8 th INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING

INNOVATION CENTER FACULTY OF MECHANICAL ENGINEERING UNIVERSITY OF BELGRADE & INDUSTRIAL ENGINEERING DEPARTMENT FACULTY OF MECHANICAL ENGINEERING UNIVERSITY OF BELGRADE P

R

0

С

E

E

D

Ν

G S

Editors: Vesna Spasojević-Brkić Mirjana Misita Uglješa Bugarić

> 29th-30th September, 2022 Belgrade, Serbia

SIE 2022

8th INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING

INNOVATION CENTER OF THE FACULTY OF MECHANICAL ENGINEERING & INDUSTRIAL ENGINEERING DEPARTMENT, FACULTY OF MECHANICAL ENGINEERING, UNIVERSITY OF BELGRADE, SERBIA

Editors:

Vesna Spasojević Brkić Mirjana Misita Uglješa Bugarić

> 29th-30th September 2022 Belgrade, Serbia

Editors Vesna Spasojević Brkić Mirjana Misita Uglješa Bugarić

8th INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING - SIE 2022, PROCEEDINGS

Publisher

University of Belgrade Faculty of Mechanical Engineering, Belgrade

Printing firm "PLANETA PRINT" d.o.o. Beograd

Published by decision of the Dean no. 20/2022 from 30.08.2022. **ISBN 978-86-6060-131-7** Printing: 150 Published 2022

СІР - Каталогизација у публикацији - Народна библиотека Србије, Београд

005.22(082) 658.5(082) 006.83:338.45(082)

MEĐUNARODNI simpozijum Industrijsko inženjerstvo (8 ; 2022 ; Beograd) Proceedings / 8th International Symposium of Industrial Engineering [i.
e.] SIE 2022, 29th-30th September 2022 Belgrade, Serbia ; [organizers] Innovation Center of The Faculty of Mechanical Engineering, University of Belgrade [and] Industrial Engineering Department, Faculty of Mechanical

Engineering, University of Belgrade, Serbia ; editors Vesna Spasojević-Brkić, Mirjana Misita, Uglješa Bugarić. - Belgrade : University, Faculty of Mechanical Engineering, 2022 (Beograd : Planeta Print). - [10], 364 str. : ilustr. ; 30 cm

Tekst štampan dvostubačno. - Tiraž 150. - Str. [4]: Preface / editors. -Napomene i bibliografske reference uz radove. - Bibliografija uz svaki rad.

ISBN 978-86-6060-131-7

1. Mašinski fakultet (Beograd). Katedra za industrijsko inženjerstvo

а) Производња - Организација - Зборници b) Индустријски менаџмент - Зборници с) Индустрија - Систем квалитета - Зборници

COBISS.SR-ID 73704713

Sponzored by Government of the Republic of Serbia Ministry of Education, Science and Technological Development

Government of the Republic of Serbia Ministry of Education, Science and Technological Development

Organizers of SIE 2022: INNOVATION CENTER OF THE FACULTY OF MECHANICAL ENGINEERING & INDUSTRIAL ENGINEERING DEPARTMENT, FACULTY OF MECHANICAL ENGINEERING, UNIVERSITY OF BELGRADE, SERBIA

Program Advisory Committee

Chairperson: Spasojević Brkić Vesna, FME, Belgrade, SERBIA

- Anišić Zoran, FTS, UNS (SRB);
- Aronov Iosif, MGIMO (RUS);
- Babić Bojan, FME, BU (SRB);
- Barceló Ernest, Omya (CHE);
- Bragatto Paolo, INAIL (ITA);
- Brkić Aleksandar, IC, FME, BU (SRB);
- Bugarić Uglješa, FME, BU (SRB);
- Ćosić Ilija, FTS, UNS (SRB);
- Damjanović Milanko, FME, UM (MNE);
- Dondur Nikola, FME, BU (SRB);
- Dźwiarek Marek, Central Institute for Labour Protection (POL);
- Francalanza Emmanuel, FE, University of Malta (MLT);
- Jovanoski Bojan, FME, Skoplje (MKD);
- Karapetrović Stanislav, University of Alberta (CAN);
- Klarin Milivoj, TF "Mihajlo Pupin", UNS (SRB);
- Klochkov Yury, St. Petersburg Polytechnic University (RUS);
- Lisjak Dragutin, FME, UNZG (HRV);
- Mihajlović Ivan, TFB, Bor (SRB);
- Milazzo Francesca Maria, UM (ITA);
- Milosavljević Peđa, FME, Nis (SRB);
- Misić-Dimić Katarina, Aalto University, (FIN);
- Misita Mirjana, FME, BU (SRB);

Organizing Committee

- Vesna Spasojević Brkić, PhD, Full Professor, FME, Belgrade, Serbia, Chairperson
- Mirjana Misita, PhD, Full Professor, FME, Belgrade, Serbia
- Neda Papić, MSc, FME, Belgrade, Assistant, Serbia
- Martina Perišić, MSc, FME, Belgrade, Assistant, Serbia
- Nemanja Janev, MSc, FME, Belgrade, Serbia

- Nunes Lopes Isabel, FCT UNL, Lisbon (PRT);
- Popović Vladimir, FME UB (SRB);
- Putnik Goran, Universidade de Minho (PRT);
- Rožić Tomislav, UZ FTTS (CRO);
- Shuman Rutar Teodora, Seattle University (USA);
- Sibalija Tatjana, MU, Belgrade (SRB);
- Stanisavljev Sanja, TF "Mihajlo Pupin", UNS (SRB);
- Stanojević Petar, FSS, BU (SRB);
- Sütőová Andrea, TU Kosice (SLK);
- Tadić Danijela, FME, Kragujevac (SRB);
- Uzunović-Zaimović Nermina, FME, Zenica (BIH);
- Valis David, UD (CZE);
- Váncza József, MTA SZTAKI (HUN);
- Varela Leonilde, University of Minho (POR);
- Veljković Zorica, FME, BU (SRB);
- Vešović Vujadin, Engineering Academy of Serbia (SRB);
- Xiao-Guang Yue, IETI, Hong Kong (CHN);
- Zając Mateusz, Politechnika Wrocławska (POL);
- Zgodavová Kristína, TU Kosice (SLO);
- Živković Živan, TFB, Bor (SRB);
- Zrnić Nenad, FME, BU (SRB);
- Žunjić Aleksandar, FME, BU (SRB);

PREFACE

Since the first event in Belgrade, Serbia more than 25 years ago, in 1996, International Conference on Industrial Engineering - SIE has been held regularly every 3 years. This time we are one year late due to pandemic conditions. It represents an opportunity for researchers in the Industrial Engineering community to review and evaluate their scientific achievements over the period since the previous SIE, share their most recent results and ideas, and discuss possibilities for new directions in research, joint experiments and observing campaigns.

