or 4 in the proof of Theorem 4.1. Then there exist two (sub)hexago-
nal systems H1 and H2 of H , with h1 ≥ 2 and h2 ≥ 2 hexagons respectively, such that h = h1+h2



269

and b(H) ≤ b(H1) + b(H2) + 3. Since ni(H) ≥ 5, one of the two hexagonal systems is pericon-
densed, say H1. Then by induction we deduce

b(H) ≤ b(H1) + b(H2) + 3 ≤
⌈
3

2
h1 −

11

2

⌉
+

⌈
3

2
h2 −

7

2

⌉
+ 3 ≤

⌈
3

2
h− 11

2

⌉
.

The only possibility left is case 5 in Theorem 4.1, but this cannot occur since H ∈ PHSh. So we
only have to consider when 1 ≤ ni(H) ≤ 4.

If ni(H) = 4 then the proof works the same as in the case ni(H) ≥ 5 except when there is a L5

hexagon. Note that in the splitting of H in that case, none of the (sub)hexagonal systems is pericon-
densed. However, if ni(H) = 4 then we can split H (see Figure 26) into the two (sub)hexagonal systems
H1 and H2, where H1 is the dark shadowed (sub)hexagonal system with at least four hexagons. In this
case, we obtain at least three new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,
b (H) ≤ b (H1) + b (H2) + 3.

Since H1 is pericondensed (with exactly one internal vertex), the results follow as in part 2 of this
theorem. Note that if H1 has exactly three hexagons, then one of these hexagons is a P2 hexagon and the
results follows as in part 1 of this theorem.

Figure 26. Pericondensed hexagonal systems with ni ∈ {2, 3, 4}.

If ni(H) = 3 then H does not contain a L5 hexagon. Again, the proof works as in the case ni(H) ≥
5 except when H contains a P4 hexagon. However, since ni(H) = 3 we can split H into the two
(sub)hexagonal systems H1 and H2 (see Figure 26), where H1 is the dark shadowed (sub)hexagonal
system with at least four hexagons. In this case, we obtain at least three new 2-2-edges in H1 and H2.
Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,
b (H) ≤ b (H1) + b (H2) + 3.

Since H1 is pericondensed (with exactly one internal vertex), the results follow as in part 2 of this
theorem. Note that if H1 has exactly three hexagons, then one of these hexagons is a P2 hexagon and the
results follows as in part 1 of this theorem.
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If ni(H) = 2, H is of the form depicted in Figure 26. Note that one internal vertex is highlighted
and the other one belongs to the dark shadowed (sub)hexagonal system. We split system H into the two
(sub)hexagonal systems H1 and H2, where H1 is the dark shadowed (sub)hexagonal system. If H2 has
two or more hexagons, we obtain at least three new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 3.

Since H1 is pericondensed, the results follow as in part 2 of this theorem.

On the other hand, if H2 consists of only one hexagon then the system H has the form (a) or the
form (b) depicted in Figure 27. Note that in case (b) one internal vertex is highlighted and the other
one belongs to the dark shadowed (sub)hexagonal system. In each case, we split system H into the two
(sub)hexagonal systems H1 and H2, where H1 is the dark shadowed (sub)hexagonal system.

Figure 27. Pericondensed hexagonal systems with ni = 2 when H2 consists of only one hexagon.

In case (a) we obtain at least five new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 5,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 1.

Since neither H1 nor H2 are pericondensed, by Theorem 4.1 we deduce

b(H) ≤ b(H1) + b(H2) + 1 ≤
⌈
3

2
h1 −

7

2

⌉
+

⌈
3

2
h2 −

7

2

⌉
+ 1

≤
⌈
3

2
h− 11

2

⌉
.

In case (b) we obtain at least three new 2-2-edges in H1 and H2. Hence

m22(H) ≤ m22(H1) +m22(H2)− 3,

or equivalently,

b (H) ≤ b (H1) + b (H2) + 3.

Since H1 is pericondensed, the results follow as in part 2 of this theorem.
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Finally, if ni(H) = 1, we split H into three (sub) hexagonal system H1, H2 and H3 of H as depicted
in Figure 28, where h = h1 + h2 + h3. If h2 = h3 = 1 then

m22(H) ≤ m22(H1) + 6 + 6− 4− 4− 3 = m22(H1) + 1,

or equivalently,
b (H) ≤ b (H1) + 1.

From Theorem 4.1

b (H) ≤ b (H1) + 1 ≤
⌈
3

2
(h− 2)− 7

2

⌉
+ 1

≤
⌈
3

2
h− 11

2

⌉
.

If h2 > 1 and h3 = 1 then

m22(H) ≤ m22(H1) +m22(H2) + 6− 4− 3− 3 = m22(H1) +m22(H2)− 4,

or equivalently,
b (H) ≤ b (H1) + b (H2) + 2.

From Theorem 4.1 and the fact that h = h1 + h2 + 1 we obtain

b (H) ≤ b (H1) + b (H2) + 2 ≤
⌈
3

2
h1 −

7

2

⌉
+

⌈
3

2
h2 −

7

2

⌉
+ 2 ≤

⌈
3

2
h− 11

2

⌉
.

Now, if h2 > 1 and h3 > 1 we obtain at least nine new 2-2-edges. Hence

m22(H) ≤ m22(H1) +m22(H2) +m22(H3)− 9,

or equivalently,
b (H) ≤ b (H1) + b (H2) + b (H3) + 3.

It follows from Theorem 4.1 and the fact that h = h1 + h2 + h3 that

b (H) ≤ b (H1) + b (H2) + b (H3) + 3

≤
⌈
3

2
h1 −

7

2

⌉
+

⌈
3

2
h2 −

7

2

⌉
+

⌈
3

2
h3 −

7

2

⌉
+ 3 ≤

⌈
3

2
h− 11

2

⌉
.

Figure 28. Split of pericondensed (sub)hexagonal system H with ni = 1.
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Example 6.4. The hexagonal system Fh depicted in Figure 29 has maximal value of b over the set of

pericondensed hexagonal systems with h hexagons.

Figure 29. Hexagonal system with maximal value of b over PHSh .

Next we discuss the extremal value problem of TI over PHSh. Recall that the spiral hexagonal
system Sh has maximal number of internal vertices

ni (Sh) = 2h+ 1−
⌈√

12h− 3
⌉

among all hexagonal systems in HSh. In Section 3 we characterized the values of h for which there
exists a convex hexagonal system W with maximal number of internal vertices, i.e.

ni (W ) = 2h+ 1−
⌈√

12h− 3
⌉
. (44)

Note that W ∈ PHSh. Hence we deduce from Theorems 3.1 and 3.8:

Theorem 6.5. [6] Let TI be a vertex-degree-based topological index of the form ( 7).

1. If there exists a convex hexagonal system W with h hexagons satisfying (44) and −ϕ22 ≤ q < 0

then W has minimal TI-value among all hexagonal systems in PHSh.

2. If there is no convex hexagonal system with h hexagons satisfying ( 44) and −ϕ22

2
≤ q < 0, then

the spiral Sh has minimal TI-value over PHSh.