The first aim of the 8th International Conference on Industrial Engineering – SIE 2022 is to celebrate 70 years from founding of our department by prof. dr Vukan Dešić! We are proud of professor Dešić who, as stated in one of the archive documents was "a man of excellent professional abilities and one of the best experts" and thank him for all his immeasurable contributions! The second aim of SIE 2022 is to contribute to a better comprehension of the role and importance of Industrial Engineering and to point out to the future trends in the field of Industrial Engineering. The conference is also expected to foster networking, collaboration and joint effort among the conference participants to advance the theory and practice as well as to identify major trends in Industrial Engineering today. According to these goals the conference addresses itself to all experts in all fields of Industrial Engineering to make their contribution to success and show capabilities achieved in the work that has been done are very welcomed. SIE 2022 traditionally provides an international forum for the dissemination and exchange of scientific information in industrial engineering fields through the large number of multidisciplinary topics and continues tradition established by prof. Dešić to gather and bring together experts in the field.

The book brought together almost 200 authors from 20 countries, namely from Canada, Croatia, Finland, Germany, Iran, Italy, Libya, Montenegro, Netherlands, North Macedonia, Poland, Portugal, Russia, Bosnia & Herzegovina, Singapore, Slovakia, Switzerland, Turkey and USA and Serbia. The 84 submitted full length manuscripts were peer-reviewed, and 81 of them were selected for publication by experts in their respective fields. The authors ranged from senior and renowned scientists to young researchers. Only unpublished papers were accepted and the first author is responsible for the originality of the paper. All papers are classified into five chapters, including plenary lectures and numerous results of national and EU projects are there presented (financed by MESTD, PSHESR ARV, SF RS, EC, EF RD, TUKE, INAIL etc.).

We expect that papers and discussions will contribute to better comprehension the role and importance of Industrial Engineering in this and other countries, both in domain of scientific work and everyday practice.

Our efforts in organizing would not succeed without the considerable help of the members of Scientific Program and the financial help of Ministry of Education, Science and Technological Development was greatly supportive for the success of the entire project.

At the end, the editors hope, and would like, that this book to be useful, meeting the expectation of the authors and wider readership and to incentive further scientific development and creation of new papers in the field of Industrial Engineering.

Welcome to the 8^{th} International Conference on Industrial Engineering – SIE 2022! We wish to all participants a pleasant stay in Belgrade and are looking forward to seeing you all together at the 9^{th} Conference on Industrial Engineering – SIE 2025.

Belgrade, September 2022

EDITORS

SIE 2022

- CONTENTS -

PLENARY SESSION - CHAIRPERSONS: Vesna Spasojević Brkić, Vujadin Vešović, Teodora Rutar Shuman, Paolo Bragatto, Tijana Vesić Pavlović

PROFESSOR VUKAN DEŠIĆ AS THE FOUNDER OF THE DEPARTMENT	
FOR SCIENTIFIC ORGANIZATION OF WORK: THE 70-YEAR JUBILEE	
2. Vujadin Vešović	16
IN THE REMEMBRANCE OF PROFESSOR VUKAN DEŠIĆ, THE DOYEN	
OF ORGANIZATIONAL SCIENCES AND MANAGEMENT: THE	
DEVELOPMENT OF SCIENTIFIC ORGANIZATION OF WORK IN THE	
FNR YUGOSLAVIA AND THE SURROUNDINGS	
3. Teodora Rutar Shuman, Yen-Lin Han, Kathleen E. Cook, Jennifer Turns,	
Gregory S. Mason	22
REVOLUTIONIZING ENGINEERING DEPARTMENT BY CHANGING ITS	1
CULTURE	
4. Paolo Bragatto	26
CYBER PHYSICAL SYSTEMS FOR OCCUPATIONAL SAFETY AT	
INDUSTRIAL SITES: OPPORTUNITIES AND DIFFICULTIES.	
5. Eckard Helmers, Chia Chien Chang, Justin Dauwels	30
COMPREHENSIVE INSTITUTIONAL CARBON FOOTPRINTING – THE	
LONG AND DIFFICULT WAY TO ZERO	

SESSION 1 - CHAIRPERSONS: Tatjana Šibalija, Katarina Dimić-Mišić, Sanja Stanisavljev

6.	Aleksandra Taskovic, Tatjana Sibalija	
	RFID TECHNOLOGY AUDIT AND CONTROL IN HEALTHCARE SECTOR	

7.	Milica Vlajković, Dragan Đokić, Tatjana Šibalija	40
	IMPROVING THE BUSINESS PROCESS BY IMPLEMENTING DOCUMENT	
	MANAGEMENT SYSTEM AND CLOUD INFRASTRUCTURE	
8.	Nora Trklja Boca, Žarko Z. Mišković, Katarina Dimić-Mišić, Bratislav M. Obradović,	
	Radivoje M. Mitrović, Milorad M. Kuraica	45
	BEHAVIOUR OF INDUSTRIAL STEEL UNDER HIGH THERMAL LOADS	
	PRODUCED BY PLASMA FORMED WITHIN MAGNETOPLASMA	
	COMPRESSOR	
9.	Dragan Ćoćkalo, Dejan Đorđević, Cariša Bešić, Sanja Stanisavljev, Mihalj Bakator	49
	SUSTAINABLE DEVELOPMENT AND ENTREPRENERSHIP IN THE	
	CONTEXT OF SOCIETY 5.0	
10.	Jelena Vukajlović, Sanja Stanisavljev, Zlatko Košut, Mila Kavalić, Dijana Tadić	53
	APPLICATION OF MODERN CONCEPTS IN PRODUCTION	
11.	José Sobral	58
	UNDERSTANDING ASSET MANAGEMENT MATURITY LEVEL IN	
	INDUSTRIAL ORGANIZATIONS	
12.	José Sobral	62
	DEVELOPMENT OF A MODEL TO ASSESS TOTAL PRODUCTIVE	
	MAINTENANCE IN AN INDUSTRIAL FACILITY	
13.	Tanja Sekulić , Iris Borjanović, Dunja Popović	66
	APPLIED MATHEMATICAL SOFTWARE TOOLS FOR ENGINEERS	
	AT TECHNICAL COLLEGE OF APPLIED SCIENCES IN ZRENJANIN	
14.	Dejan Randjic	70
	ACHIEVING nZEB DESIGN USING GROUND SOURCED HEAT PUMP	
	AND ON-SITE RENEWABLE ENERGY PRODUCTION	
15.	Danijela Tadić, Snežana Nestić, Tijana Petrović	74
	COMBINING MOORA AND DELPHI UNDER INTUITIVE ENVIRONMENT	
16.	Uroš Ilić, Marko Đurović, Aleksandra Joksimović, Emil Veg	78
	A DESIGN OF A TWO-ARMED ROBOT FOR COMPLEX OBJECTS	
	ASSEMBLY	
17.	Jelena R. Jovanović	82
	UTILIZATION OF MACHINE CAPACITY AND STRUCTURE OF LOSSES	
	PER CAUSE OF DOWNTIME	
18.	Anna Vrabelova, Zuzana Kotianová, Shander Basilio, Peter Darvaši	86
	PLAN OF THE 5S IMPLEMENTATION IN PROTOTYPE AND INNOVATIVE	
	CENTRE IN FACULTY OF MECHANICAL ENGINEERING OF TUKE	
19.	Radisa Jovanovic, Mitra Vesovic, Natalija Perisic	90
	PI CONTROLLER OPTIMIZATION BY ARTIFICIAL GORILLA TROOPS	
	FOR LIQUID LEVEL CONTROL	
20.	Aleksandar Argilovski, Bojan Jovanoski, Robert Minovski, Afet Musliji	94
	MAPPING THE CURRENT RESEARCH ON THE DIFFERENT VIEWPOINTS	
	REGARDING RELATIONSHIP BETEWEN LEAN AND INDUSTRY 4.0	
21.	Nermina Zaimović-Uzunović, Kenan Varda, Ernad Bešlagić	<u>98</u>
	SAMPLING FREQUENCY INFLUENCE ON THE ACCURACY OF	
	VELOCITY MEASUREMENT IN THE WIND TUNNEL	
22.	Lazar Djordjevic	102
	CONCEPTUAL SOLUTION OF OZONIZATION LINE IN DRINKING	
	WATER PREPARATION PLANT	

23.	23. Nikola Raičević, Danilo Petrašinović, Aleksandar Grbović, Miloš Petrašinović,		
	Mihailo Petrović	105	
	FREECAD IMPORTAIRFOIL MACRO - DRAWING AIRFOIL GEOMETRY		
	IN AN OPEN-SOURCE CAD PROGRAM		
24.	Dragan Milković, Vojkan Lučanin, Saša Radulović, Aleksandra Kostić	109	
	OVERVIEW OF ACTIVITIES RELATED TO THE PROVISION OF		
	LOGISTICAL SUPPORT DURING THE IMPLEMENTATION OF TYPE		
	TESTS OF RAILWAY VEHICLES		
25.	Thad Maloney, Josphat Phiri	113	
	GRAPHENE/NANOCELLULOSE CO-EXFOLIATION FOR GREEN		
	COMPOSITES		

SESSION 2 - CHAIRPERSONS: Andrea Sütőová, Bojan Jovanoski, Peða Milosavljević

26.	Andrea Sütőová, Katarína Teplická, Klaudia Budišová	122
	JOB ANALYSIS OF QUALITY INSPECTORS FOR IDENTIFICATION OF	
	EFFICIENCY IMPROVEMENT POSSIBILITIES	
27.	Afet Musliji, Bojan Jovanoski, Robert Minovski, Aleksandar Argilovski	126
	DIGITAL TWIN APPLICATIONS IN MANUFACTURING – LITERATURE	
	REVIEW AND RESEARCH DIRECTIONS	
28.	Srđan Mladenović, Dragan Pavlović, Peđa Milosavljević	130
	LEAN METHODOLOGY IN HEALTHCARE	
29.	Bojan Jerinic, Nemanja Sremcev, Ilija Cosic	134
	EXAMINING THE RELATIONHIP BETWEEN INDUSTRY 5.0 AND LEAN	
	PHILOSOPHY	
30.	Ivan Tomašević, Dragana Stojanović, Barbara Simeunović, Ivona Jovanović,	
	Dragoslav Slović	139
	LEAN APPROACH TO IMPROVING THROUGHPUT IN UN-PACED	
	ASSEMBLY LINE: ACTION RESEARCH REPORT	
31.	Miro Hegedić, Nataša Tošanović, Roberto Skoliber, Jakov Bošnjak	143
	INCREASING THE PRODUCTIVITY OF PRODUCTION PROCESS IN	
	FOOTWEAR INDUSTRY BY ADOPTING LEAN TOOLS	
32.	Natalija Perisic, Radisa Jovanovic	148
	APPLICATION OF DEEP LEARNING IN QUALITY INSPECTION OF	
	CASTING PRODUCTS	
<i>33</i> .	Marija Savković, Nikola Komatina, Carlo Caiazzo, Marko Đapan	152
	IMPROVING THE QUALITY OF FINAL PRODUCT BY POKA-YOKE	
	SYSTEM ON ASSEMBLY WORKSTATION: A CASE STUDY	
34.	Sanela Arsić, Ana Rakić, Maja Glogovac, Anđelka Stojanović, Jelena Ruso,	
	Isidora Milošević	156
	ENTROPY-TOPSIS METHOD FOR RANKING INDUSTRIES ACCORDING	
	TO QUALITY 4.0 MATURITY LEVEL	
35.	Branislav Tomic	160
	QUALITY IMPROVEMENTS IN QUALITY 4.0	
36.	Ilija Tabasevic	163
	A TEMPERATURE MAPPING EXPERIMENT IN A PHARMACEUTICAL	
	WAREHOUSE	