Now based on Theorems 6.2 and 6.3 we find the maximal value of TI over PHSh.

Theorem 6.6. [6] Let TI be a vertex-degree-based topological index of the form (7). If −ϕ22 ≤ q < 0

then Fh (see Figure 29) has maximal TI -value over PHSh.

Proof. Let P ∈ PHSh. Then ni (P ) ≥ 1. It follows from (10) and Theorem 6.3 that

TI (Fh)− TI (P ) = q [b (P )− b (Fh)] + (q + ϕ22) [ni (P )− ni (Fh)]

= q

[
b (P )−

⌈
3

2
h− 11

2

⌉]
+ (q + ϕ22) [ni (P )− 1] ≥ 0.

Consequently, TI (Fh) ≥ TI (P ) for all P ∈ PHSh.
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Remark 6.7. The condition −ϕ22

2
≤ q < 0 holds for most of the well-known topological indices, as

we can see in Table 1. Consequently, for all these indices the extremal values of TI over PHSh are

determined for all h, by Theorems 6.5 and 6.6.

In the case of the Atom-Bond-Connectivity index q > 0.

Theorem 6.8. [6] Let TI be a vertex-degree-based topological index of the form (7 ). If q > 0 then Mh

has maximal TI-value among all hexagonal systems in PHSh.

Proof. Let P ∈ PHSh. Then ni (P ) ≥ 1. By (8) and Theorem 6.2

TI (Mh)− TI (P ) = q [r (Mh)− r (P )] + ϕ22 [ni (P )− ni (Mh)]

= q [2 (h− 2)− r (P )] + ϕ22 [ni (P )− 1] ≥ 0.

Hence TI (Mh) ≥ TI (P ) for all P ∈ PHSh.

7. Hexagonal systems with equal number of vertices

Let Λn denote the set of hexagonal systems with exactly n vertices. We will find in this section the
hexagonal systems with maximal number of inlets in Λn and then, we will apply this result in the study of
extremal values of vertex-degree-based topological indices. Figure 30 shows several hexagonal systems
belonging to Λ42.

Figure 30. Hexagonal systems in Λ42.

Note that the number of hexagons in hexagonal systems belonging to Λn is variable. In fact, if
H ∈ Λn then it follows from [16] that

⌈
1

4
(n− 2)

⌉
≤ h (H) ≤ n+ 1−

⌈
1

2

(
n+

√
6n
)⌉

(45)

where h (H) denotes the number of hexagons H has. Since n is fixed then for each value h (H) in the
interval defined by (45), the number of internal vertices ni (H) is also determined via the relation

n = 4h (H) + 2− ni (H) (46)
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Example 7.1. Consider the set Λ42. Then by (45), if H ∈ Λ42 then

10 ≤ h (H) ≤ 14

Hence we can classify the hexagonal systems in Λ42 depending on the number of hexagons as:

h = 10 h = 11 h = 12 h = 13 h = 14
ni = 0 ni = 4 ni = 8 ni = 12 ni = 16

Recall that HSh is the set of hexagonal systems with h hexagons.

Lemma 7.2. Let H ∈ HSh and h ≥ 4. Assume that H has an internal vertex v0 such that no adjacent

vertex of v0 is internal. Then H is not a convex hexagonal system.

Proof. By hypothesis, H has a subhexagonal system of the form depicted in Figure 31 (a), where no
hexagon can be adjacent to the fissures indicated by heavy lines. Since h ≥ 4, there must be an hexagon
adjacent to any of the edges that are not part of the fissures, and this hexagon will transform one of the
fissures into a bay. Hence, b (H) ≥ 1 and H is not a convex hexagonal system.

Figure 31. Hexagonal systems with 1,2 and 3 internal vertices, respectively.

Lemma 7.3. Let H ∈ HSh. In each of the following conditions H is not a convex hexagonal system:

1. If h ≥ 4 and ni (H) = 1;

2. If h ≥ 5 and ni (H) = 2;

3. If h ≥ 6 and ni (H) = 3.

Proof. 1. This is an immediate consequence of Lemma 7.2.
2. We may assume that the two internal vertices are adjacent, otherwise we apply Lemma 7.2 and

the result follows. Then H has a subhexagonal system of the form shown in Figure 31 (b), where no
hexagons are adjacent to the fissures indicated in heavy lines. Since h ≥ 5, there must be an hexagon
adjacent to an edge that is not part of the fissures, and this hexagon will transform one of the fissures into
a bay. Hence, b (H) ≥ 1.

3. Again by Lemma 7.2 we may assume that H has a subhexagonal system of the form shown in
Figure 31 (c), and a similar argument as above shows that b (H) ≥ 1.
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Next we find the hexagonal system with maximal number of inlets in HSh with a fixed number of
internal vertices. Recall that Mh, Nh and Qh are the hexagonal systems depicted in Figure 32.

Figure 32. Hexagonal systems with maximal number of inlets in HSh.

Proposition 7.4. Let H ∈ HSh. Then:

1. If ni (H) = 1 then

r (H) ≤ r (Mh) =

{
3 if h = 3

2h− 4 if h ≥ 4
;

2. If ni (H) = 2 then

r (H) ≤ r (Nh) =

{
4 if h = 4

2h− 5 if h ≥ 5
;

3. If ni (H) = 3 then

r (H) ≤ r (Qh) =

{
5 if h = 5

2h− 6 if h ≥ 6

Proof. 1. If ni (H) = 1 then clearly h ≥ 3. If h = 3 then H = M3 is the unique hexagonal system in
H ∈ HS3 such that ni (H) = 1 and so the result follows. Assume that h ≥ 4. Then by Lemma 7.3 part
1., H is not a convex hexagonal system. Hence b (H) ≥ 1 and from (5) we deduce

r (H) = 2h− 3− b (H) ≤ 2h− 4

2. If ni (H) = 2 then h ≥ 4. If h = 4 then H = N4 and we are done. Otherwise, h ≥ 5 and so by
Lemma 7.3 part 2., b (H) ≥ 1. Then using (5) we get

r (H) = 2h− 4− b (H) ≤ 2h− 5

3. If ni (H) = 3 then h ≥ 5. If h = 5 then H = Q5 and we are done. Otherwise, h ≥ 6 and so by
Lemma 7.3 part 3., b (H) ≥ 1. It follows from (5) that

r (H) = 2h− 5− b (H) ≤ 2h− 6

Now we can find the hexagonal system with maximal number of inlets in Λn, the set of hexagonal
systems with n vertices. Recall that Lh is the linear hexagonal chain with h hexagons.
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Theorem 7.5. [1] Let H ∈ Λn. Then:

1. If n ≡ 0 (mod4) then r (H) ≤ n−10
2

= r
(
Nn

4

)
;

2. If n ≡ 1 (mod4) then r (H) ≤ n−9
2

= r
(
Mn−1

4

)
;

3. If n ≡ 2 (mod4) then r (H) ≤ n−6
2

= r
(
Ln−2

4

)
;

4. If n ≡ 3 (mod4) then r (H) ≤ n−11
2

= r
(
Qn+1

4

)
.