37.	Ivan Simonovic, Pavle Ljubojevic, Tamara Vasiljevic	167
	STANDARDIZATION IN THE FIELD OF MACHINE ELEMENTS AND	
	DESIGN	
38.	Dejan Kovacevic, Sanja Stanisavljev, Zlatko Košut, Dragan Ćoćkalo, Dejan Đorđević	171
	MODERNIZATION OF PRODUCTION USING LEAN, JIT CONCEPT	
<i>39</i> .	İ. Kol, A. Glisic	176
	A CASE STUDY ON RISK MANAGEMENT IN AN OPEN-PIT CALCITE MINE	
40.	Ernest Barcelo, Katarina Dimic-Misic, Monir Imani, Patrick Gane, Hummel Michael	182
	REGULATORY PARADIGM OF MODERN ENERGY SECTOR IN	
	RENEWABLE ENERGY GRIDS	
41.	Ernest Barcelo, Monir Imani, Michael Hummel, Patrick Gane	191
	BLOCKCHAIN IN MODERN ENERGY SECTOR	
42.	Ana Bantić, Marija Milanović, Goran Đurić	195
	ANALYTIC HIERARCHY PROCESS ANALYSIS OF QSG USABILITY	
	EVALUATION	
43.	Goran Đurić, Ana Bantić, Petar Đurić	199
	AUTOMATIC GENERATION OF DATA FLOW DIAGRAM	

SESSION 3 - CHAIRPERSONS: Ivan Mihajlović, Mirjana Misita, Zoran Anišić, Maria Francesca Milazzo

44.	Ivan Mihajlović, Nenad Nikolić, Peter Schulte	204
	FACTORS AFFECTING SMEs FAILURE - PART ONE: GENERAL ASPECTS	
45.	Ivan Mihajlović, Nenad Nikolić, Peter Schulte	208
	FACTORS AFFECTING SMEs FAILURE - PART TWO: POSSIBILITIES	
	AND BARRIERS OF DIGITALIZATION	
46.	Anđelka Stojanović, Nenad Milijić, Isidora Milošević, Ivan Mihajlović	213
	SMEs' DIGITALIZATION IMPACT ON ECONOMIC DEVELOPMENT	
47.	Mirjana Misita, Aleksandar Brkić, Vesna Spasojević Brkić, Neda Papić, Martina Perišić,	
	Ivan Rakonjac	217
	DUMP TRUCK EFFICIENCY AND RISK MAPS: CASE STUDY	
48.	Mirjana Misita, Vesna Spasojević Brkić, Milanko Damjanović, Goran Đurić, Neda Papić,	,
	Martina Perišić	222
	EVALUATION OF THE HAMRISK EXPERT SYSTEM BY HIERARCHICAL	
	STRUCTURING OF CRITERIA	
49.	Nenad Medic, Zoran Anisic	228
	COMPARISON OF MCDM METHODS: THE FOCUS ON ALGORITHMS	
50.	Damir Ilić, Isidora Milošević, Tatjana Ilić-Kosanović	232
	SMART CITIES IN THE FIGHT AGAINST THE COVID-19 PANDEMIC	
	- LESSONS FOR THE CITY OF BELGRADE	
51.	Branislav Petrovic, Milan Gojak	236
	ENERGY EFFICIENCY IMPROVEMENT POTENCIAL AND ENERGY	
	SAVING STRATEGIES IN GLOBAL INDUSTRIAL SECTOR	
52.	Luka Djordjevic, Eleonora Desnica, Borivoj Novakovic, Mica Djurdjev, Mihalj Bakator	241
	TECHNICAL PERFORMANCE PREDICTION OF THE 1MW SOLAR	
	POWER PLANT IN THE CITY OF ZRENJANIN	

53.	Nikola Komatina, Aleksandar Aleksić, Nikola Banduka	246
	DETERMINATION OF FAILURES PRIORITY BASED ON FMEA, FUZZY	
	SETS, AND FUZZY LOGIC RULES	
54.	Zoran Nesic, Nikola Komatina, Nebojsa Denic	250
	APPLICATION OF GENETIC ALGORITHM AND LINEAR PROGRAMMING	
	FOR DETERMINATION OF OPTIMAL PRODUCTION VOLUME	
55.	Aleksandar Videnovic, Aleksandar Djurdjevic, Jadranka Labus, Dejana Popovic	254
	APPARATUS FOR DETERMINING THE EXPLOSION CHARACTERISTICS	
	OF DUST CLOUDS, TEST METHODS AND PROCEDURES	
56.	Sanja Puzovic, Jasmina Vesic Vasovic, Vladan Paunovic	258
	AN APPROACH TO NEW PRODUCT CONCEPT SELECTION DECISION-	
	MAKING	
57.	Milovan Paunić, Vladimir Černicin	263
	APPLICATION OF FINITE ELEMENT METHOD FOR ANALYSIS THE	
	PARAMETERS OF FRACTURE MECHANICS	
58.	Maria Francesca Milazzo, Paolo Bragatto	267
	UPDATING THE PROBABILITY OF RELEASE DUE EQUIPMENT	
	DETERIORATION USING INCIDENT AND NEAR-MISS DATA	
59.	Zorica A. Veljković, Slobodan Lj. Radojević	270
	CONSTRUCTION OF THE FIVE LEVEL TAGUCHI'S ORTHOGONAL	
	ARRAYS	
60.	Bogdan Ristić, Ivan Božić	274
	A SHORT OVERVIEW ON INDUSTRY 4.0 IN MAINTENANCE OF	
	HYDROPOWER PLANTS	

SESSION 4 - CHAIRPERSONS: Uglješa Bugarić, Aleksandar Žunjić, Ernest Barcelo

61. Al-Sifao Abdalla Al-Sifao, Uglješa Bugarić, Abdughder Mohahmed Alsharif,	
Hetham Omer Mohamed	279
PUBLIC-PRIVATE PARTNERSHIP (PPP) PROJECTS IN LIBYA - AN	
OVERVIEW	
62. Milica Gerasimovic, Ugljesa Bugaric	284
CURRICULUM TO TEACH ARTIFICIAL INTELLIGENCE FOR VET	
SCHOOL – DESIGNING AND CHALLENGES	
63. Aleksandar Zunjic, Uros Manojlovic, Svetlana Cicevic, Aleksandar Trifunovic	287
EVALUATION OF THE USABILITY OF SYMBOLS INDICATING THE	
STATE OF AUTOMOBILE LIGHTING	
64. Aleksandar Trifunović, Svetlana Čičević, Dalibor Pešić, Maja Petrović,	
Aleksandar Zunjic, Dragan Lazarević	291
THE IMPORTANCE OF TRAFFIC PLAYGROUND DESIGN FOR	
EDUCATING CHILDREN ABOUT TRAFFIC SAFETY	
65. Katarina Dimic-Misic, Aleksandar Brkic, Monir Imani, Ernest Barcelo,	
Patrick Gane	295
FILTER EFFICIENCY AND AGING IN HEAVY-DUTY VEHICLE CABINS	
66. Živan Živković, Marija Panić, Aleksandra Fedajev	299
HEALTH SECURITY ASSESSMENT OF THE WESTERN BALKAN	
COUNTRIES	

67.	Aleksandar Brkić	303
	CRANE OPERATORS' TRAINING IMPORTANCE AND RISK	
	MANAGEMENT	
68.	Abdughder Mohahmed Alsharif, Al-Sifao Abdalla Al-Sifao, Hetham Omer	
	Mohamed	307
	RISK MANAGEMENT FRAMEWORK FOR OCCUPATIONAL HEALTH	
	AND SAFETY IMROVEMENT IN THE CONTEXT OF	
	INDUSTRIAL TECHNOLOGY INNOVATION	
69.	Nemania Janev. Martina Perišić. Milan Krantić	311
	CONTINGENCY OF EMPLOYEES' TRAINING	
70	Marek Dźwiarek	315
/0.	SAFETY OF SERVICE WORK AND CYRER SECURITY OF	010
	MACHINERV CONTROL SYSTEM IN INDUSTRY 4.0	
71	Višnja Mihajlović Mila Kavalić Ali Roza Afshari Varica Chovakov	310
/1.	THE CONCEPT OF CIDCUL AD ECONOMY IN MODEDN DUSINESS	519
72	Lasif Areney, Olag Maksimova	272
12.	CENEDAL EACTORS INFLUENCING CONSENSUS IN A SOCIAL CROUP	525
72	GENERAL FACTORS INFLUENCING CONSENSUS IN A SOCIAL GROUP	227
/3.	Novak Simin, Petar Vrgovic	327
_ /	NEW DEMANDS IN THE ENGINEERING EDUCATION	
74.	Marko Orošnjak, Mitar Jocanović, Ivan Beker, Velibor Karanović,	
	Nebojša Brkljač	330
	ASSESSMENT OF DIGITAL COMPETENCES OF INDUSTRIAL	
	ENGINEERING STUDENTS: POST-COVID19 RESULTS	
75.	Juraj Glatz, Hana Pačaiová, Zuzana Kotianová, Anna Vrabeľová	334
	PROPOSAL OF HAZARDOUS ENERGY MANAGEMENT	
	METHODOLOGY	
76.	Milovan Paunić, Vladimir Černicin	338
	VIRTUAL MODEL GENERATION OF REPRESENTATIVE VOLUME	
	ELEMENT FOR UNIDIRECTIONAL COMPOSITE	
77.	Marija Milanović, Neda Papić, Ana Bantić	342
	INVESTIGATING RISKS AT WORKPLACES IN THE MACHINE	
	INDUSTRY	
78.	Marko Djurovic, Uros Ilic, Aleksandra Joksimovic, Emil Veg	346
	THE PRINCIPLE OF DESIGNING THE FILLING OF A OPEN RAPID	
	SAND FILTER BY THE METHOD OF PRESCRIBING THE MINIMUM	
	MASS OF AN INDIVIDUAL LAYER OF FILLING	
79.	Monireh Imani. Gane Patrick	349
	PRINTABILITY OF ARONIA INKS ON CALCIUM CARBONATE	
	CONTAINING SUBSTRATE	
80	Ivana Nedelikovic, Mathieu Skrzvnczak, Andielka Glisic	355
00.	EXTRACTING VALUE OUT OF OUALITY DATA USING MICROSOFT	000
	POWER BLIN AN INDUSTRIAL COMPANY: CASE STUDIES	
81	Giusenna Ancione Rehecca Saitta Paolo Bragatto Giacomo Fiumara	
01.	Maria Francosca Milazzo	261
	Πατα Γταις στα μπαχο DDEDICTING AND VISUALISING THE DECDADATION OF THE DOTTOM	501
	OF ATMOSPHERIC STORAGE TANK RV A VIRTUAL SENSOR	

COMBINING MOORA AND DELPHI UNDER INTUITIVE ENVIRONMENT

Danijela Tadić¹, Snežana Nestić¹, Tijana Petrović¹ ¹Faculty of Engineering, University ofKragujevac, Serbia galovic@kg.ac.rs

Abstract. A new model is developed that combines Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) and Delphi technique that are extended with intuitive fuzzy sets. Determining the weight of the criteria is set as fuzzy group decision making problem. Weights vector of criteria is set by proposed Delphi technique under the intuitionistic environment. Estimated value of criteria is given according to the assessment of decision makers. They use pre-defined linguistic expressions which are modelled by intuitionistic fuzzy numbers. The difference between the weighted normalized value of each alternative and reference point is determined by using Hamming distance. The rank of the alternative is based on the obtained values which are sorted in descending order. The proposed method is tested in real life data originating from a state service enterprise.

Key words: Intuitionistic fuzzy sets, MOORA, Delphi technique, selection of offer.

1.INTRODUCTION

In the literature, many MADM methods have been developed and classified into different groups[13]. Utility-based methods are classic representatives of the American school. What this group of MADM methods is based on is the ability to "communicate" between alternatives. In fact, the main limitation of this group of methods is their application only when the criteria are observed independently [4]. Methods within the same group are based on a similar mathematical and logical basis. In this paper, MOORA is considered as a distance - based technique.

It can be considered closer to human nature that DMs express their estimates better when using linguistics than precise numbers. The development of various areas of mathematics such as intuitionistic fuzzy sets theory [1] has enabled linguistic expressions to be quantified in a sufficiently good way. In this research, uncertainties into the relative importance of criteria and its values are modelled by the interval valued intuitionistic fuzzy sets (IVIFNs).