Proof. We know by (45) that
⌈
1

4
(n− 2)

⌉
≤ h (H) ≤ n+ 1−

⌈
1

2

(
n+

√
6n
)⌉

1. If n ≡ 0 (mod4) then
⌈
1
4
(n− 2)

⌉
= n

4
. Consider first the case that h (H) = n

4
. Then by (46)

n = 4h (H) + 2− ni (H) = 4
n

4
+ 2− ni (H) = n+ 2− ni (H)

which implies ni (H) = 2. Now we can apply Proposition 7.4 part 2., to conclude that r (H) ≤ r
(
Nn

4

)

and we are done. So assume now that h (H) ≥ n
4
+ 1. Then by (5)

r (H) = n− 2h (H)− b (H)− 4 ≤ n− 2
(n
4
+ 1
)
− b (H)− 4

=
1

2
n− b (H)− 6 ≤ n− 12

2
≤ n− 10

2
= r

(
Nn

4

)

2. If n ≡ 1 (mod4) then
⌈
1
4
(n− 2)

⌉
= n−1

4
. If h (H) = n−1

4
then by (46)

n = 4h (H) + 2− ni (H) = 4
n− 1

4
+ 2− ni (H) = n+ 1− ni (H)

and so ni (H) = 1. By Proposition 7.4 part 1., r (H) ≤ r
(
Mn−1

4

)
. If h (H) ≥ n−1

4
+ 1. Then by (5)

r (H) = n− 2h (H)− b (H)− 4 ≤ n− 2

(
n− 1

4
+ 1

)
− b (H)− 4

=
1

2
n− b (H)− 11

2
≤ n− 11

2
≤ n− 9

2
= r

(
Mn−1

4

)

3. If n ≡ 2 (mod4) then
⌈
1
4
(n− 2)

⌉
= n−2

4
. Since h (H) ≥ n−2

4
then by (46)

r (H) = n− 2h (H)− b (H)− 4 ≤ n− 2

(
n− 2

4

)
− b (H)− 4

=
1

2
n− b (H)− 3 ≤ n− 6

2
= r

(
Ln−2

4

)

4. If n ≡ 3 (mod4) then
⌈
1
4
(n− 2)

⌉
= n+1

4
. If h (H) = n+1

4
then by (46)

n = 4h (H) + 2− ni (H) = 4
n+ 1

4
+ 2− ni (H) = n+ 3− ni (H)
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which implies that ni (H) = 3. Now by Proposition 7.4 part 3., r (H) ≤ r
(
Qn+1

4

)
. In the case that

h (H) ≥ n+1
4

+ 1 then by (46)

r (H) = n− 2h (H)− b (H)− 4 ≤ n− 2

(
n+ 1

4
+ 1

)
− b (H)− 4

=
1

2
n− b− 13

2
≤ n− 13

2
≤ n− 11

2
= r

(
Qn+1

4

)

Let TI be a vertex-degree-based topological index induced by the real nonnegative numbers {ϕij}.
From (2), (3), (4) and (7) we deduce that if H ∈ Λn then

TI (H) = ϕ22n+ [3ϕ33 − 2ϕ22]h+ [2ϕ23 − ϕ22 − ϕ33] r + [2ϕ22 − 3ϕ33] . (47)

If H,U ∈ Λn then clearly

TI (H)− TI (U) = [3ϕ33 − 2ϕ22] (h (H)− h (U)) + [2ϕ23 − ϕ22 − ϕ33] (r (H)− r (U)) (48)

From now on we set p = 3ϕ33 − 2ϕ22 and q = 2ϕ23 − ϕ22 − ϕ33.

Theorem 7.6. [1] Let TI be a topological index of the form (7) induced by the nonnegative real numbers

{ϕ22, ϕ23, ϕ33}. Assume that H0 is a hexagonal system with maximal number of inlets in Λn. Then:

1. If p ≤ 0 and q ≥ 0 then TI reaches its maximal value in H0;

2. If p ≥ 0 and q ≤ 0 then TI reaches its minimal value in H0.

Proof. Let U ∈ Λn. Then by (48)

TI (H0)− TI (U) = p (h (H0)− h (U)) + q (r (H0)− r (U)) (49)

By hypothesis r (H0)− r (U) ≥ 0. By (45) and Theorem 7.5,

h (U) ≥
⌈
1

4
(n− 2)

⌉
= h (H0)

Hence by (49), if p ≤ 0 and q ≥ 0 then

TI (H0)− TI (U) ≥ 0

and if p ≥ 0 and q ≤ 0 then

TI (H0)− TI (U) ≤ 0

In other words, if p ≤ 0 and q ≥ 0 then TI (H0) ≥ TI (U) for all U ∈ Λn, which implies that TI
reaches its maximal value in H0. Similarly, if p ≥ 0 and q ≤ 0 then TI (H0) ≤ TI (U) for all U ∈ Λn,
and so TI reaches its minimal value in H0.
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Example 7.7. The following table contains the values of p and q for several well-known topological

indices:
ij 1√

ij
2
√
ij

i+j
2

i+j
1√
i+j

(ij)3

(i+j−2)3

q -1 -.0168 -.0404 -.0333 -.0138 -3.3906
p 19 0 1 0 0.22 18.17

(50)

Hence, by Theorems 7.5 and 7.6 we can deduce the minimal value of each TI over Λn, for every n. More

precisely, the minimal value of every TI that appears in Table (50) over Λn is as follows:

n ≡ 0 (mod4) n ≡ 1 (mod4) n ≡ 2 (mod4) n ≡ 3 (mod4)
↓ ↓ ↓ ↓
Nn

4
Mn−1

4
Ln−2

4
Qn+1

4

If H is a hexagonal system with n vertices, then from the relations (5), (46) and (47) we deduce

TI (H) = [2ϕ23 − ϕ33]n+ [5ϕ33 − 4ϕ23]h (H) + [−2ϕ23 + ϕ22 + ϕ33] b (H)

+ [6ϕ22 + ϕ33 − 8ϕ23] .

Consequently, for hexagonal systems W,Z ∈ Λn

TI (W )− TI (Z) = [5ϕ33 − 4ϕ23] [h (W )− h (Z)] + (51)

[−2ϕ23 + ϕ22 + ϕ33] [b (W )− b (Z)]

Set t = 5ϕ33 − 4ϕ23 and keep the notation for q introduced earlier. Then

TI (W )− TI (Z) = t [h (W )− h (Z)]− q [b (W )− b (Z)] (52)

As we can see this expression only depends on the number of hexagons and the number of bay regions.
We know from (45) that the maximal value possible of hexagons in a system with n vertices is n + 1−⌈
1
2

(
n+

√
6n
)⌉

, and this occurs precisely in the spirals Sn.