For this reason, various authors expended their techniques based on distances with intuitive fuzzy sets theory [2,9].

In this research, the weights vector is calculated by using Delphi technique which is widened with IVIFNs (IF-Delphi technique). The rank of alternatives is given by using the proposed Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) with IVIF (IF-MOORA).

1.1. Fuzzy Delphi technique

In general, the relative importance of criteria can be assessed by using qualitative methods [12]. One of the most widely used methods is the Delphi technique which is used in different domains, such as: economic development planning [11], risk assessment of project success [5], etc. The Delphi technique has the four features: anonymity, iteration, controlled feedback, and statistical "group response" [6]. There are no rules about the number of DMs involved in the decision making process. In practice, the number of DMs is determined according to the size of the decision making problem. The obtained result can be presented as ultimately group consensus.

There is no consensus, the DMs will be provided with the calculated mean as a controlled feedback together with questionnaire. After several rounds, when the consensus was achieved, based on the average of the final round, the items are screened. In the literature, various studies can be found in which different methods for determining consensus are proposed. In practice, it is considered that the obtained solution in the second round can be considered as the optimal solution.Also, there is a significant amount of papers where Delphi technique is extended with fuzzy sets [8,10].

1.2. The proposed MOORA

Brauers&Zavadskas [3] have developed MOORA to satisfy the seven conditions. They have said that MOORA is composed of ratio analysis and reference point theory.

According to the papers that can be found in the literature, certain differences between them can be indicated: (1) choosing criteria is based on the recommendations from practice; (2) rating of the relative importance of criteria and their values is based on using the pre-defined linguistic expressions which are modelled by IVIFNs; (3) the aggregation of DM opinions is obtained by using an intuitionistic fuzzy weighted Averaging (IFWA) operator in almost all analyzed papers; in this research, the authors propose an intuitionistic fuzzy weighted geometric (IVIFWG) operator; (4) the normalized Euclidian distance between two IVIFNs have been used in many papers [2,7], as in this research; (5) the fuzzy decision matrix is based on the consensus of DMs in [2] as in this research; (6) the normalization procedure [14]was applied in this research; (7) The reference point is determined according to [7]; (8) the rank of alternative is obtained by analogy conventional MOORA.

2. THE PROPOSED METHODOLOGY

In order to facilitate the understanding of the proposed methodology, the following notation is given:

- *I* The total number of alternatives
- *i* Index of alternative i = 1, ..., I
- *K* The total number of observed criteria
- k Index of criterion k = 1, ..., K
- *E* The total number of DMs
- *e* Index of DM e = 1, ..., E

2.1. Modelling of uncertainties

The uncertain relative importance criteria and their values are assessed in a direct way by DMs. It is assumed that they use 7 linguistic expressions which are modelled by IVIFNs: *very low value (VLV)-([0.05,0.15], [0.65,0.85])*

low value (LV)-([0.10,0.2], [0.7,0.8]) fairly low values (FLV)-([0.2,0.35], [0.5,0.65]) medium value (MV)-([0.45,0.55], [0.4,0.45]) fairly high values (FHV)-([0.65,0.8], [0.15,0.2]) high value (HV)-([0.7,0.8], [0.1,0.2]) very high value (VHV)-([0.85,0.95], [0.05, 0.05])

2.2. The Delphi technique with IVIFNs

Step 1. Fuzzy rating of the relative importance of criterion k, k=1,...,K is performed by each DM e, e = 1, ..., E. They use pre-defined linguistic expressions which are modelled by IVIFNs:

 $\widetilde{\omega}_{k}^{Ie} = ([a_{1k}^{Ie}, a_{2k}^{Ie}], [a_{3k}^{e}, a_{4k}^{Ie}])$

Step 2. The aggregation of criteria weights in the first round are calculated by using IVIFWG:

$$\widetilde{\omega}_{k}^{l} = \left(\begin{bmatrix} \prod_{e=1,\dots,E} (a_{1k}^{le})^{w_{e}}, \prod_{e=1,\dots,E} (a_{2k}^{le})^{w_{e}} \end{bmatrix}, \\ \left[\left(1 - \prod_{k=1,\dots,K} (1 - a_{3k}^{le})^{w_{e}} \right), \left(1 - \prod_{k=1,\dots,K} (1 - a_{4k}^{le})^{w_{e}} \right) \right] \right)$$

Step 3. The calculated distances IVIF $\widetilde{\omega}_k^I$ from IVIFNs are corresponding to pre-defined linguistic expressions, Δ_{kj} , j = 1, ..., 5. To each criterion k, k = 1, ..., K associated are pre-defined linguistic expressions j, j = 1, ..., 5 according to expression: $\min_{j=1,...,5} \Delta_{kj}$.

Step 4. Fuzzy rating of the relative importance of criterion k, k=1,...,K in the second round, $\tilde{\omega}_k^{IIe}$ is performed by each DM e, e = 1, ..., E by respecting the obtained results of the first round.

Step 5. The aggregated weights of criteria in the second round are determined by using IVIFWG. This value can be accepted as final value, $\tilde{\omega}_k$ and

$$\widetilde{\omega}_k = ([a_{1k}, a_{2k}], [a_{3k}, a_{4k}])$$

2.3. The extended MOORA

Step 1. Constructed the fuzzy decision matrix: $[\tilde{x}_{ik}]_{IXK}$

Where $\tilde{x}_{ik} = ([a_{1ik}, a_{2ik}], [a_{3ik}, a_{4ik}])$ is IVIFN which describes the value criterion k, k=1,...,K for failure I, i=1,...,I.

Step 2. The normalized fuzzy decision matrix is constructed: $[\tilde{r}_{ik}]_{IXK}$

Where:

a) benefit type:

b

$$r_{1ik} = \frac{a_{1ik}}{\sqrt{\sum_i (2 - a_{3ik} - a_{4ik})^2}} \quad r_{2ik} = \frac{a_{2ik}}{\sqrt{\sum_i (2 - a_{3ik} - a_{4ik})^2}}$$
$$r_{3ik} = 1 - \frac{1 - a_{3ik}}{\sqrt{\sum_i (a_{1ik} + a_{2ik})^2}} \quad r_{4ik} = 1 - \frac{1 - a_{4ik}}{\sqrt{\sum_i (a_{1ik} + a_{2ik})^2}}$$
) cost type:

$$\begin{array}{l} r_{1ik} & r_{2ik} \\ = \frac{(1 - a_{3ik})^{-1}}{\sqrt{\sum_i ((a_{1ik})^{-1} + (a_{2ik})^{-1})^2}} & = \frac{(1 - a_{4ik})^{-1}}{\sqrt{\sum_i ((a_{1ik})^{-1} + (a_{2ik})^{-1})^2}} \\ r_{3ik} & r_{4ik} \\ = 1 & \\ (a_{1ik})^{-1} & (a_{2ik})^{-1} \end{array}$$

 $-\frac{1}{\sqrt{\sum_{i}((1-a_{3ik})^{-1}+(1-a_{4ik})^{-1}-1)}} \sqrt{\sum_{i}((1-a_{3ik})^{-1}+(1-a_{4ik})^{-1}+1)}$ Step 3. The weighted fuzzy decision matrix is constructed: $[\tilde{z}_{ik}]_{IXK}$ Where:

$$\tilde{z}_{ik} = \tilde{\omega}_k \cdot \tilde{r}_{ik} = ([\alpha_{ik}, \beta_{ik}], [\gamma_{ik}, \delta_{ik}])$$

Step 4. The reference point is calculated:

$$\tilde{f}_{k} = \left(\left[\max_{i} \alpha_{ik}, \max_{i} \beta_{ik} \right], \left[\min_{i} \gamma_{ik}, \min_{i} \delta_{ik} \right] \right)$$

Step 5. The distances between weighted normalized values alternatives at the level of each criterion from the reference point are calculated:

$$d_{ik} = \frac{1}{K} \cdot d\big(\tilde{z}_{ik}, \tilde{f}_k\big)$$

Step 6. The values, d_i that is associated with each alternative are calculated according to the expression:

$$d_i \max_{k=1,\dots,K} d_{ik}$$

Step 7. The values d_i are sorted in descending order.

3. ILLUSTRATIVE EXAMPLE

In this section, the proposed methodology was tested on the example of the selection of offers for on-going maintenance services and troubleshooting of vehicles in the public procurement procedure in the Revenue Administration. Criteria according to which offers are evaluated are: unit price of service (k=1), grouped services in one service center (k=2), distance of service units (k=3), unit price of technical inspection service (k=4), vehicle transport price (k=5), deadline for complaints about completed services (k=6) and price ratio of spare parts (k=7). DMs that assess the relative importance of the criteria as well as their values.

3.1. An application of the proposed Delphi with IVIFNs

The assessments of the relative importance of the criteria are:

k=1: HV, FHV, VHV, FHV, HV	k=2: LV,FLV,FLV,VLV,MV
1-2. MV MV EIN/ EIN/ VIN/	k=4:
K=3: <i>MV,MV,FHV,FHV,VHV</i>	FHV,FHV,MV,FHV,HV
1- 5. MULTU FINITULI	k=6:
K=5: MV,LV,FLV,VHV,LV	FLV,VHV,MV,MV,VLV

k=7: LV,FLV,FLV,LV,LV

The proposed methodology is illustrated for criterion (k=1). The DMs importance are considered as: 0.4, 0.2, 0.15, 0.1 and 0.05

The aggregated relative importance of criterion (k=1) is $\widetilde{\omega}_1^I = ([0.70, 0.82], [0.11, 0.18]).$

The distance between the $\tilde{\omega}_{1}^{I}$ and pre-defined linguistic expressions (j=1) is $d(\tilde{\omega}_{1}^{I}, VLV) = \frac{1}{4} \cdot \{|0.70 - 0.05| + |0.82 - 0.15| + |0.11 - 0.65| + |0.18 - 0.85|\} = 0.642$

The linguistic statement that joins the criterion (k=1) is determined by the expression:

 $\min_{j=1,...,5} (0.64, 0.62, 0.46, 0.28, 0.04, 0.02, 0.11) = 0.04$ Based on the obtained result, it follows that the

criterion (k = 1) can be described by the linguistic statement FHV.

In the second round of the extended Delphi technique, estimates of the relative importance of the criterion (k = 1) are:

FHV, FHV, HV, FHV, FHV

Weights of the considered criteria are:

<pre>~ _ ([0.66,0.80],)</pre>	$\approx ([0.23, 0.38],)$
$\omega_1 = ([0.14, 0.20])$	$\omega_5 = ([0.47, 0.62])$
$\approx -([0.10, 0.21],)$	_{α (} [0.47,0.57],)
$\omega_2 = ([0.69, 0.79])$	$\omega_6 - ([0.36, 0.43])$
~ _ ([0.46,0.56],)	$\approx ([0.10, 0.20],)$
$\omega_3 = ([0.39, 0.44])$	$\omega_7 = ([0.70, 0.80])$
$\approx -([0.65, 0.80],)$	
$\omega_4 = ([0.15, 0.20])$	

3.2. An application of the proposed MOORA with IVIFNs

The fuzzy decision matrix is presented in Table 3 and the weighted normalized fuzzy decision matrix as well as the reference point is presented in Table 4.