Theorem 7.8. [1] Let h such that Sh is convex and n = 2h+ 1 +
⌈√

12h− 3
⌉
. Then

1. If u ≥ 0 and q ≥ 0 then Sh has the maximal TI-value over Λn;

2. If u ≤ 0 and q ≤ 0 then Sh has the minimal TI-value over Λn.

Proof. Since ni (Sh) = 2h+ 1−
⌈√

12h− 3
⌉

then

n (Sh) = 4h+ 2−
(
2h+ 1−

⌈√
12h− 3

⌉)
= 2h+ 1 +

⌈√
12h− 3

⌉

and so Sh has n vertices. Also we know by hypothesis that b (Sh) = 0. On the other hand, n =

2h+ 1 +
⌈√

12h− 3
⌉

implies h = n+ 1−
⌈
1
2

(
n+

√
6n
)⌉

. Hence by (52) and (45) it follows that for
any hexagonal system H ∈ Λn

TI (H)− TI (Sh) = t [h (H)− h (Sh)]− q [b (H)− b (Sh)]

= t

[
h (H)−

(
n+ 1−

⌈
1

2

(
n+

√
6n
)⌉)]

− q [b (H)]

{
≤ 0 if t ≥ 0 and q ≥ 0
≥ 0 if t ≤ 0 and q ≤ 0

.
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Example 7.9. Consider the atom-bond connectivity index defined by the numbers ϕij =
√

i+j−2
ij

. Then

t ∼= 0.505 and q ∼= 0.04. Hence by part 1. of Theorem 7.8 we can determine its maximal value for those

h such that Sh is convex.

8. Hexagonal systems with equal number of edges

From now on we will denote by Γm the set of hexagonal systems with m edges. The main idea in this
section consists in constructing hexagonal systems with maximal number of inlets in Γm which have
simultaneously minimal number of hexagons. Figure 33 shows several hexagonal systems belonging to
Γ51.

Figure 33. Hexagonal systems with equal number of edges

We note that the number of hexagons in the hexagonal systems of Γ51 is variable. In general, given a
positive integer m, the variation of the number of hexagons in Γm is completely determined by Harary
and Harborth [16]: if H ∈ Γm then

⌈
1

5
(m− 1)

⌉
≤ h (H) ≤ m−

⌈
1

3

(
2m− 2 +

√
4m+ 1

)⌉
. (53)

Example 8.1. Consider the set Γ51. Then by (45), if H ∈ Γ51 then

10 ≤ h (H) ≤ 12

Hence we can classify the hexagonal systems in Γ51 depending on the number of hexagons as:

h = 10 h = 11 h = 12
ni = 0 ni = 5 ni = 10

We have to extend Proposition 7.4 to hexagonal systems with four internal vertices.

Lemma 8.2. Let H be a hexagonal system such that ni (H) = 4. Then H must contain a subhexagonal

system of the form given in Figure 34, where no hexagons are adjacent to the fissures.

Proof. If the four internal vertices are connected then H must have a subhexagonal system of type (d),
(e) or (f) in Figure 34. Clearly, no hexagons are adjacent to the fissures, otherwise ni (H) ≥ 5. If the
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four internal vertices are not connected then the possibilities that H has subhexagonal systems are as
shown in the columns of the following table:

type (a) 1 0 2 4
type (b) 0 2 1 0
type (c) 1 0 0 0

In any case, no hexagons are adjacent to the fissures, otherwise ni (H) ≥ 5.

Figure 34. Hexagonal systems with 1,2,3 and 4 internal vertices, respectively.

Let us define the hexagonal system Rh as in Figure 35.

Figure 35. Hexagonal systems with maximal number of inlets.

Proposition 8.3. Let H be a hexagonal system with h hexagons. If ni (H) = 4 then

r (H) ≤ r (Rh) =

{
6 if h = 6

2h− 7 if h ≥ 7
.

Proof. If h = 6 then H is one of the hexagonal systems (d), (e) and (f) in Figure 34. In any case it is
clear that r (H) ≤ r (R6). So let us assume that h ≥ 7. By Lemma 8.2, H has a subhexagonal system
as in Figure 34, where no hexagons are adjacent to the fissures. Since h ≥ 7 there must exist hexagons
adjacent to a (2-2)-edge, and these hexagons will transform one of the fissures into a bay, cove or fjord.
Consequently, b (H) ≥ 1. Then by (5)

r (H) = 2h (H)− b (H)− 6 ≤ 2h− 7.
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Next we find a hexagonal system with maximal number of inlets in the set of hexagonal systems with
equal number of edges. Recall that for H ∈ Γm the following relation holds [13]

m (H) = 5h (H) + 1− ni (H) . (54)

We then deduce from (5) and (54) that

r (H) = m (H)− 3− 3h (H)− b (H) . (55)

Theorem 8.4. [27] Let H ∈ Γm. Then

r (H) ≤





r
(
Mm

5

)
if m ≡ 0 (mod 5)

r
(
Lm−1

5

)
if m ≡ 1 (mod 5)

r
(
Rm+3

5

)
if m ≡ 2 (mod 5)

r
(
Qm+2

5

)
if m ≡ 3 (mod 5)

r
(
Nm+1

5

)
if m ≡ 4 (mod 5)

Proof. Recall that h (H) ≥
⌈
1
5
(m− 1)

⌉
(see (53)).

(a) Assume that m ≡ 0 (mod 5). Then
⌈
1
5
(m− 1)

⌉
= m

5
. If h (H) = m

5
then by (54)

m = 5
(m
5

)
+ 1− ni (H)

which implies that ni (H) = 1. Then r (H) ≤ r
(
Mm

5

)
by part 1 of Proposition 7.4. Otherwise h (H) ≥

m
5
+ 1 and so by (55) and the fact that b (H) ≥ 0

r (H) = m− 3− 3h (H)− b (H) ≤ m− 3− 3
(m
5
+ 1
)

=
2m− 30

5
≤ 2m− 20

5
= r

(
Mm

5

)
.

(b) Assume that m ≡ 1 (mod 5). Then
⌈
1
5
(m− 1)

⌉
= m−1

5
. It follows from (55)

r (H) = m− 3− 3h (H)− b (H) ≤ m− 3− 3

(
m− 1

5

)

=
2m− 12

5
= r

(
Lm−1

5

)
.

(c) Assume that m ≡ 2 (mod 5). Then
⌈
1
5
(m− 1)

⌉
= m+3

5
. If h (H) = m+3

5
then by (54)

m = 5

(
m+ 3

5

)
+ 1− ni (H)

which implies that ni (H) = 4. It follows from Proposition 8.3 that r (H) ≤ r
(
Rm+3

5

)
. Otherwise

h (H) ≥ m+3
5

+ 1 and then by (55)

r (H) = m− 3− 3h (H)− b (H) ≤ m− 3− 3

(
m+ 3

5
+ 1

)

=
2m− 39

5
≤ 2m− 29

5
= r

(
Rm+3

5

)
.
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(d) Assume that m ≡ 3 (mod 5). Then
⌈
1
5
(m− 1)

⌉
= m+2

5
. If h (H) = m+2

5
then by (54)

m = 5

(
m+ 2

5

)
+ 1− ni (H)

which implies ni (H) = 3. It follows from Proposition 7.4 that r (H) ≤ r
(
Qm+2

5

)
. Otherwise h (H) ≥

m+2
5

+ 1 and then by (55)

r (H) = m− 3− 3h (H)− b (H) ≤ m− 3− 3

(
m+ 2

5
+ 1

)

=
2m− 36

5
≤ 2m− 26

5
= r

(
Qm+2

5

)
.

(e) Assume that m ≡ 4 (mod 5). Then
⌈
1
5
(m− 1)

⌉
= m+1

5
. If h (H) = m+1

5
then by (54)

m = 5

(
m+ 1

5

)
+ 1− ni (H)

which implies ni (H) = 2. It follows from Proposition 7.4 that r (H) ≤ r
(
Nm+1

5

)
. Otherwise h (H) ≥

m+1
5

+ 1 and then by (55)

r (H) = m− 3− 3h (H)− b (H) ≤ m− 3− 3

(
m+ 1

5
+ 1

)

=
2m− 33

5
≤ 2m− 23

5
= r

(
Nm+1

5

)
.

Let TI be a vertex-degree-based topological index defined by the nonnegative real numbers {ϕij}.
By (2), (3), (4) and the well-known fact [13]

n = m− h+ 1

we deduce from (7)

TI (H) = ϕ22m+ 3 (ϕ33 − ϕ22)h+ (2ϕ23 − ϕ22 − ϕ33) r + 3 (ϕ22 − ϕ33) . (56)

In particular, if H,U ∈ Γm then

TI (H)− TI (U) = 3 (ϕ33 − ϕ22) (h (H)− h (U))

+ (2ϕ23 − ϕ22 − ϕ33) (r (H)− r (U)) .
(57)

Define q = 2ϕ23 − ϕ22 − ϕ33 and s = ϕ33 − ϕ22.

Theorem 8.5. [27] Let TI be a vertex-degree-based topological index defined by the nonnegative real

numbers {ϕ22, ϕ23, ϕ33}. Assume that q ≥ 0 and s ≤ 0 (resp. q ≤ 0 and s ≥ 0). Then the maximal

(resp. minimal) TI-value over Γm is attained in:
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1. Mm
5

if m ≡ 0 (mod 5) ;

2. Lm−1
5

if m ≡ 1 (mod 5) ;

3. Rm+3
5

if m ≡ 2 (mod 5) ;

4. Qm+2
5

if m ≡ 3 (mod 5) ;

5. Nm+1
5

if m ≡ 4 (mod 5) .

Proof. Let H ∈ Γm. Note that by (53)

h (H) ≥
⌈
1

5
(m− 1)

⌉
=





h
(
Mm

5

)
if m ≡ 0 (mod 5)

h
(
Lm−1

5

)
if m ≡ 1 (mod 5)

h
(
Rm+3

5

)
if m ≡ 2 (mod 5)

h
(
Qm+2

5

)
if m ≡ 3 (mod 5)

h
(
Nm+1

5

)
if m ≡ 4 (mod 5)

Hence by Theorem 8.4 the hexagonal systems Mm
5
, Lm−1

5
, Rm+3

5
,Qm+2

5
and Nm+1

5
have simultaneously

maximal number of inlets and minimal number of hexagons over the set of hexagonal systems with m

edges. Hence the result follows from (57) and the signs of q and s.

Example 8.6. The following table contains the values of q and s for several well-known topological

indices:
ij 1√

ij
2
√
ij

i+j
2

i+j
1√
i+j

(ij)3

(i+j−2)3

√
i+j−2

ij

q -1 -.0168 -.0404 -.0333 -.0138 -3.390 0.040
s 5 -.1667 0 -.1667 -0.091 3.390 -0.040

(58)

Hence by Theorem 8.5, in the case of the second Zagreb index, geometric-arithmetic index and the

augmented Zagreb index we can determine the minimal value of TI , and for the atom-bond-connectivity

index we can determine the maximal value of TI .

Susbstituting (55) in (56) we obtain a new expression for TI

TI (H) = (2ϕ23 − ϕ33)m+ 6 (ϕ33 − ϕ23)h+ (ϕ22 − 2ϕ23 + ϕ33) b+ 6 (ϕ22 − ϕ23)

and so for every H,U ∈ Γm

TI (H)− TI (U) = u (h (H)− h (U))− q (b (H)− b (U)) (59)

where u = 6 (ϕ33 − ϕ23) and q as before. We will now use this expression to find extremal values of
TI over the set of hexagonal systems with m edges. Recall that a hexagonal system H with m edges
satisfies (53)

h (H) ≤ m−
⌈
1

3

(
2m− 2 +

√
4m+ 1

)⌉
.
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Theorem 8.7. [27]Let h such that the spiral Sh is convex and m = 3h+
⌈√

12h− 3
⌉

. Then

1. If u ≥ 0 and q ≥ 0 then Sh has the maximal TI-value over Γm;

2. If u ≤ 0 and q ≤ 0 then Sh has the minimal TI-value over Γm.

Proof. Since ni (Sh) = 2h+ 1−
⌈√

12h− 3
⌉

then

m (Sh) = 5h+ 1−
(
2h+ 1−

⌈√
12h− 3

⌉)
= 3h+

⌈√
12h− 3

⌉
= m

and so Sh has m edges. Also we know by hypothesis that b (Sh) = 0. On the other hand, m =

3h+
⌈√

12h− 3
⌉

implies h = m−
⌈
1
3

(
2m− 2 +

√
4m+ 1

)⌉
. Hence by (59) and (53) it follows that

for any hexagonal system H ∈ Γm

TI (H)− TI (Sh) = u (h (H)− h)− qb (H)

{ ≤ 0 if u ≥ 0 and q ≥ 0

≥ 0 if u ≤ 0 and q ≤ 0
.

Remark 8.8. Note that in general the spiral hexagonal system Sh satisfies

b (Sh) = 0 or b (Sh) = 1.

In Section 5 there is a precise description of the (infinite) values of h for which Sh is convex. For instance,

if h = 3k2 − 3k+ 1 for any positive integer k then Sh is convex. So the hypothesis of Theorem 8.7 holds

for a large number of values of h.

Example 8.9. The following table contains the values of q and u for several well-known topological

indices:
ij 1√

ij
2
√
ij

i+j
2

i+j
1√
i+j

(ij)3

(i+j−2)3

√
i+j−2

ij

q -1 -.0168 -.0404 -.0333 -.0138 -3.390 0.040
u 18 -.449 0.121 -0.4 -0.233 20. 344 -0.242

(60)

It follows from Theorem 8.7 that the Randić index, the harmonic index and the sum-connectivity index

have minimal TI values in the spiral Sh.
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[30] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical
means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–1376.