Table 3. The fuzzy decision matrix

	k = 1	k = 2	<i>k</i> = 3	<i>k</i> = 4	<i>k</i> = 5	k = 6	<i>k</i> = 7
i = 1	FHV	HV	VLV	MV	FHV	MV	FLV
<i>i</i> = 2	HV	FLV	FLV	LV	MV	FHV	MV
<i>i</i> = 3	MV	VLV	MV	FLV	LV	VHV	FHV

Table 4. The weighted normalized fuzzy decision matrix and the reference point

	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7
<i>i</i> = 1	([0.08,0.18],)	([0.04,0.09],)	([0.05,0.13],)	([0.07,0.09],)	([0.02,0.03],)	([0.15,0.19],)	([0.01,0.03],)
	([0.72,0.79])	([0.83,0.89])	([0.39,0.67])	([0.81,0.86] <i>)</i>	([0.92,0.95] <i>)</i>	([0.96,0.97] <i>)</i>	([0.92,0.96])
<i>i</i> = 2	([0.13,0.18],)	([0.01,0.04],)	([0.03,0.06],)	([0.12,0.23],)	([0.03,0.05],)	([0.10,0.13],)	([0.02,0.05],)
	([0.75,0.79])	([0.90,0.95])	([0.73,0.86])	([0.17,0.61])	([0.87,0.93] <i>)</i>	([0.97,0.98] <i>)</i>	([0.90,0.94])
<i>i</i> = 3	([0.20,0.26],)	([0,0.02])	([0.03,0.04],)	([0.07,0.13],)	([0.05,0.12],)	([0.09,0.11],)	([0.03,0.07],)
	([0.60,0.70])	(, [0.93,0.98] <i>)</i>	([0.88,0.91])	([0.58,0.78] <i>)</i>	([0.47,0.80])	([0.98,0.98] <i>)</i>	([0.86,0.91])
$ ilde{f}_k$	([0.20,0.26],)	([0.04,0.09],)	([0.05,0.13],)	([0.12,0.23],)	([0.05,0.12],)	([0.15,0.19],)	([0.03,0.07],)
	\[0.60,0.70] <i>)</i>	([0.83,0.89])	([0.39,0.67]	([0.17,0.61])	([0.47,0.80]	\[0.96,0.97] <i>]</i>	([0.86,0.91]

Distance between the weighted normalized values of alternatives and reference points are presented in Table 5.

Table 5. The matrix of distance values at the level of each criterion

	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7
i= 1	0.015	0	0	0.038	0.025	0	0.006
i= 2	0.013	0.007	0.022	0	0.022	0.004 6	0.003
i= 3	0	0.010 7	0.030 0	0.026 0	0	0.004 6	0

Respecting the proposed Algorithm, each alternative is joined to the greatest value of distance with respects to all considered criteria. The obtained results are presented in Table 6.

Table 6. Rank of alternatives

	di	Rank
i = 1	0.0386	1
i = 2	0.0221	3
i = 3	0.0300	2
1 – 5	0.0300	2

According to the obtained results, it follows that the closest offer (i = 3) respects all the criteria as well as their weights.

3. CONCLUSIONS

In this paper, the new model, which combines the IF-Delphi technique and IF-MOORA for measuring and ranking the alternatives with respects to numerous criteria, was developed.

The relative importance of criteria are assessed by DMs and depends on their knowledge, current information and experiences. In order to reduce subjectivity, in this research, determination of criteria weights is based on application of IF-Delphi technique.

The elements of fuzzy decision matrix are given according to the assessments of DMs and modelled by IVIFNs. As the criteria used to measure the alternative benefit and cost type, authors constructed the normalized fuzzy decision matrix. By applying fuzzy algebra rules, the weighted normalized fuzzy decision matrix is stated. The distance between the elements of the weighted normalized fuzzy decision matrix and reference point are calculated by using the Hamming distance. The rank alternatives are obtained by analogy conventional MOORA.

The future research should be oriented to the improvement of the IF-Delphi technique by introducing criteria for achieving consistency in the assessment of DMs.

The main advantages of the presented fuzzy model are: (1) using IVFNs, the linguistic pre-defined linguistics are quantitatively described in a manner that is good enough, (2) The proposed model can be quickly and easily adjusted to changes in the number of criteria, the relative importance of criteria as well as their values.

REFERENCES

[1] Atanassov, K. T. (1999). Interval valued intuitionistic fuzzy sets. In *Intuitionistic fuzzy sets* (pp. 139-177). Physica, Heidelberg.

[2] Azimifard, A., Moosavirad, S. H., &Ariafar, S. (2018). Selecting sustainable supplier countries for Iran's steel industry at three levels by using AHP and TOPSIS methods. *Resources Policy*, *57*, 30-44.

[3] Brauers, W. K., &Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. *Control and cybernetics*, *35*(2), 445-469.

[4] Danesh, D., Ryan, M. J., & Abbasi, A. (2018). Multicriteria decision-making methods for project portfolio management: a literature review. *International Journal of Management and Decision Making*, *17*(1), 75-94.

[5] Evangelidis, A., Akomode, J., Taleb-Bendiab, A., & Taylor, M. (2002, September). Risk assessment & success factors for e-government in a UK establishment.In *International Conference on Electronic Government* (pp. 395-402).Springer, Berlin, Heidelberg.

[6] Förster, B., & von der Gracht, H. (2014). Assessing Delphi panel composition for strategic foresight—A comparison of panels based on company-internal and external participants. *Technological Forecasting and Social Change*, *84*, 215-229.

[7] Hajek, P., &Froelich, W. (2019). Integrating TOPSIS with interval-valued intuitionistic fuzzy cognitive maps for effective group decision making. *Information Sciences*, *485*, 394-412.

[8] Komatina, N., Djapan, M., Ristić, I., & Aleksić, A. (2021). Fulfilling External Stakeholders' Demands— Enhancement Workplace Safety Using Fuzzy MCDM. *Sustainability*, *13*(5), 2892.

[9] Kumar, K., &Garg, H. (2018). TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. *Computational and Applied Mathematics*, *37*(2), 1319-1329.

[10] Lin, C. C., & Chuang, L. Z. H. (2012). Using fuzzy delphi method and fuzzy AHP for evaluation structure of the appeal of taiwan's coastal wetlands ecotourism. In *Business, Economics, Financial Sciences, and Management* (pp. 347-358).Springer, Berlin, Heidelberg.

[11] Meijering, J. V., Kampen, J. K., & Tobi, H. (2013). Quantifying the development of agreement among experts in Delphi studies. *Technological Forecasting and Social Change*, 80(8), 1607-1614.

[12] Nestic, S., Lampón, J. F., Aleksic, A., Cabanelas, P., &Tadic, D. (2019). Ranking manufacturing processes from the quality management perspective in the automotive industry. *Expert Systems*, *36*(6), e12451.
[13] Nijkamp, P., Rietveld, P., &Voogd, H. (2013). *Multicriteria evaluation in physical planning*. Elsevier.

[14] Xu, Z. (2007). Methods for aggregating intervalvalued intuitionistic fuzzy information and their application to decision making. *Control and decision*, 22(2), 215-219.