[31] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
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Abstract

The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of degrees
of vertices of G. In this chapter, we report our recent results on computing an important degree-based
topological index, which is called Narumi-Katayama index, for dendrimers. Also, we gather some
of our results about the Narumi-Katayama index of some graph compositions which using them, the
Narumi-Katayama index of many chemical graphs can be computed. Next, we demonstrate some
applications to chemically relevant graphs and show how the Narumi-Katayama index can be used as
a measure of graph irregularity.
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1. Introduction

Several hundreds of topological invariants of molecular graphs have been defined and employed in the
QSAR/QSPR research during the last couple of decades [13]. One of the simplest, defined as the product

287



288

of degrees of all vertices, was introduced by Narumi and Katayama in 1984 and named, accordingly,
the “simple topological index” [12]. In the subsequent papers the more informative name “Narumi–
Katayama index” was introduced and became established, so we use it in the present chapter. In the
beginning, the index attracted only a moderate attention [4,6], but recently a number of papers appeared
studying its various mathematical properties (such as the extremal graphs and values [5]) and its values
over special classes of graphs [14]. Further, it also spawned various generalizations such as the degree
product polynomial considered recently by Klein and Rosenfeld [10, 11]. This chapter aims to further
contribute to the better understanding of the Narumi-Katayama index by investigating its behavior under
several binary operations on graphs. The results in this chapter are mainly taken from [7,8]. We start by
defining the terms.

A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to
the bonds [15]. For a given graph G we denote its vertex set by V (G) and its edge set by E(G). The
number of vertices is denoted by n. If we consider several graphs, G1, . . . , Gk, the quantities pertaining
to a given graph are denoted by the corresponding subscript. The degree dG(v) of a vertex v ∈ V (G) is
the number of neighbors of v in G. When the graph G is clear from the context, we omit the subscript.

The Narumi–Katayama index of a graph G is defined as the product of degrees of all its vertices,

NK(G) =
n∏

i=1

dG(vi).

It is clear from the definition that we can restrict our attention to connected graphs, since for a graph
with several connected components its Narumi–Katayama index is equal to the product of the indices of
components. (This restriction also takes care of graphs with isolated vertices, among which the index
cannot discriminate.)

Let U = {u1, u2, . . . , uk} be a subset of V (G). We define the truncated Narumi–Katayama index
(with respect to U ) as

NK(U)(G) =
∏

v∈V (G)−U

dG(v).

In the case when U is the empty set, we obtain NK(∅)(G) = NK(G). Note that here the vertices
of U are not deleted from V (G), and the degrees of vertices not in U are not affected. The truncated
Narumi–Katayama index will enable us to express some of our results in a more compact form.

2. Composite graphs

Many interesting classes of graphs arise from simpler graphs via binary operations sometimes known
as graph products. (We refer the reader to a monograph by Imrich and Klavžar [9] for a comprehensive
introduction.) Our aim here is to study how the Narumi–Katayama indices of such graphs can be ex-
pressed in terms of Narumi–Katayama indices of operands and some auxiliary invariants. We start by
three simple operations on the union of two graphs.
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2.1 Splice, link and gate

Let G1 and G2 are two graphs with disjoint vertex sets. For given vertices v1 ∈ V (G1) and v2 ∈ V (G2)

the splice of G1 and G2 by vertices v1 and v2, (G1·G2)(v1, v), is defined by identifying the vertices v1 and
v2 in the union of G1 and G2. Similarly, the link of G1 and G2 by vertices v1 and v2 is defined as the graph
(G1 ∼ G2)(v1, v2) obtained by joining v1 and v2 by an edge in the union of these graphs. We shorten
the notation to G1 · G2 and G1 ∼ G2 when the vertices v1, v2 are clear from the context. (These two
operations also appear in the literature under different names; we follow here the terminology introduced
in [2].)

The gate (G1||G2)(u1, v1;u2, v2) is obtained from G1 and G2 by identifying the edges u1v1 of G1

and u2v2 of G2 so that u1 is identified with u2 and v1 with v2. We denote the end-vertices of the identified
edge in G1||G2 by u12 and v12.

Obviously, the only vertices whose degrees are affected by the above operations are ui and vi, for
i = 1, 2. If we denote by v12 the vertex of G1 · G2 obtained by identifying v1 and v2, we have the
following expressions.

dG1·G2(v12) = dG1(v1) + dG2(v2);

dG1∼G2(v1) = dG1(v1) + 1;

dG1∼G2(v2) = dG2(v2) + 1;

dG1||G2(u12) = dG1(u1) + dG2(u2)− 1;

dG1||G2(v12) = dG1(v1) + dG2(v2)− 1.

The following results are direct consequences of the above observations.
Proposition 1

NK(G1 ·G2) = NK(G1)NK(G2)
dG1(v1) + dG2(v2)

dG1(v1)dG2(v2)
;

NK(G1 ∼ G2) = NK(G1)NK(G2)
(dG1(v1) + 1)(dG2(v2) + 1)

dG1(v1)dG2(v2)
;

NK(G1||G2) = NK(G1)NK(G2)
(dG1(u1) + dG2(u2)− 1)(dG1(v1) + dG2(v2)− 1)

dG1(u1)dG2(u2)dG1(v1)dG2(v2)
.

�
An alternative way of writing the second result is

NK(G1 ∼ G2) = NK(G1)NK(G2) +NK(G1 ·G2) +NK(V (G1)−v1)(G1)NK(V (G2)−v2)(G2).

The results for splice can be in a straightforward way generalized to more than two operands. If we
have graphs G1, . . . , Gk and vi ∈ V (Gi) for each i = 1, . . . , k, then their splice in vertices vi is obtained
by identifying all k vertices vi.
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Corollary 2

NK(G1 ·G2 · . . . ·Gk) =

∑k
i=1 dGi

(vi)∏k
i=1 dGi

(vi)

k∏

i=1

NK(Gi).

�
If we have k copies of the same graph G and splice them at the same vertex v, we obtain G·k, the

k-th splice-power of G. The above result then simplifies to

NK(G·k) =
k [NK(G)]k

dG(v)k−1
.

By considering links of more than two graphs we arrive at the next class of composite graphs con-
sidered here, the chain (or bridge) graphs.

2.2 Chains and necklaces

Let Gi, 1 ≤ i ≤ k, be some graphs and vi ∈ V (Gi). A chain graph denoted by G = G(G1, . . . , Gk, v1,

. . . , vk) is obtained from the union of the graphs Gi, i = 1, . . . , k, by adding the edges vivi+1 1 ≤ i ≤
k − 1, see Fig. 1. Then |V (G)| =∑k

i=1 |V (Gi)| and |E(G)| = (k − 1) +
∑k

i=1 |E(Gi)|. By adding the
edge vkv1 to a chain graph we obtain the corresponding necklace G0 = G0(G1, . . . , Gk, v1, . . . , vk).

G1 G2 Gk

v1 v2 vk

Figure 1. The chain graph G = G(G1, . . . , Gk, v1, . . . , vk).

One can see that G(G1, G2, v1, v2) ∼= (G1 ∼ G2)(v1, v2).

It is worth noting that the above specified classes of chain graphs and necklaces embrace, as special
cases, all trees (among which are the molecular graphs of alkanes) and all unicyclic graphs (among
which are the molecular graphs of monocycloalkanes). Also the molecular graphs of many polymers
and dendrimers are chain graphs. Further, when all Gi are equal to G and all vi are equal, we have the
rooted products of Pk and G and of Ck and G.

It is clear that the root vertices are the only ones whose degrees are affected by the chain and necklace
construction. Hence,

dG(u) =





dGi
(u) if u ∈ V (Gi) and u 6= vi

dGi
(vi) + 1 if u = vi, i = 1, k

dGi
(vi) + 2 if u = vi, 2 ≤ i ≤ k − 1

.

dG0(u) =

{
dGi

(u) if u ∈ V (Gi) and u 6= vi
dGi

(vi) + 2 if u = vi, 1 ≤ i ≤ k
.
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Theorem 3

NK(G(G1, . . . , Gk, v1, . . . , vk)) = (dG1(v1) + 1)(dGk
(vk) + 1)

k−1∏

i=2

(dG1(vi) + 2)

×
n∏

i=1

NK(V (Gi)−vi)(Gi).

�
Theorem 4

NK(G0(G1, . . . , Gk, v1, . . . , vk)) =
k∏

i=1

(dG1(vi) + 2)
n∏

i=1

NK(V (Gi)−vi)(Gi).

�
In both cases the proof follows immediately by using the definition of the truncated NK index, and

we omit the details.

2.3 Join

The join (sometimes also called the sum) of two graphs G1 and G2 is obtained by taking their union
and adding all possible edges between V (G1) and V (G2). We denote it by G1∇G2. When one of the
graphs is K1, the join of K1 and G is called the suspension of G. The degree of a vertex of G in its
suspension increases by one, while the degree of the vertex of K1 is equal to |V (G)| = n. Hence the
Narumi–Katayama index of K1∇G is given by

NK(K1∇G) = n

n∏

i=1

(dG(vi) + 1).

The product on the right-hand side of the above formula can be expressed in terms of truncated
Narumi–Katayama indices with respects to all subsets of V (G). The result follows by expanding the
product into a sum of 2n terms and noting that the products of degrees of each of 2n subsets of V (G)

appear exactly once in the sum.

Proposition 5
NK(K1∇G) = n

∑

U⊆V (G)

NK(U)(G).

�
The above result can be straightforwardly generalized to the case when one of the components of a

join is the set of m independent vertices, i.e., the complement Km of the complete graph Km.

Proposition 6

NK(Km∇G) = nm


 ∑

U⊆V (G)

NK(U)(G)mn−|U |


 .

�
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A closer look on the above formula should reveal that all effects of the independence of vertices of
Km are concentrated in the nm term. Hence, the contribution of vertices of one component in a join
of two graphs depends only on the number of vertices in the other component, and not on its internal
structure. From this observation we can deduce the formula for the general case.

Proposition 7 Let G1 and G2 be two graphs with n1 and n2 vertices, respectively. Then

NK(G1∇G2) =


 ∑

U1⊆V (G1)

NK(U1)(G1)n
n1−|U1|
2




 ∑

U2⊆V (G2)

NK(U2)(G2)n
n2−|U2|
1


 .

�
The results of this subsection could be further generalized to joins of more than two graphs, but we

leave that to the interested reader. Instead, we use them to derive formulas for the Narumi–Katayama
index of a corona of two graphs.

2.4 Corona

The corona of two graphs G and H is the graph obtained by taking |V (G)| copies of H and connecting
each vertex in the i-th copy of H to the vertex vi of G. It is usually denoted by G ◦ H . (We have used
G and H instead of G1 and G2 in order to stress the fact that the components enter their corona in an
asymmetric way.) Hence, a corona is a collection of n suspensions of H on a scaffold provided by G.
This is reflected in the formula for its Narumi–Katayama index.

Proposition 8 Let G and H be two graphs with n and m vertices, respectively. Then

NK(G ◦H) =


 ∑

U⊆V (G)

NK(U)(G)mn−|U |




 ∑

W⊆V (H)

NK(W )(H)




n

.

�

2.5 Composition

The composition of two graphs G and H is the graph with vertex set V (G) × V (H), and the vertex
u = (u1, v1) is adjacent to the vertex v = (u2, v2) whenever either u1u2 ∈ E(G) or u1 = u2 and
v1v2 ∈ E(H). This graph operation is denoted by G[H]. So the degree of the vertex (u, v) in G[H] is
dG[H](u, v) = dH(v) + ndG(u), where n is the number of vertices of G. The composition of two graphs
is also known as graph substitution, a name that bears witness to the fact that G[H] can be obtained
from G by substituting a copy of H , labeled Hw, for every vertex w in V (G) and then joining all vertices
of Hw with all vertices of Hw′ if and only if ww′ ∈ E(G), and there are no edges between vertices in
Hu and Hu′ otherwise. Now by the above approach, one can see the Narumi-Katayama index of the
composition of two graphs as follows:

Proposition 9 Let G and H be two graphs with n and m vertices, respectively. Then

NK(G[H]) =
∏

u∈V (G)

∑

U⊆V (H)

NK(U)(H) (ndG(u))
m−|U |.

�
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2.6 Cartesian product

The Cartesian product G1�G2 of graphs G1 and G2 is a graph such that V (G1�G2) = V (G1)×V (G2),
and any two vertices (u1, v1) and (u2, v2) are adjacent in G1�G2 if and only if either (u1 = u2 and v1

is adjacent with v2), or (v1 = v2 and u1 is adjacent with u2). It is easy to see that dG1�G2(u, v) =

dG1(u) + dG2(v). According to the previous subsections, we can write the Narumi-Katayama index of
the Cartesian product of two graphs G1 and G2 with n and m vertices, respectively, by

∏

u∈V (G1)

∑

U⊆V (G2)

NK(U)(G2) (dG1(u))
m−|U |

or ∏

v∈V (G2)

∑

W⊆V (G1)

NK(W )(G1) (dG2(v))
n−|W | .

So to preserve the symmetric of the formula for the Narumi-Katayama index of Cartesian product of two
graphs, we have the next proposition.

Proposition 10 Let G1 and G2 be two graphs with n and m vertices, respectively. Then

NK(G1�G2) =
1

2

∏

u∈V (G1)

∑

U⊆V (G2)

NK(U)(G2) (dG1(u))
m−|U |

+
1

2

∏

v∈V (G2)

∑

W⊆V (G1)

NK(W )(G1) (dG2(v))
n−|W |.

�

3. Applications and concluding remarks

3.1 Spiro and polyphenyl hexagonal chains

A (poly)spiro compound is a polycyclic organic compound whose rings are connected by one atom. The
rings may be of various lengths. The connecting atom, most often a carbon, is also called the spiroatom.
Their graphs appear in the mathematical literature as cactus graphs; if a polyspiro compound is un-
branched, the corresponding graph is also known as cactus chain [3]. If all cycles (rings) are of the same
length, we say that the chain is uniform. An example of a uniform (hexagonal) spiro chain of length 6 is
shown in Fig. 2.

Figure 2. A hexagonal spiro chain of length 6.
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Let a hexagonal chain of length h be denoted by Hh. From the first claim of Proposition 1 we obtain
the recurrence for NK(Hh),

NK(Hh+1) = NK(Hh)NK(H1).

This, together with the obvious initial condition NK(H1) = 26 = 64, yields the following result.

Corollary 11

NK(Hh) = 64h.

�
The same reasoning remains valid also when the cycles are not all of the same length. In general, if

Gh is a cactus graph with h blocks in which every cut-vertex is shared by exactly two cycles, then

NK(Gh) = 2|V (Gh)|,

regardless of the structure of Gh.

A class of polycyclic compounds in which two or more benzene rings are connected by a cut edge is
known as polyphenyl compounds. Their graphs are called polyphenyl hexagonal chains. An example is
shown in Fig. 3. We denote such a chain with h hexagons by PPh.

Figure 3. A polyphenyl hexagonal chain of length 6.

By using the second claim of Proposition 1 we immediately obtain

NK(PPh) =

(
9

4

)h−1

NK(Hh),

leading to the explicit expression NK(PPh) =
4
9
144h.

3.2 Catacondensed benzenoids

It is clear that the graph of any catacondensed benzenoid can be constructed by starting from a single
hexagon and adding one hexagon at a time by the gate operation. If we denote a catacondensed benzenoid
with h hexagons by Bh, we obtain a recurrence for NK(Bh) in the form

NK(Bh+1) =

(
9

16

)
NK(Bh)NK(B1),

resulting in the explicit formula NK(Bh) =
(

9
16

)h−1
NK(B1)

h = 16
9
36h. (See also [14].)
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3.3 Phenylenes and their hexagonal squeezes

The last class of object we consider here are phenylenes and their hexagonal squeezes as defined in [14].
It is obvious that any phenylene can be constructed starting from a single hexagon and adding one
hexagon at a time by iterating the two-step construction shown in Fig. 4. Hence, we first

Figure 4. Two-step construction of a phenylene.

link a hexagon to the already constructed graph, and then add an edge. We will need the following
lemma that describes the effect of adding an edge to G.

Lemma 12 Let G be a connected graph and u, v ∈ V (G) two non-adjacent vertices of G. Then

NK(G+ uv) = NK(G)
(d(u) + 1)(d(v) + 1)

d(u)d(v)
.

�
By combining Lemma 12 with the second claim of Proposition 1 we obtain a recurrence for the

Narumi-Katayama indices of phenylenes and their hexagonal squeezes. It leads to explicit formulas that
confirm the relationships between them established in reference [14].

3.4 Dendrimers

The goal of this section is computing the truncated NK index of an infinite class of dendrimers. To do
this, we use from Theorem 2. The truncated NK index for other classes of dendrimers, can be computed
similarly.

Consider the graph G1 shown in Fig. 5.

v1

v2 v3

Figure 5. The graph of dendrimer Gn for n = 1.

It is easy to see that

NK(G1) = 21534,

NK(v1)(G1) = NK(v2)(G1) = NK(v3)(G1) = NK(v)(G1) = 21434,
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and so, for 1 ≤ i, j ≤ 3, i 6= j,

NK(v,v)(G1) = NK(vi,vj)(G1) = 21334.

Now consider the graph Gn = (Gn−1 ∼ H1)(v1, u1), shown in Fig. 2 (for n = 1) and Fig. 3, respectively.
It is easy to see that Hi

∼= G1, (1 ≤ i ≤ n− 1) and

Gn = (Gn−1 ∼ H1)(v1, u1)

Gn−1 = (Gn−2 ∼ H2)(v2, u2)
...

Gn−i = (Gn−i−1 ∼ Hi+1)(vi+1, ui+1)
...

G2 = (G1 ∼ Hn−1)(vn−1, un−1)

Then by using Theorem 3, we have the following relations:

NK(Gn) = NK(v1)(Gn−1) NK(u1)(H1)× 32

NK(v1)(Gn−1) = NK(v2)(Gn−2) NK(v1,u2)(H2)× 32

...

NK(vi)(Gn−i) = NK(vi+1)(Gn−i−1) NK(vi,ui+1)(Hi+1)× 32

...

NK(vn−2)(G2) = NK(vn−1)(G1) NK(vn−2,un−1)(Hn−1)× 32

Production of two sides of these relations yields

NK(Gn) = NK(vn−1)(G1) NK(u1)(H1)
n−1∏

i=2

NK(vi−1,ui)(Hi)× 32(n−1)

and it is easy to obtain

NK(Gn) = (NK(v1)(G1) )
2 (NK(v1,v2)(G1) )

n−2 × 32(n−1)

= 213n+236n−2.

In other words we arrived at the following:
Theorem 13 Consider the graph Gn = (Gn−1 ∼ H1)(v1, u1), (2 ≤ n), shown in Fig. 6. Then,

NK(Gn) = 213n+236n−2.

Corollary 14 Consider the dendrimer D, shown in Fig. 7. Then,

NK(D) = 213n+236n−2,



297

where n is the number of repetition of the fragment G1.

vn-1

un-1

vj
uj

v2
u2

v1

u1

Figure 6. The graph Gn and the labeling of its vertices.

Figure 7. The graph of the dendrimer D.
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3.5 Graph irregularity

Regularity of a graph is a binary property - a graph is either regular or not. However, while all regular
graphs (of a given order and size) are equally regular, the non-regular graphs of the same order and size
are not all equally far from being regular. There are several proposed measures of non-regularity of a
graph. Most of them are based on measuring local discrepancies, i.e., quotients or differences of degrees
of adjacent vertices. An example is the invariant, first introduced and studied by Albertson [1] and called
irregularity. The irregularity of a graph G is defined as

irr(G) =
∑

uv∈E(G)

|dG(u)− dG(v)| .

(The same quantity is sometimes called also the third Zagreb index.) Further examples are the ari-
thmetic-geometric index and other indices based on combinations of various means of degrees of adja-
cent vertices.

Let G be a graph on n vertices and m edges. It is clear from the Arithmetic–Geometric Mean
inequality that the Narumi-Katayama index of a graph cannot exceed the n-th power of the average
degree of the graph

(
2m
n

)n. Furthermore, the bound is attained if and only if G is regular. Hence, it is to
be expected that a greater variability of degrees of vertices of G will be reflected in a smaller value of its
Narumi-Katayama index. This indeed seems to be the case. In Fig. 8 we show the scatter-plot of irr(G)

vs. NK(G) for all trees (left) and all unicyclic graphs (right) on 8 vertices.

Figure 8. The Narumi-Katayama index vs. irregularity for trees (left) and unicyclic graphs (right) on
8 vertices.

Although the exact nature of the relationship remains unexplored and the trend becomes less pro-
nounced for denser graphs, it is clear that the Narumi-Katayama index can serve as a useful global
measure of the graph irregularity.

Acknowledgement: The first two authors were supported in part by the Iran National Science Foundation
(INSF) (Grant 94014142).
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